UNCERTAIN CENTROID BASED PARTITIONAL CLUSTERING OF UNCERTAIN DATA

Francesco Gullo * Andrea Tagarelli [†]

* Yahoo! Research Barcelona, Spain

[†] Dept. of Electronics, Computer and Systems Science University of Calabria, Italy

38th International Conference on Very Large Data Bases (VLDB) August 27-31, 2012 Istanbul, Turkey

Overview

State of the art Uncertain centroid based partitional clustering of UO Experimental evaluation Conclusions Background Motivations & contributions

Uncertainty

Uncertainty inherently affects data from a wide range of emerging application domains:

- sensor data
- location-based services (e.g., moving objects data)
- biomedical and biometric data (e.g., gene expression data)
- distributed applications
- RFID data

Generally due to noisy factors, such as signal noise, instrumental errors, wireless transmission

Background Motivations & contributions

Uncertain Objects (UO) (1)

Modeling by regions (domains) of definition and probability density functions (pdfs)

Figure borrowed from [Kriegel and Pfeifle, ICDM 2005]

Overview

State of the art Uncertain centroid based partitional clustering of UO Experimental evaluation Conclusions

Background Motivations & contributions

Uncertain Objects (UO) (2)

- *m*-dimensional region
- multivariate pdf defined over the region

Definition (uncertain object)

An uncertain object o is a pair (\mathcal{R}, f) :

- $\mathcal{R} \subseteq \mathbb{R}^m$ is the *m*-dimensional domain region in which *o* is defined
- $f : \mathbb{R}^m \to \mathbb{R}_0^+$ is the probability density function of o at each point $\vec{x} \in \mathbb{R}^m$ such that:

 $f(\vec{x}) > 0, \ \forall \vec{x} \in R$ and $f(\vec{x}) = 0, \ \forall \vec{x} \in \mathbb{R}^m \setminus \mathcal{R}$

Overview

State of the art Uncertain centroid based partitional clustering of UO Experimental evaluation Conclusions Background Motivations & contributions

Clustering Uncertain Objects

Major approaches:

- partitional approaches:
 - uncertain version of *k*-Means [Chau et al., PAKDD 2006] and its relative optimizations [Lee et al., ICDM Work. 2007, Kao et al., TKDE 2010, Ngai et al., Information Systems 2011]
 - uncertain version of k-Medoids [Gullo et al., SUM 2008]
- density-based approaches:
 - uncertain version of DBSCAN [Kriegel and Pfeifle, KDD 2005]
 - uncertain version of OPTICS [Kriegel and Pfeifle, ICDM 2005]
- hierarchical approaches [Gullo et al., ICDM 2008]

Partitional approaches include the fastest methods so far defined

Background Motivations & contributions

Intuition

Approaches to partitional clustering of uncertain objects should take into account both central tendency and variance of the input uncertain objects

Uncertain objects with the same central tendency: lower-variance, more-compact cluster (left) and higher-variance, less-compact cluster (right)

Uncertain objects with different central tendency: lower-variance, less-compact cluster (left) and higher-variance, more-compact cluster (right)

Overview

State of the art Uncertain centroid based partitional clustering of UO Experimental evaluation Conclusions

Background Motivations & contributions

Contributions

- We formally show that existing formulations of partitional clustering of uncertain objects do not comply with the intuition about central tendency and variance
- We propose a novel formulation to the problem of clustering uncertain objects based on the notion of *U-centroid*
- Given that the expression of the U-centroid is not analytically computable, we derive some theoretical properties to be efficiently exploited as *closed-form update rules* for the proposed objective function
- We define an efficient *local-search procedure* based on these rules

UK-means and MMVar

Partitional clustering of uncertain objects relies on two main notions: *cluster centroid* (\overline{C}) , and *cluster compactness* (J)

Most prominent existing formulations:

 UK-means [Chau et al., PAKDD'06] → cluster centroid is a deterministic object

$$\overline{C}_{UK} = \frac{1}{|C|} \sum_{o \in C} \vec{\mu}(o)$$

$$J_{UK}(C) = \sum_{o \in C} ED(o, \overline{C}_{UK}), \text{ where } ED(o, \overline{C}_{UK}) = \int_{\vec{x} \in \mathcal{R}} \|\vec{x} - \overline{C}_{UK}\|^2 f(\vec{x}) d\vec{x}$$

