Clustering XML Documents: a Distributed Collaborative Approach

Sergio Greco
Francesco Gullo
Giovanni Ponti
Andrea Tagarelli
Giuseppe Agapito

DEIS – University of Calabria
Motivations

- The size of collections of XML documents is often huge and inherently distributed.
- Classical centralized approaches may not be efficient.

Our proposal: the first collaborative distributed framework for efficiently clustering XML documents.
Centroid-based partitional clustering in a collaborative distributed framework

- **Centroid-based partitional clustering**
 - Partition a set of objects into k clusters
 - Object-to-cluster assignment is driven by similarity of data to cluster representatives (cluster centroids)

- Cluster centroids can efficiently be exchanged through the network
 - Each peer computes
 - a “local” clustering solution
 - and a subset of the “global” clustering solution
 - Global centroids are used to update local solution
Clustering XML documents: the core method

[Tagarelli and Greco, SDM’06]
[Tagarelli and Greco, TOIS’09]

Main steps

1. Extracting XML tree tuples
2. Modeling XML tree tuples as transactions
 - XML feature generation
3. Clustering XML transactions
Extracting XML tree tuples: The DBLP Example

```xml
<dblp>
  <inproceedings key="conf/kdd/ZakiA03">
    <author>M. J. Zaki</author>
    <author>C. C. Aggarwal</author>
    <title>XRules: an effective structural classifier for XML data</title>
    <pages>316-325</pages>
    <year>2003</year>
    <booktitle>KDD</booktitle>
  </inproceedings>

  <inproceedings key="conf/kdd/Zaki02">
    <author>M. J. Zaki</author>
    <title>Efficiently mining frequent trees in a forest</title>
    <pages>71-80</pages>
    <year>2002</year>
    <booktitle>KDD</booktitle>
  </inproceedings>
</dblp>
```
Extracting XML tree tuples: The DBLP Example
Modeling XML transactions:
The DBLP Example

<table>
<thead>
<tr>
<th>path (p)</th>
<th>τ_{1.p}</th>
<th>node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp.inproceedings.@key</td>
<td>"conf/kdd/ZakiA03"</td>
<td>n_3</td>
</tr>
<tr>
<td>dblp.inproceedings.author.S</td>
<td>"M. J. Zaki"</td>
<td>n_5</td>
</tr>
<tr>
<td>dblp.inproceedings.title.S</td>
<td>"XRules: an effective ..."</td>
<td>n_9</td>
</tr>
<tr>
<td>dblp.inproceedings.year.S</td>
<td>"2003"</td>
<td>n_11</td>
</tr>
<tr>
<td>dblp.inproceedings.booktitle.S</td>
<td>"KDD"</td>
<td>n_13</td>
</tr>
<tr>
<td>dblp.inproceedings.pages.S</td>
<td>"316-325"</td>
<td>n_15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>path (p)</th>
<th>τ_{2.p}</th>
<th>node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp.inproceedings.@key</td>
<td>"conf/kdd/ZakiA03"</td>
<td>n_3</td>
</tr>
<tr>
<td>dblp.inproceedings.author.S</td>
<td>"C. C. Aggarwal"</td>
<td>n_7</td>
</tr>
<tr>
<td>dblp.inproceedings.title.S</td>
<td>"XRules: an effective ..."</td>
<td>n_9</td>
</tr>
<tr>
<td>dblp.inproceedings.year.S</td>
<td>"2003"</td>
<td>n_11</td>
</tr>
<tr>
<td>dblp.inproceedings.booktitle.S</td>
<td>"KDD"</td>
<td>n_13</td>
</tr>
<tr>
<td>dblp.inproceedings.pages.S</td>
<td>"316-325"</td>
<td>n_15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>path (p)</th>
<th>τ_{3.p}</th>
<th>node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp.inproceedings.@key</td>
<td>"conf/kdd/Zaki02"</td>
<td>n_17</td>
</tr>
<tr>
<td>dblp.inproceedings.author.S</td>
<td>"M. J. Zaki"</td>
<td>n_19</td>
</tr>
<tr>
<td>dblp.inproceedings.title.S</td>
<td>"Efficiently mining ..."</td>
<td>n_21</td>
</tr>
<tr>
<td>dblp.inproceedings.year.S</td>
<td>"2002"</td>
<td>n_23</td>
</tr>
<tr>
<td>dblp.inproceedings.booktitle.S</td>
<td>"KDD"</td>
<td>n_25</td>
</tr>
<tr>
<td>dblp.inproceedings.pages.S</td>
<td>"71-80"</td>
<td>n_27</td>
</tr>
</tbody>
</table>

