SUM 2008

2nd International Conference on Scalable Uncertainty Management

Napoli, Italy, October 1-3, 2008

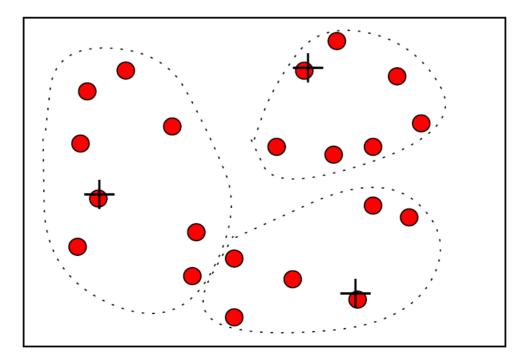
Clustering Uncertain Data via K-Medoids

<u>F. Gullo</u>, G. Ponti, A. Tagarelli DEIS - University of Calabria - Italy

Introduction

Clustering or unsupervised classification:

- Low intra-cluster distance
- > High inter-cluster distance



Introduction

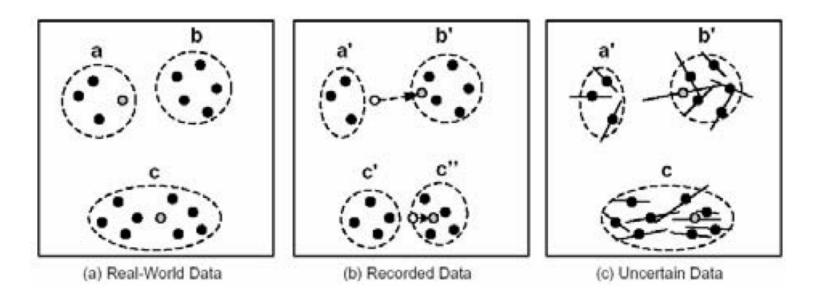
Data uncertainty is inherent in many applications due to, e.g.,

- randomness in data generation/acquisition
- imprecision in physical measurements
- data staling

Applications: data cleaning, data integration, information extraction, sensor networks, market surveillance, moving object management, ...

Introduction

Clustering of uncertain data may lead to wrong results if uncertainty is not taken into account



Outline

Introduction

Modeling uncertainty

Our proposal: a K-medoids-based algorithm for clustering uncertain data

Experimental results

Conclusions

Modeling uncertainty

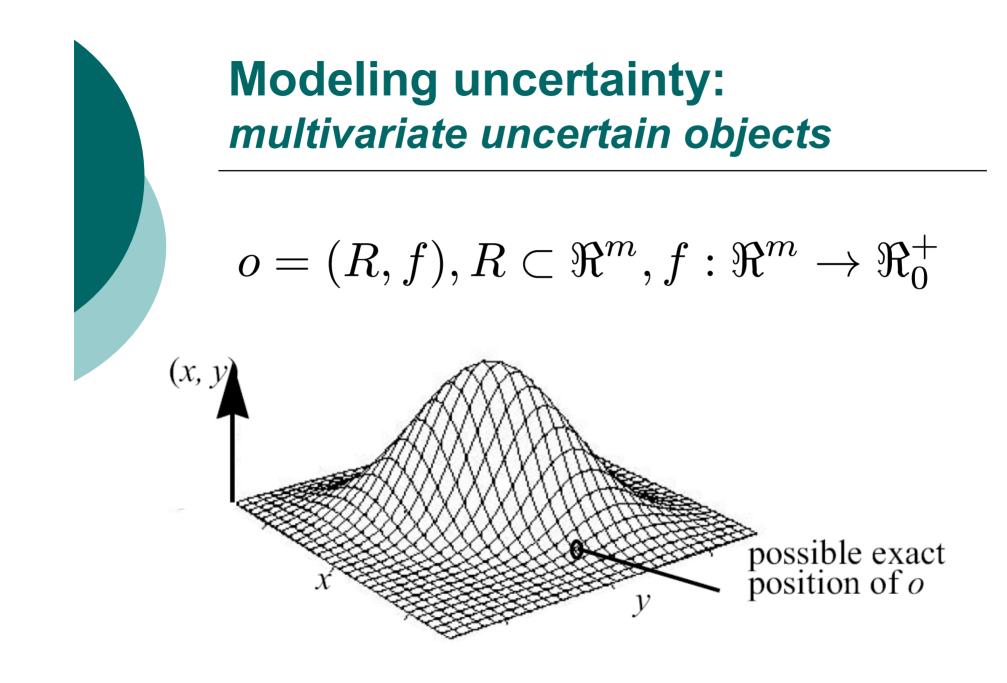
Granularity: e.g., table-level, tuplelevel, attribute-level