● *MMvar* [Gullo et al., ICDM'10] → cluster centroid is an *uncertain* object

$$\overline{C}_{MM} = (\overline{\mathcal{R}}_{MM}, \overline{f}_{MM}), \text{ where } \overline{\mathcal{R}}_{MM} = \bigcup_{o \in C} \mathcal{R} \text{ and } \overline{f}_{MM}(\vec{x}) = \frac{1}{|C|} \sum_{o \in C} f(\vec{x})$$
$$J_{MM}(C) = \sigma^2(\overline{C}_{MM})$$

Issues of UK-means and MMVar formulations

- The deterministic centroid representation in UK-means is not able to discriminate among different variances
- The MMvar formulation does not overcome this issue, although its centroid representation involves uncertainty

Proposition

Given a cluster C of m-dimensional uncertain objects, where $o = (\mathcal{R}, f), \forall o \in C$, it holds that $J_{MM}(C) = |C|^{-1}J_{UK}(C)$.

A straightforward (inappropriate) solution

- Idea: combine the notions of MMVar centroid with the UK-means cluster compactness criterion $\widehat{J}(C) = \sum_{o \in C} \widehat{ED}(o, \overline{C}_{MM}),$ where $\widehat{ED}(o, \overline{C}_{MM}) = \int_{\vec{x} \in \mathcal{R}} \int_{\vec{y} \in \overline{\mathcal{R}}_{MM}} \|\vec{x} - \vec{y}\|^2 f(\vec{x}) \overline{f}_{MM}(\vec{y}) \, \mathrm{d}\vec{x} \, \mathrm{d}\vec{y}$
- Unfortunately, such an objective function \hat{J} is not appropriate as it is equivalent to functions J_{UK} and J_{MM}

Proposition

Given a cluster C of m-dimensional uncertain objects, where $o = (\mathcal{R}, f), \forall o \in C$, it holds that $\widehat{J}(C) = 2 |C| J_{MM}(C) = 2 J_{UK}(C)$.

U-centroid U-centroid based cluster compactness The UCPC algorithm

- Introducing a novel notion of cluster centroid
- Defining a cluster compactness criterion based on this novel cluster centroid definition which meets the requirements about central tendency and variance

U-centroid U-centroid based cluster compactness The UCPC algorithm

Cluster centroid as *random variable* summarizing all possible deterministic representations of the objects in the cluster

Two key advantages:

U-centroid

- Shortcomings of a deterministic centroid notion are addressed
- Clear stochastic meaning

U-centroid U-centroid based cluster compactness The UCPC algorithm

U-centroid: analytical expression (1)

Theorem

Given a cluster $C = \{o_1, \ldots, o_{|C|}\}$ of m-dimensional uncertain objects, where $o_i = (\mathcal{R}_i, f_i)$ and $\mathcal{R}_i = \left[\ell_i^{(1)}, u_i^{(1)}\right] \times \cdots \times \left[\ell_i^{(m)}, u_i^{(m)}\right]$, $\forall i \in [1..|C|]$, let $\overline{C} = (\overline{\mathcal{R}}, \overline{f})$ be the U-centroid of C defined by employing the squared Euclidean norm as distance to be minimized. It holds that:

$$\overline{f}(\vec{x}) = \int_{\vec{x}_1 \in \mathcal{R}_1} \cdots \int_{\vec{x}_{|C|} \in \mathcal{R}_{|C|}} \left[\vec{x} = \frac{1}{|C|} \sum_{i=1}^{|C|} \vec{x}_i \right] \prod_{i=1}^{|C|} f_i(\vec{x}_i) d\vec{x}_1 \cdots d\vec{x}_{|C|}$$
$$\overline{\mathcal{R}} = \left[\frac{1}{|C|} \sum_{i=1}^{|C|} \ell_i^{(1)}, \frac{1}{|C|} \sum_{i=1}^{|C|} u_i^{(1)} \right] \times \cdots \times \left[\frac{1}{|C|} \sum_{i=1}^{|C|} \ell_i^{(m)}, \frac{1}{|C|} \sum_{i=1}^{|C|} u_i^{(m)} \right]$$

where I[A] is the indicator function, which is 1 when the event A occurs, 0 otherwise.

