# The Minimum Wiener Connector Problem

#### Natali Ruchansky, Francesco Bonchi, David García-Soriano, Francesco Gullo, Nicolas Kourtellis











# Infected Patients Who is the culprit?

# Proteins

g

Which other proteins participate in pathways?

## General Problem

Given a graph G = (V, E) and a set of query vertices  $Q \subseteq V$ , find a small subgraph H of G that "explains" the connections existing among Q.

Call this query-dependent graph, H, a **connector**.

## General Problem

Given a graph G = (V, E) and a set of query vertices  $Q \subseteq V$ , find a small subgraph H of G that "explains" the connections existing among Q.

Call this query-dependent graph, H, a **connector**.



## Related Work

#### Random-walk

Run a random walk from each query node. Identify a neighborhood of each node. Combine neighborhoods.

#### Search

Search for a subgraph that best meets objective.

#### **Steiner Tree**

Find the smallest tree that connects query nodes.

Many parameters Large solutions

No interpretation

# Motivating Observation

A natural sense of closeness in graphs is captured by short paths.



Objective

We define a new problem where the objective is to: **minimize the sum of pairwise shortest-path-distances** between nodes **in the connector H**.

If d(u, v) is the shortest-path distance, we want:

minimize 
$$\sum_{(u,v)\in H} d(u,v)$$

In fact this quantity is called the Wiener Index.

## Wiener Intuitions

Path is largest:

Clique/Star is **smallest**:



2+2+|+2+|+|=9

Favors star-shape, closeness. Provides a numerical feedback of connectedness.

Given a graph G = (V, E) and a query set  $Q \subseteq V$ , find a connector  $H^*$  for Q in G with smallest Wiener index.

Call  $H^*$  the minimum Wiener connector.



Given a graph G = (V, E) and a query set  $Q \subseteq V$ , find a connector  $H^*$  for Q in G with smallest Wiener index.

Call  $H^*$  the minimum Wiener connector.



Given a graph G = (V, E) and a query set  $Q \subseteq V$ , find a connector  $H^*$  for Q in G with smallest Wiener index.

#### Call $H^*$ the minimum Wiener connector.

There is no explicit size constraint, but rewriting

$$W(H^*) = \sum_{\{u,v\} \subseteq V(H^*)} d_H(u,v) = \binom{V(H^*)}{2} * \text{average } d$$

uncovers a tradeoff between size and average distance

Given a graph G = (V, E) and a query set  $Q \subseteq V$ , find a connector  $H^*$  for Q in G with smallest Wiener index.

ector.

Call  $H^*$  the minim



uncovers a tradeoff between size and average distance

# Summary Of Results



# Summary Of Results

With the Wiener Index as our objective, we propose: a **constant factor approximation** algorithm that runs in  $\tilde{O}(|Q| |E|)$ 

Using this we find solutions that are aside from being **close to optimal**: **small**, **meaningful**, and **amenable to visualization**.

For query nodes belonging to the **same** community: connector contains nodes of **high centrality** 

For query nodes from **different** communities:

connector contains nodes that span **structural holes** (incident to edges that bridge communities)

How Do We Find The Minimum Wiener Connector?

## No. Not The Steiner Tree

**Steiner Tree**: Given a graph G = (V, E) and a set of query nodes (terminals)  $Q \subseteq V$ , find the smallest tree connecting all terminals.

Minimizing the number of edges will **not** necessarily result in the smallest Wiener Index!



**Optimal Solutions** 

**Steiner Cost** 

Wiener Cost



**Optimal Solutions** 

**Steiner Cost** 

Wiener Cost



| <b>Optimal Solutions</b> | Steiner Cost | Wiener Cost |
|--------------------------|--------------|-------------|
|                          | 9            | 165         |



| <b>Optimal Solutions</b> | Steiner Cost | Wiener Cost |
|--------------------------|--------------|-------------|
|                          | 9            | 165         |
|                          | 21           | 142         |

**Original Objective** 

**Relaxed Objective** 

**Original Objective** 

**Relaxed Objective** 

All pairwise distances



Distances from a root r

#### **Original Objective**

**Relaxed Objective** 

All pairwise distances

Measure distance in H



Distances from a root r



#### **Original Objective**

All pairwise distances

Measure distance in H

Product in objective





**Relaxed Objective** 



Measure distance in G

Linear objective

#### **Original Objective**

All pairwise distances

Measure distance in H

Product in objective

Node weights





**Relaxed Objective** 



Measure distance in G



Linear objective

Edge weights



• For each vertex  $r \in V$ 



- For each vertex  $r \in V$ 
  - I. Compute  $d_G(u, v)$  from r to each vertex u
  - 2. Construct an edge-weighted graph



- For each vertex  $r \in V$ 
  - I. Compute  $d_G(u, v)$  from r to each vertex u
  - 2. Construct an edge-weighted graph
  - 3. Find an approximate Steiner tree  $S_r^*$



- For each vertex  $r \in V$ 
  - I. Compute  $d_G(u, v)$  from r to each vertex u
  - 2. Construct an edge-weighted graph
  - 3. Find an approximate Steiner tree  $S_r^*$
  - 4. Check for paths where  $d_G(r, u) < d_{S^*}(r, u)$



- For each vertex  $r \in V$ 
  - I. Compute  $d_G(u, v)$  from r to each vertex u
  - 2. Construct an edge-weighted graph
  - 3. Find an approximate Steiner tree  $S_r^*$
  - 4. Check for paths where  $d_G(r, u) < d_{S^*}(r, u)$
- Pick  $S_r^*$  that minimizes  $W(S^*)$

## Case Studies

## Case Study 1: Karate Club



Two clusters around each karate master. Few nodes with mixed loyalty.

By querying arbitrary nodes, can we learn about their loyalty without any outside meta information?







Different Communities



Different Communities





Different Communities



Case Study 2: KDD Tweets

## KDD 2014 Tweets

# Graph of Twitter users taking part in KDD 2014, with an edge between replies or mentions.



#### Clustered into 10 communities.

#### jonkleinberg

#### thrillscience













# Case Study 3: PPI Network

# Biology Dataset

Protein-Protein-Interaction (PPI) network collected from BioGrid3 with 15 312 vertices.

- Do they interact?
- How are they related?
- Which disease are they associated with?
- Which well-known proteins are 'closest' to each?

![](_page_52_Figure_0.jpeg)

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

SLC6a5

![](_page_52_Picture_5.jpeg)

http://www.ebi.ac.uk/pdbe

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

**Alzheimers** 

## What Was The Point?

Finding a **connector for a set of query nodes** in a graph is an interesting and relevant problem.

![](_page_56_Figure_2.jpeg)

## What Was The Point?

Finding a **connector for a set of query nodes** in a graph is an interesting and relevant problem.

The Wiener Index is the **sum of shortest-path distances**, which is intuitive graph measure of closeness.

![](_page_57_Figure_3.jpeg)

## What Was The Point?

Finding a **connector for a set of query nodes** in a graph is an interesting and relevant problem.

The Wiener Index is the **sum of shortest-path distances**, which is intuitive graph measure of closeness.

Proposed a constant factor approximation algorithm, that

- finds small solutions
- that are easy to visualize
- contain important, central nodes
- that convey the relationship among query nodes
- in a small amount of time.

## Further Experiments

- Scalability
- Ground Truth Communities
- Steiner Tree Benchmark Datasets (DIMACS Challenge 2015)
- Comparison to Integer Program
- (and proofs)

#### Read the paper!

![](_page_60_Picture_0.jpeg)

https://en.wikipedia.org/wiki/Wiener\_Connector