Modeling: e.g., % error, intervals, multi-represented objects, probabilistic models

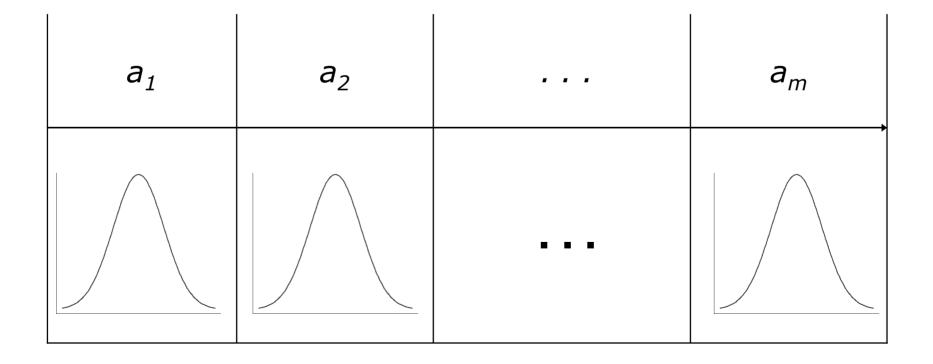
Modeling uncertainty: uncertain objects

An uncertain object is a data object represented by means of *probability density functions* (*pdfs*) that describe the probability that the object appears in a multidimensional space

pdfs can be either continuous or discrete



$$o = \left(\left(I^{(1)}, f^{(1)} \right), \dots, \left(I^{(m)}, f^{(m)} \right) \right)$$
$$I^{(h)} = \left[l^{(h)}, u^{(h)} \right], f^{(h)} : \Re \to \Re_0^+, h \in [1..m]$$



Clustering of uncertain objects: *UK-means*

[Chau et Al., PAKDD'06]

UK-means is an adapted version of K-means which handles uncertain objects

- □ It works on **multivariate** uncertain objects
- It provides the notion of centroid of a cluster of uncertain objects
- It defines the Expected Distance (ED) between centroids and uncertain objects

UK-means

[Chau et Al., PAKDD'06]

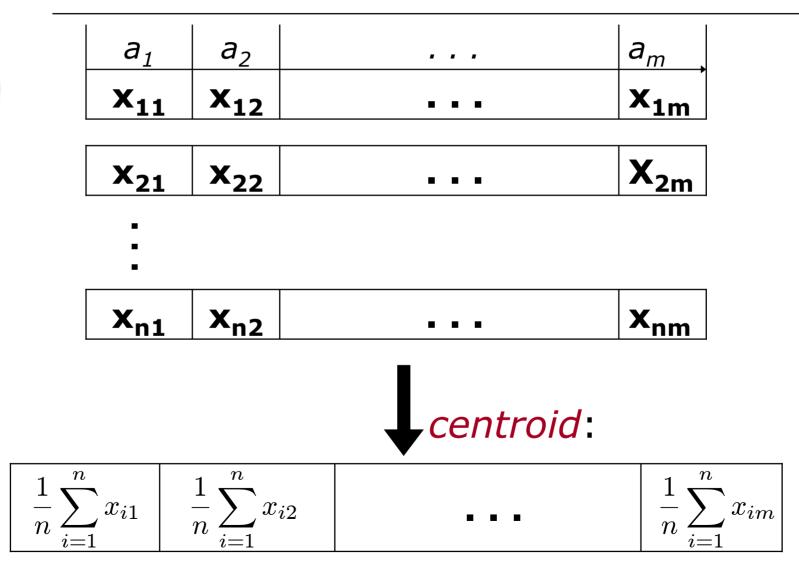
select n objects as initial centroids **REPEAT**

assign each object to the closest cluster based on its distance to centroids

recompute centroids

UNTIL centroids do not change

UK-means: *computing centroids*



UK-means: *computing centroids*

[Chau et Al., PAKDD'06]

Centroid $\vec{c} \in \Re^m$ of cluster C:

$$\vec{c} = E\left[\frac{1}{|C|} \sum_{o \in C} f\right] =$$
$$= \frac{1}{|C|} \sum_{o \in C} \int_{\vec{x} \in \Re^m} \vec{x} f(\vec{x}) d\vec{x}$$

UK-means: computing EDs

[Chau et Al., PAKDD'06]

ED between a centroid \vec{c} and an uncertain object o = (R, f):

$$\begin{split} ED(\vec{c},o) &= E\left[\|\vec{c}-f\|^2\right] = \\ &= \int_{\vec{x}\in\Re^m} \|\vec{c}-\vec{x}\|^2 \ f(\vec{x}) \ \mathrm{d}\vec{x} \end{split}$$

UK-means

[Chau et Al., PAKDD'06]

Two major weaknesses:

- representing centroids (*accuracy issue*)
- computing Expected Distance (ED) between centroids and uncertain objects (efficiency issue)

Our proposal

medoids instead of centroids...