item ID	corresponding node IDs
\(e_1\) | \(n_3\)
\(e_2\) | \(n_5, n_{10}\)
\(e_3\) | \(n_9\)
\(e_4\) | \(n_{11}\)
\(e_5\) | \(n_{13, n_{25}}\)
\(e_6\) | \(n_{15}\)
\(e_7\) | \(n_7\)
\(e_8\) | \(n_{17}\)
\(e_9\) | \(n_{21}\)
\(e_{10}\) | \(n_{23}\)
\(e_{11}\) | \(n_{27}\)
Clustering XML transactions: XML tree tuple item similarity

- Function of structure and content features
 \[\text{sim}(e_i, e_j) = f \times \text{sim}_S(e_i, e_j) + (1 - f) \times \text{sim}_C(e_i, e_j) \]

- Tolerance-aware matching
 - Notion of \(\gamma \)-matched items

- Similarity by structure
 - computed by comparing tag paths

- Similarity by content
 - cosine similarity between TCUs
Collaborative Clustering of XML transactions

- **CXK-means**: process N_0
 - Data are distributed over m peer nodes
 - Each node communicates with all the other ones sending local representatives and receiving global representatives
 - An initial process corresponding to a node N_0 defines a partition of the k clusters into m subsets Z_j:

 Process N_0
 Method:

 define a partition of $\{1..k\}$ into m subsets Z_1, \ldots, Z_m;
 for $i = 1$ to m do
 send ($\{Z_1, \ldots, Z_m\}, k, \gamma$) to N_i;
Collaborative Clustering of XML transactions

CXK-mean: process N_i

- Each node N_i computes:
 - Local clusters C_1^i, \ldots, C_k^i
 - Local representatives c_1^i, \ldots, c_k^i
 - (A subset of) global representatives c_{i1}, \ldots, c_{i_qi}, using the local representatives computed by all nodes
receive \(\{Z_1, \ldots, Z_m\}, k, \gamma \) from \(N_0 \);
let \(Z_i = \{j_1, \ldots, j_{q_i}\} \), with \(0 \leq q_i \leq k \), \(\sum_{i=1}^{m} q_i = k \);
/* selects \(q_i \) initial global clusters */
select \(\{tr_1, \ldots, tr_{q_i}\} \) from \(S^i \) coming from distinct original trees;
\(g_{j_s} = tr_s, \forall s \in [1..q_i]; \)
\(C_j^i = \{\}, \forall j \in [1..k]; \)
repeat
 send (broadcast) \(\{g_j | j \in Z_i\} \) to \(N_1, \ldots, N_m \);
 receive \(\{g_j | j \in Z_h\} \) from \(N_h, \forall h \in [1..m]; \)
 \(\ell_j^i = g_j, \forall j \in [1..k]; \)
 repeat /* transaction relocation */
 \(C_{k+1}^i = \{tr \in S^i | \text{sim}_j^\gamma(tr, \ell_j^i) = 0, \forall j \in [1..k]\}; \)
 for each \(j \in [1..k] \) do
 \(C_j^i = \{tr \in S^i \setminus C_{k+1}^i | \text{sim}_j^\gamma(tr, \ell_j^i) \geq \text{sim}_j^\gamma(tr, \ell_t^i), \forall t \in [1..k]\}; \)
 \(\ell_j^i = \text{ComputeLocalRepresentative}(C_j^i); \)
 end for
 until no transaction is relocated;
 if \(\ell_j^i \) does not change, \(\forall j \in [1..k] \) then
 send (broadcast) \(\{\}, V_i = \text{done} \);
else
 send \(\{(\ell_j^i, |C_j^i|) | j \in Z_h\}, V_i = \text{continue} \) to \(N_h, \forall h \in [1..m]; \)
 receive \(\{(\ell_j^h, |C_j^h|) | j \in Z_i\}, V_h \) from \(N_h, \forall h \in [1..m]; \)
 if \(\exists h \in [1..m] \) s.t. \(V_h = \text{continue} \) then
 \(g_j = \text{ComputeGlobalRepresentative}((\ell_j^1, |C_j^1|), \ldots, (\ell_j^m, |C_j^m|)), \forall j \in Z_i; \)
 until \(V_1 = \cdots = V_m = \text{done} \);
Collaborative Clustering of XML Transactions: Local XML Cluster Representative