U-centroid U-centroid based cluster compactness The UCPC algorithm

U-centroid based cluster compactness criterion

Two main requirements for the proposed cluster compactness criterion J:

- It should rely on the U-centroid notion so to meet the requirements about central tendency and variance
- The expression of the pdf *f* in the proposed U-centroid is not analytically computable ⇒ J should be such that it can be optimized without requiring to explicitly compute *f*

U-centroid U-centroid based cluster compactness The UCPC algorithm

A first solution: minimizing the U-centroid variance

Minimizing the variance of the U-centroid (similarly to MMVar) does not work, as it is equivalent to minimizing the average variance of the individual uncertain objects in the cluster:

Theorem

Given a cluster $C = \{o_1, ..., o_{|C|}\}$ of m-dimensional uncertain objects, where $o_i = (\mathcal{R}_i, f_i), \forall i \in [1..|C|], \text{ let } \overline{C} = (\overline{\mathcal{R}}, \overline{f}) \text{ be the } U$ -centroid of C. It holds that $\sigma^2(\overline{C}) = |C|^{-2} \sum_{i=1}^{|C|} \sigma^2(o_i)$.

U-centroid U-centroid based cluster compactness The UCPC algorithm

Minimizing the expected distance between uncertain objects and U-centroid (1)

$$J(C) = \sum_{o \in C} \widehat{ED}(o, \overline{C})$$

Observation 1: J takes into account both central tendency and variance

Theorem

Let $C = \{o_1, ..., o_{|C|}\}$ be a cluster of uncertain objects, where $o_i = (\mathcal{R}_i, f_i)$, and $\overline{C} = (\overline{\mathcal{R}}, \overline{f})$ be the U-centroid of C. It holds that:

$$J(C) = \sum_{j=1}^{m} \left(\frac{\Psi_{C}^{(j)}}{|C|} + \Phi_{C}^{(j)} - \frac{\Upsilon_{C}^{(j)}}{|C|} \right) = \frac{1}{|C|} \sum_{i=1}^{|C|} \sigma^{2}(o_{i}) + \sum_{o \in C} ED\left(o, \frac{1}{|C|} \sum_{o \in C} \vec{\mu}(o)\right)$$

where

$$\Psi_{C}^{(j)} = \sum_{i=1}^{|C|} (\sigma^{2})_{j}(o_{i}) \qquad \Phi_{C}^{(j)} = \sum_{i=1}^{|C|} (\mu_{2})_{j}(o_{i}) \qquad \Upsilon_{C}^{(j)} = \left(\sum_{i=1}^{|C|} \mu_{j}(o_{i})\right)^{2}$$

U-centroid U-centroid based cluster compactness The UCPC algorithm

Minimizing the expected distance between uncertain objects and U-centroid (2)

Observation 2: Given a cluster C, the value of J of any other cluster resulting from adding/removing an object to/from C can be computed according to an efficient closed-form expression

Corollary

Let C be a cluster of uncertain objects, and $C^+ = C \cup \{o^+\}$, $C^- = C \setminus \{o^-\}$ be two clusters defined by adding an object $o^+ \notin C$ to C and removing an object $o^- \in C$ from C, respectively. It holds that:

$$J(C^{+}) = \sum_{j=1}^{m} \left(\frac{\Psi_{C^{+}}^{(j)}}{|C|+1} + \Phi_{C^{+}}^{(j)} - \frac{\Upsilon_{C^{+}}^{(j)}}{|C|+1} \right) \quad J(C^{-}) = \sum_{j=1}^{m} \left(\frac{\Psi_{C^{-}}^{(j)}}{|C|-1} + \Phi_{C^{-}}^{(j)} - \frac{\Upsilon_{C^{-}}^{(j)}}{|C|-1} \right)$$

U-centroid U-centroid based cluster compactness The UCPC algorithm

The UCPC local-search algorithm

Input: A set \mathcal{D} of UO; the number k of output clusters **Output:** A partition C of D, where |C| = k1: compute $\vec{\mu}(o)$, $\vec{\mu}_2(o)$, $\vec{\sigma}^2(o)$, $\forall o \in \mathcal{D}$ 2: $\mathcal{C} \leftarrow initialPartition(\mathcal{D}, k)$, compute $\Psi_{\mathcal{C}}^{(j)}$, $\Phi_{\mathcal{C}}^{(j)}$, $\Upsilon_{\mathcal{C}}^{(j)}$, J(C)3: repeat $V \leftarrow \sum_{C \in C} J(C)$ 4: 5: for all $o \in \mathcal{D}$ do 6: $C^* \leftarrow \operatorname{argmin}_{C \in C} V - [J(C^\circ) + J(C)] +$ $[J(C^{\circ}\setminus\{o\})+J(C\cup\{o\})]$ 7: if $C^* \neq C^\circ$ then $\mathcal{C} \leftarrow \mathcal{C} \setminus \{\mathcal{C}^*, \mathcal{C}^\circ\} \cup \{\mathcal{C}^+, \mathcal{C}^-\}$ 8: replace $\Psi_{C^*}^{(j)}$, $\Phi_{C^*}^{(j)}$, $\Upsilon_{C^*}^{(j)}$, $J(C^*)$ with $\Psi_{C^+}^{(j)}$, 9: $\Phi_{C^+}^{(j)}, \Upsilon_{C^+}^{(j)}, J(C^+), \forall j \in [1..m]$ replace $\Psi_{C^{\circ}}^{(j)}$, $\Phi_{C^{\circ}}^{(j)}$, $\Upsilon_{C^{\circ}}^{(j)}$, $J(C^{\circ})$ with $\Psi_{C^{\circ}}^{(j)}$, 10: $\Phi_{C^-}^{(j)}$, $\Upsilon_{C^-}^{(j)}$, $J(C^-)$, $\forall j \in [1..m]$ 11: **until** no object in \mathcal{D} is relocated