Accuracy improvement:

cluster representatives are not computed as a trivial mean of expected values

Efficiency improvement:

the bottleneck of computing EDs at each iteration can be reduced by computing offline the pair-wise distances for each pair of objects

Our proposal: UK-medoids

Input: a set of uncertain objects $D = \{o_1, \ldots, o_n\}$; the number of output clusters k **Output:** a set of clusters C

- 1: compute distances $\delta(o_i, o_j), \forall o_i, o_j \in D$
- 2: compute the set $S = \{m_1, \ldots, m_k\}$ of initial medoids
- 3: repeat

$$4: \quad S' \leftarrow S$$

$$5: \qquad S \leftarrow \emptyset$$

6:
$$C = \{C_1, \ldots, C_k\} \leftarrow \{\emptyset, \ldots, \emptyset\}$$

- 7: for all $o \in D$ do
- 8: {assign each object to the closest cluster, based on its uncertain distance to cluster medoids}

9:
$$m_j \leftarrow \arg \min_{o' \in S'} \delta(o, o')$$

- 10: $C_j \leftarrow C_j \cup \{o\}$
- 11: end for
- 12: for all $C \in \mathcal{C}$ do
- 13: {recompute the medoid of each cluster}

14:
$$m \leftarrow \arg\min_{o \in C} \sum_{o' \in C} \delta(o, o')$$

- 15: $S \leftarrow S \cup \{m\}$
- 16: **end for**
- 17: until $S \neq S'$
- 18: return C

UK-medoids

What about the distance between uncertain objects ?

Uncertain distance: *multivariate objects*

 $\delta(o_i, o_j)$ is computed by taking into account the distances between all the possible deterministic locations \vec{x}, \vec{y} , for o_i and o_j , respectively, and their corresponding probabilities $f_i(\vec{x}), f_j(\vec{y})$

$$\delta(o_i, o_j) = \int_{\vec{x} \in R_i} \int_{\vec{y} \in R_j} dist(\vec{x}, \vec{y}) \ f_i(\vec{x}) \ f_j(\vec{y}) \ \mathrm{d}\vec{x} \ \mathrm{d}\vec{y}$$

Uncertain distance: *univariate objects*

$$\delta(o_i, o_j) = f_{dist}(\psi^{(1)}(o_i, o_j), \dots, \psi^{(m)}(o_i, o_j))$$

$$\psi^{(h)}(o_i, o_j) = \int_{x \in I_i^{(h)}} \int_{y \in I_j^{(h)}} |x - y| f_i^{(h)}(x) f_j^{(h)}(y) \, \mathrm{d}x \, \mathrm{d}y$$

Experiments

Comparison between UK-means and UK-medoids

- Accuracy evaluation
- Efficiency evaluation

Experiments: datasets

dataset	objects	attributes	classes
Iris	150	4	3
Wine	178	13	3
Glass	214	10	6
Ecoli	327	7	5

On each of the selected datasets, the uncertainty for any object was synthetically generated according to both the univariate and multivariate models

Pdfs used: Uniform, Normal, Binomial

Experiments: accuracy evaluation

To assess the accuracy of clustering solutions, the availability of reference classifications for the datasets

 $\Gamma = \{\Gamma_1, \dots, \Gamma_k\}$ reference classification

 $C = \{C_1, \dots, C_k\}$

output classification

$$P = \frac{1}{k} \sum_{i=1}^{k} \frac{\left|C_{i} \cap \Gamma_{i}\right|}{\left|C_{i}\right|} \text{ precision}$$

$$R = \frac{1}{k} \sum_{i=1}^{k} \frac{\left|C_{i} \cap \Gamma_{i}\right|}{\left|\Gamma_{i}\right|}$$