Compute the set of γ-shared items among all the transactions within cluster C

1. for each transaction in C, compute the union of the γ-shared item sets w.r.t. all the other transactions in C

2. compute a raw representative
 - by selecting the items with the highest frequency from the previously obtained union sets
 - possibly conflate those items sharing the same path

3. perform a greedy heuristic to refine the raw representative
 - by iteratively adding the remaining most frequent items until the sum of pair-wise similarities between transactions and representative cannot be further maximized
Collaborative Clustering of XML Transactions: Global XML Cluster Representative

- The global representative of a cluster C is computed by considering the m local representatives c^1, \ldots, c^m
 - Procedure similar to that used for computing local representatives
 - The structural rank g_{rank} associated with an item considers the rank associated with each item (instead of the number of items) having a γ-match
Collaborative Clustering of XML Transactions: Complexity

- m number of nodes
- k number of clusters
- $|S^i| = |S| / m$ number of transactions node i
- $|tr|$ max size transaction
- $|V|$ vocabulary size
- c_1 cost main memory operation
- c_2 communication cost
- $1 \leq h \leq k$ transactions distribution over clusters
Experimental evaluation: Data description

- Real XML data sources

<table>
<thead>
<tr>
<th>data</th>
<th># docs</th>
<th># trans.</th>
<th># items</th>
<th>max fan out</th>
<th>avg depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>4,874</td>
<td>211,909</td>
<td>135,869</td>
<td>43</td>
<td>5</td>
</tr>
<tr>
<td>DBLP</td>
<td>3,000</td>
<td>5,884</td>
<td>8,231</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>
Experimental evaluation:

Efficiency results
Experimental evaluation: Efficiency results

![Graph showing efficiency results with two lines representing DBLP (100%) and DBLP (50%) with time (msec) on the y-axis and nodes on the x-axis.]
Experimental evaluation: Accuracy results

<table>
<thead>
<tr>
<th>dataset</th>
<th># of clusters</th>
<th># of nodes</th>
<th>F-measure (avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>8</td>
<td>1</td>
<td>0.593</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.421</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.376</td>
</tr>
<tr>
<td>DBLP</td>
<td>6</td>
<td>1</td>
<td>0.764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.662</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.547</td>
</tr>
</tbody>
</table>

TABLE I

Clustering results with $f \in [0..0.3]$ (content-driven similarity)

<table>
<thead>
<tr>
<th>dataset</th>
<th># of clusters</th>
<th># of nodes</th>
<th>F-measure (avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>2</td>
<td>1</td>
<td>0.618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.542</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.386</td>
</tr>
<tr>
<td>DBLP</td>
<td>4</td>
<td>1</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.819</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.716</td>
</tr>
</tbody>
</table>

TABLE III

Clustering results with $f \in [0.7..1]$ (structure-driven similarity)
Conclusion

- Collaborative distributed framework for clustering XML documents
 - CXK-means: a distributed, centroid-based partitional clustering algorithm
 - Peer-to-peer network
 - Local and global decisions for each peer

- XML documents modeled in a transactional domain
 - Modeling of XML transactions starting from the notion of tree tuple
 - Similarity between transaction computed according to both structure and content features
Thanks