18th Italian Symposium on Advanced Database Systems (SEBD '10)

Rimini, Italy, June 20-23, 2010

Clustering XML Documents: a Distributed Collaborative Approach

Sergio Greco Francesco Gullo Giovanni Ponti Andrea Tagarelli Giuseppe Agapito DEIS – University of Calabria

Dipartimento di ELETTRONICA, INFORMATICA E SISTEMISTICA

Motivations

- The size of collections of XML documents is often <u>huge</u> and <u>inherently distributed</u>
- Classical centralized approaches may not be efficient

Our proposal: the first collaborative distributed framework for efficiently clustering XML documents

Centroid-based partitional clustering in a collaborative distributed framework

- Centroid-based partitional clustering
 - □ Partition a set of objects into *k* clusters
 - Object-to-cluster assignment is driven by similarity of data to cluster representatives (cluster centroids)
- Cluster centroids can efficiently be exchanged through the network
 - □ Each peer computes
 - a "local" clustering solution
 - and a subset of the "global" clustering solution
 - Global centroids are used to update local solution

Clustering XML documents: the core method [Tagarelli and Greco, SDM'06] [Tagarelli and Greco, TOIS'09]

Main steps

- **1. Extracting XML tree tuples**
- 2. Modeling XML tree tuples as transactions
 - □ XML feature generation
- 3. Clustering XML transactions

Extracting XML tree tuples: The DBLP Example

Extracting XML tree tuples: The DBLP Example

Modeling XML transactions: The DBLP Example

path (p)	$ au_1.p$	$node \ ID$
dblp.inproceedings.@key	"conf/kdd/ZakiA03"	n 3
dblp.inproceedings.author.S	"M. J. Zaki"	n 5
dblp.inproceedings.title.S	"XRules: an effective"	n 9
dblp.inproceedings.year.S	"2003"	n_{11}
dblp.inproceedings.booktitle.S	"KDD"	n_{13}
dblp.inproceedings.pages.S	"316-325"	n_{15}

path (p)	$ au_2.p$	$node \ ID$
dblp.inproceedings.@key	"conf/kdd/ZakiA03"	n 3
dblp.inproceedings.author.S	"C. C. Aggarwal"	n_7
dblp.inproceedings.title.S	"XRules: an effective"	<i>n</i> 9
dblp.inproceedings.year.S	"2003"	n_{11}
dblp.inproceedings.booktitle.S	"KDD"	n ₁₃
dblp.inproceedings.pages.S	"316-325"	n_{15}

path (p)	$ au_3.p$	$node \ ID$
dblp.inproceedings.@key	"conf/kdd/Zaki02"	n_{17}
dblp.inproceedings.author.S	"M. J. Zaki"	n 19
dblp.inproceedings.title.S	"Efficiently mining"	n_{21}
dblp.inproceedings.year.S	"2002"	n ₂₃
dblp.inproceedings.booktitle.S	"KDD"	n_{25}
dblp.inproceedings.pages.S	"71-80"	n_{27}

item ID	corresponding
	node IDs
e_1	n_3
e_2	n_5, n_{19}
e3	n_{9}
e4	n_{11}
e_5	n_{13}, n_{25}
e ₆	n_{15}
e_7	n_7
e8	ⁿ 17
eg	n_{21}
e_{10}	n_{23}
e ₁₁ n ₂₇	

\								
	tr_1	e_1	e_2	e_3	e_4	e_5	e_6	
*	tr_2	e_1	e_7	e_3	e_4	e_5	e_6	
\rightarrow	tr_3	e_8	e_2	e_9	e_{10}	e_5	e_{11}	

Clustering XML transactions: XML tree tuple item similarity

Function of structure and content features

 $sim(e_i, e_j) = f \times sim_S(e_i, e_j) + (1 - f) \times sim_C(e_i, e_j)$

- Tolerance-aware matching □ Notion of γ -matched items
- Similarity by structure
 - computed by comparing tag paths
- Similarity by content
 - cosine similarity between TCUs

Collaborative Clustering of XML transactions

CXK-means: process *N*₀

 \Box Data are distributed over m peer nodes

- Each node communicates with all the other ones sending local representatives and receiving global representatives
- □ An initial process corresponding to a node N_0 defines a partition of the k clusters into m subsets Z_j :

Process N₀

Method:

define a partition of $\{1..k\}$ into m subsets Z_1, \ldots, Z_m ; for i = 1 to m do send $(\{Z_1, \ldots, Z_m\}, k, \gamma)$ to N_i ;

Collaborative Clustering of XML transactions

CXK-means: process N_i

 \Box Each node N_i computes:

- Local clusters C_1^i, \ldots, C_k^i
- Local representatives c_1^i, \ldots, c_k^i
- (A subset of) global representatives $c_{i_1}, \ldots, c_{i_{q_i}}$, using the local representatives computed by all nodes

receive $(\{Z_1,\ldots,Z_m\},k,\gamma)$ from N_0 ; let $Z_i = \{j_1, \ldots, j_{q_i}\}$, with $0 \le q_i \le k, \sum_{i=1}^m q_i = k$; /* selects q_i initial global clusters */ select $\{tr_1, \ldots, tr_{q_i}\}$ from \mathcal{S}^i coming from distinct original trees; $g_{j_s} = tr_s, \forall s \in [1..q_i];$ $C_{i}^{i} = \{\}, \forall j \in [1..k];$ CXK-means: repeat send (broadcast) $\{q_i | j \in Z_i\}$ to $N_1, ..., N_m$; process N_i receive $\{q_i | j \in Z_h\}$ from $N_h, \forall h \in [1..m];$ $\ell_j^i = q_j, \forall j \in [1..k];$ **repeat** /* transaction relocation */ $C_{k+1}^{i} = \{ tr \in S^{i} | sim_{I}^{\gamma}(tr, \ell_{i}^{i}) = 0, \forall j \in [1..k] \};$ for each $i \in [1..k]$ do $C_i^i = \{ tr \in S^i \setminus C_{k+1}^i | sim_I^{\gamma}(tr, \ell_i^i) \ge sim_I^{\gamma}(tr, \ell_t^i), \forall t \in [1..k] \};$ $\ell_i^i = \text{ComputeLocalRepresentative}(C_i^i);$ end for until no transaction is relocated; if ℓ_i^i does not change, $\forall j \in [1..k]$ then send (broadcast) ($\{\}, V_i = done$); else send $(\{(\ell_i^i, |C_i^i|)| j \in Z_h\}, V_i = continue)$ to $N_h, \forall h \in [1..m];$ receive $(\{(\ell_i^h, |C_i^h|)| j \in Z_i\}, V_h)$ from $N_h, \forall h \in [1..m];$ if $(\exists h \in [1..m] \text{ s.t. } V_h = continue)$ then $g_j = \mathsf{ComputeGlobalRepresentative}(\{(\ell_j^1, |C_j^1|), \dots, (\ell_j^m, |C_j^m|)\}), \forall j \in Z_i;$ until $V_1 = \cdots = V_m = done;$

11

Collaborative Clustering of XML Transactions: Local XML Cluster Representative

Compute the set of γ -shared items among all the transactions within cluster ${\bf C}$

- 1. for each transaction in *C*, compute the union of the γ -shared item sets w.r.t. all the other transactions in *C*
- 2. compute a raw representative
 - by selecting the items with the highest frequency from the previously obtained union sets
 - □ possibly conflate those items sharing the same path
- 3. perform a greedy heuristic to refine the raw representative
 - by iteratively adding the remaining most frequent items until the sum of pair-wise similarities between transactions and representative cannot be further maximized

Collaborative Clustering of XML Transactions: Global XML Cluster Representative

- The global representative of a cluster C is computed by considering the m local representatives c^1, \ldots, c^m
 - Procedure similar to that used for computing local representatives
 - □ The structural rank g_rank associated with an item considers the rank associated with each item (instead of the number of items) having a γ -match

Collaborative Clustering of XML Transactions: Complexity

The picture can't be displayed.	

m
k
|Sⁱ| = |S| / m
|tr|
|V|
C₁
C₂
1 ≤ h ≤ k

number of nodes number of clusters number of transactions node i max size transaction vocabulary size cost main memory operation communication cost transactions distribution over clusters

Experimental evaluation: Data description

Real XML data sources

data	# docs	# trans.	# items	max fan out	avg depth
IEEE	4,874	211,909	135,869	43	5
DBLP	3,000	5,884	8,231	20	3

Experimental evaluation: Efficiency results

nodes

16

Experimental evaluation: Efficiency results

17

Experimental evaluation: Accuracy results

dataset	# of clusters	# of nodes	F-measure
			(avg)
		1	0.593
		3	0.523
IEEE	8	5	0.485
		7	0.421
		9	0.376
		1	0.764
		3	0.702
DBLP	6	5	0.662
		7	0.612
		9	0.547

TABLE I CLUSTERING RESULTS WITH $f \in [0..0.3]$ (CONTENT-DRIVEN SIMILARITY)

dataset	# of clusters	# of nodes	F-measure
			(avg)
		1	0.564
		3	0.497
IEEE	14	5	0.451
		7	0.404
		9	0.356
		1	0.772
		3	0.721
DBLP	16	5	0.676
		7	0.614
		9	0.558

TABLE II CLUSTERING RESULTS WITH $f \in [0.4..0.6]$ (STRUCTURE/CONTENT-DRIVEN SIMILARITY)

dataset	# of clusters	# of nodes	F-measure
			(avg)
		1	0.618
		3	0.542
IEEE	2	5	0.497
		7	0.433
		9	0.386
		1	0.988
		3	0.934
DBLP	4	5	0.882
		7	0.819
		9	0.716

TABLE III CLUSTERING RESULTS WITH $f \in [0.7..1]$ (STRUCTURE-DRIVEN SIMILARITY)

Conclusion

- Collaborative distributed framework for clustering XML documents
 - CXK-means: a distributed, centroid-based partitional clustering algorithm
 - Peer-to-peer network
 - Local and global decisions for each peer
- XML documents modeled in a transactional domain
 - Modeling of XML transactions starting from the notion of tree tuple
 - Similarity between transaction computed according to both structure and content features