recall

$$F = \frac{2PR}{P+R}$$

f-measure

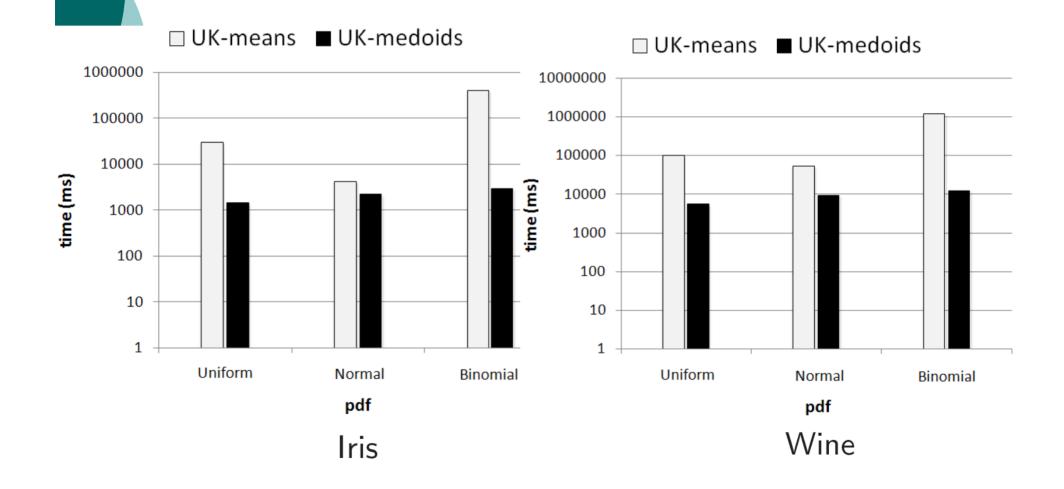
Experiments: *accuracy results*

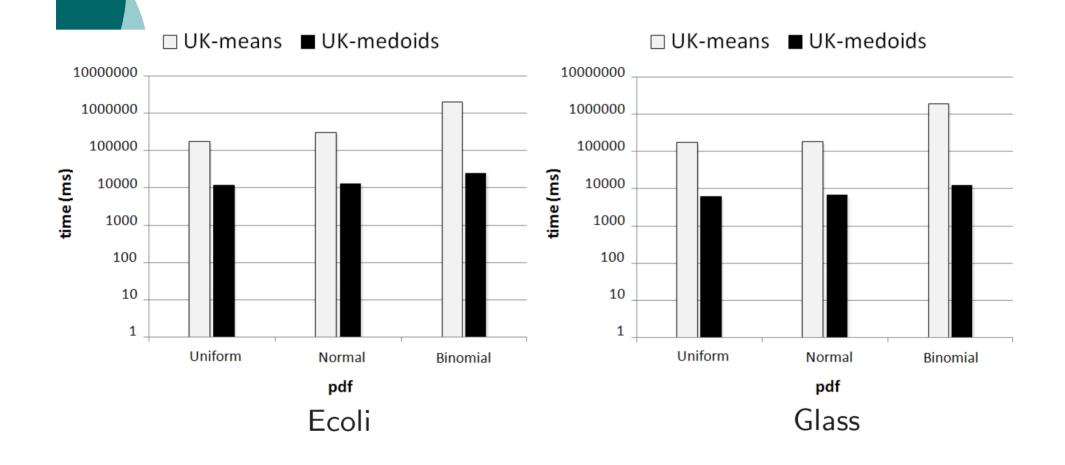
dataset	pdf	UK-means	UK-medoids
Iris	Uniform	0.45	0.84
	Normal	0.84	0.88
	Binomial	0.62	0.87
Wine	Uniform	0.46	0.80
	Normal	0.69	0.70
	Binomial	0.63	0.73
Glass	Uniform	0.26	0.71
	Normal	0.63	0.68
	Binomial	0.27	0.67
Ecoli	Uniform	0.30	0.73
	Normal	0.73	0.77
	Binomial	0.50	0.72

□ *Uniform* : + 34-45%

□ *Normal* : + 1-5%

□ *Binomial* : + 10-40%





Efficiency results:

UK-medoids is 1-2 orders of magnitude faster than UK-means

Conclusions

UK-medoids: a K-medoids-based algorithm for clustering uncertain objects

- Notion of *medoid*
- Notions of uncertain distance between multivariate and univariate uncertain objects