• UCPC converges to a local optimum of function *J* in a finite number *I* of iterations

• UCPC works in $\mathcal{O}(I \ k \ |\mathcal{D}| \ m)$

Evaluation methodology Accuracy results Efficiency results

Evaluation methodology (1)

- Benchmark datasets from UCI (Iris, Wine, Glass, Ecoli, Yeast, Image, Abalone, Letter) where uncertainty is generated synthetically and modeled according to *Uniform* (U), *Normal* (N), and *Exponential* (E) pdfs
- Real (gene expression) datasets where uncertainty is inherently present

(a) Benchmark	datasets
---------------	----------

dataset	obj.	attr.	classes
Iris	150	4	3
Wine	178	13	3
Glass	214	10	6
Ecoli	327	7	5
Yeast	1,484	8	10
Image	2,310	19	7
Abalone	4,124	7	17
Letter	7,648	16	10

(b) F	Real	data	sets
-------	------	------	------

dataset	obj.	attr.
Neuroblastoma	22,282	14
Leukaemia	22,690	21

Evaluation methodology Accuracy results Efficiency results

- Evaluation in terms of:
 - accuracy (external and internal clustering evaluation)
 - efficiency
- Competitors: MMVar (MMV), UK-means (UKM), UK-medoids (UKmed), UAHC, *FDBSCAN* (*FDB*), *FOPTICS* (*FOPT*)

Evaluation methodology Accuracy results Efficiency results

Accuracy results: benchmark datasets

		F-measure $(\Theta \in [-1,1])$						
	pdf	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	UKmed	UKM	MMV	UCPC
	U	189	.055	.089	.210	.081	.193	.429
avg score	Ν	081	046	.149	028	.019	.199	.287
	E	317	088	008	011	137	.200	223
overall a	avg. score	196	026	.077	.057	012	.198	.313
overall	avg. gain	+.509	+.339	+.236	+.256	+.324	+.115	_

		Quality ($Q \in [-1,1])$						
	pdf	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	UKmed	UKM	MMV	UCPC
avg score	U	.021	.089	.027	.084	.042	.345	.375
	Ν	.061	.115	.091	.089	.127	.139	.189
	E	001	.025	0	.011	.015	.199	.200
overall a	avg. score	.027	.076	.039	.061	.061	.228	.255
overall	avg. gain	+.228	+.179	+.216	+.194	+.194	+.027	—

Evaluation methodology Accuracy results Efficiency results

Accuracy results: real datasets

			Quality ($Q \in [-1,1])$					
data	#clust.	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	UKmed	UKM	MMV	UCPC
Neur	o. avg score	004	.010	.630	.045	.060	.544	.576
Leu	k. <i>avg score</i>	018	.190	.192	.231	.430	.433	.471
ove	r. avg score	011	.100	.411	.138	.245	.489	.523
ov	er. avg gain	+.534	+.423	+.112	+.385	+.278	+.034	

Evaluation methodology Accuracy results Efficiency results

Efficiency results: benchmark datasets

 Efficiency evaluation also involves optimized versions of UK-means, i.e., MinMax-BB and VDBiP

Evaluation methodology Accuracy results Efficiency results

Efficiency results: real datasets

Conclusions

- Existing formulations of partitional clustering of uncertain objects miss some crucial requirements about central tendency and variance of the objects to be clustered
- Novel notion of cluster centroid, called U-centroid
- Effective and efficient U-centroid based cluster compactness criterion
- Efficient local-search heuristic to optimize the proposed objective function

Thanks!