High accuracy, good efficiency

Traditional (numerical) data objects

A data object represented by a vector of deterministic values

a_1	<i>a</i> ₂	 a_m
x ₁	x ₂	 x _m

UK-medoids: uncertain distance function

 $\Delta(o_i, o_j, z)$ returns the probability that the distance between o_i and o_j is equal to z

$$\int_{z \in \Re} \Delta(o_i, o_j, z) \, \mathrm{d}z = 1, \quad \forall o_i, o_j \in D,$$

$$\Delta(o_i, o_j, z) = \begin{cases} 1, & \text{if } i = j, z = 0\\ 0, & \text{if } i = j, z \neq 0 \end{cases}$$

Uncertain distance function: *multivariate objects*

 $\Delta(o_i, o_j, z)$ is computed by taking into account all the possible values \vec{x}, \vec{y} , for o_i and o_j , respectively, such that the distance between \vec{x} and \vec{y} is equal to z

$$\Delta(o_i, o_j, z) = \int_{\vec{x} \in R_i} \int_{\vec{y} \in R_j} I[dist(\vec{x}, \vec{y}) = z] f_i(\vec{x}) f_j(\vec{y}) \, \mathrm{d}\vec{x} \, \mathrm{d}\vec{y}$$

Uncertain distance function: *univariate objects*

$$\Delta(o_i, o_j, z) = \int \cdots \int I[f_{dist}(x_1, \dots, x_m) = z] \prod_{h=1}^m \Psi^{(h)}(o_i, o_j, x_h) \, \mathrm{d}x_1 \cdots \mathrm{d}x_m$$

$$-\Psi^{(h)}: D \times D \times \Re \to \Re, -\Psi^{(h)}(o_i, o_j, x_h) = \int_{\substack{u \in I_i^{(h)} v \in I_j^{(h)}}} \int_i I[|u - v| = x_h] f_i^{(h)}(u) f_j^{(h)}(v) \, \mathrm{d}u \, \mathrm{d}v, \quad h \in [1..m],$$

 $-f_{dist}: \Re^m \to \Re$ is a function that computes a scalar value from the components of a vector (x_1, \ldots, x_m)

UK-medoids: *uncertain distance*

Given an uncertain distance function Δ , the *uncertain distance* δ is defined by extracting a single, well-representative value from Δ

$$\delta(o_i, o_j) = \int_{z \in \Re} z \Delta(o_i, o_j, z) \, \mathrm{d}z$$

Clustering: partitional clustering

Partitional (or **partitioning**) clustering iteratively assigns objects to the clusters according to the intra- and inter-cluster distance

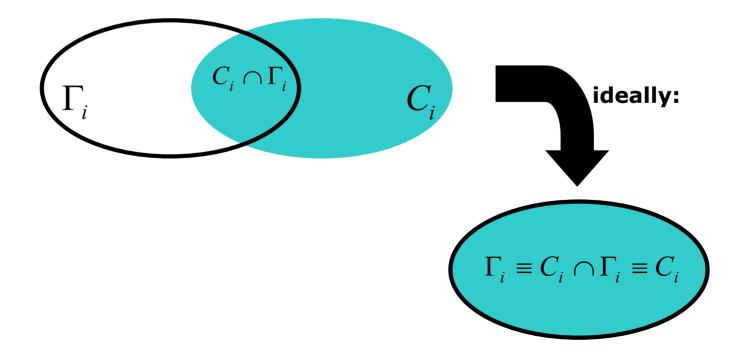
Precision and Recall

 $C = \{C_1, \dots, C_k\}$

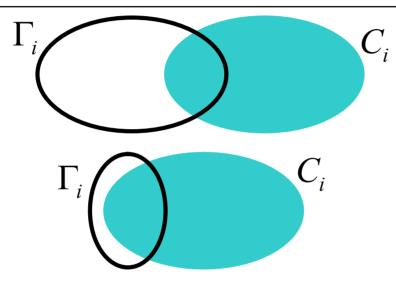
output classification

$$P = \frac{1}{k} \sum_{i=1}^{k} \frac{|C_i \cap \Gamma_i|}{|C_i|} \quad precision$$

$$R = \frac{1}{k} \sum_{i=1}^{k} \frac{|C_i \cap \Gamma_i|}{|\Gamma_i|} \quad recall$$

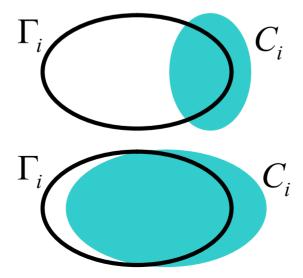


Precision and Recall



LOW Precision LOW Recall

> LOW Precision HIGH Recall



HIGH Precision LOW Recall

HIGH Precision HIGH Recall

