Hermes: A distributed messaging tool for NLP

Ilaria Bordino, Andrea Ferretti, Marco Firrincieli, Francesco Gullo, Marcello Paris, and Gianluca Sabena
UniCredit R&D

{ilaria.bordino, andrea.ferretti2, marco.firrincieli, francesco.gullo, marcello.paris, gianluca.sabenag}@unicredit.eu

August 26th, 2016
Natural Language Processing (NLP)

“Set of techniques for automated generation, manipulation and analysis of human (natural) languages”

Major tasks:

- Language modeling
- Part-of-speech (POS) tagging
- Entity recognition and disambiguation
- Sentiment analysis
- Word sense disambiguation
What for? Information Extraction Tasks

Entity recognition and disambiguation

Relation Extraction
Event Extraction

“San Bernardino, California was struck by a moderate earthquake on Thursday night, with shaking felt from Los Angeles to Orange County. A preliminary reading by the U.S. Geological Survey showed a 4.5-magnitude quake struck at 7:49pm. ...”

Event type: earthquake

Roles:
- **magnitude** - What was the magnitude of the earthquake?
- **location** - Where did the earthquake occur?
- **time** - At what time did the earthquake occur?
- ...

Hermes
What for? Information Extraction Tasks

Sentiment Analysis

- Are you sure? I read a few and they didn’t sound positive to me.
- Our sentiment analysis tool is showing a lot of positive scores. We’re doing great!
- Here is one: “It’s amazing how your customer service never gets it right.”
- I think the algorithm is receiving mixed signals and is opting for staying optimistic.

© Relevant Insights, LLC
Use Cases

- Online Reputation Management
- Opinion Mining
- Automatic Summarization
- Question Answering
A distributed-messaging tool for NLP

1. Efficient and extendable architecture: independent modules interact via message passing
2. Large scale processing
3. Completeness
4. Versatility
Message queues

- Three queues implemented as kafka topics
- All modules written in Scala
- All messages are JSON strings
Producers

- Retrieve the text sources to be analyzed, and feed them into the system
- Four different source types are currently supported:
 1. Twitter
 2. News articles
 3. Documents
 4. Mail messages
- Producers perform minimal processing and push on the news queue
Cleaner

- Consumes raw news pushed on the news queue
- Performs text extraction
 - *Goose* is used for text extraction
 - *Tika* for content extraction and language recognition
- Pushes extracted text onto the *clean-news* queue
NLP Module

- Handles sentence splitting, tokenization, HTML/Croele parsing, entity linking, topic detection, clustering of related news, sentiment analysis

Client/Server Design: The client news on the clean-news queue, asks for NLP annotations to the service, and places the result on the tagged-news queue

The service is an Akka application providing APIs to the NLP tasks
Persister and Indexer

- Index service: ElastichSearch
- Key-value store: HBase
- Two long-running Akka applications listen to the clean-news and tagged-news queues, and respectively index and persist raw and decorated news
A single-page client (written in Coffee-Script using Facebook React) interacts with a Play application.

The client home page shows annotated news ranked by a relevance function that combines various metrics but users can also search.

The Play application retrieves news from the index and enriches them with content from the key-value store.
NLP: dealing with (named) entities

Entity: concept of interest in a text (e.g., a person, a place, a company)

Entity Recognition and Disambiguation (ERD):

- **Entity Recognition (ER):**
 identification of (candidate) entities in a plain text (i.e., which parts of the text to be linked)

- **Entity Disambiguation (ED), aka Entity Linking (EL):**
 resolving (i.e., “linking”) named entity mentions to entries in a structured knowledge base

Non-uniform terminology: in some cases EL ≡ ERD
Solving ERD

We need a knowledge base! ⇒ e.g., Wikipedia

- Mentions: anchor text of all Wikipedia hyperlinks (pointing to a Wikipedia page)
- Entities: all Wikipedia pages
- Mentions and entities are connected by a one-to-many relationship (a specific anchor text can point to several Wikipedia pages)
- Entities are connected to each other in a graph structure (arcs ≡ hyperlinks)

Offline step: scan Wikipedia corpus and take (1) anchor text of all Wikipedia hyperlinks, (2) all Wikipedia pages (=entities) pointed by each anchor text, and (3) all hyperlinks among Wikipedia pages (to infer the Wikipedia graph structure)
Main idea

Compute a score for each candidate mention-entity linking $a \mapsto e$ (based on the other possible mention-entity linkings $b \mapsto e'$ derived from the input text), and link each mention a to the entity e^* that maximizes that score, i.e., $e^* = \arg \max_e \text{score}(a \mapsto e)$.
Relatedness between two entities (Wikipedia pages) e_1 and e_2 (directly proportional to the in-neighbors shared by e_1 and e_2) [Milne and Witten, CIKM'08]:

$$rel(e_1, e_2) = 1 - \frac{\max\{\log |\text{in}(e_1)|, \log |\text{in}(e_2)|\} - \log |\text{in}(e_1) \cap \text{in}(e_2)|}{|W| - \min\{\log |\text{in}(e_1)|, \log |\text{in}(e_2)|\}}$$

Vote given by mention b to the candidate mention-entity linking $a \mapsto e$:

$$vote(a \mapsto e \mid b) = \frac{1}{|E(b)|} \sum_{e' \in E(b)} rel(e, e') \Pr(e' \mid b)$$

Ultimate score for the candidate mention-entity linking $a \mapsto e$:

$$score(a \mapsto e) = \sum_{b \in \mathcal{M}_T \setminus \{a\}} vote(a \mapsto e \mid b)$$
Voting-based entity linking: critical steps

\[rel(e_1, e_2) = 1 - \frac{\max\{\log |in(e_1)|, \log |in(e_2)|\} - \log |in(e_1) \cap in(e_2)|}{|W| - \min\{\log |in(e_1)|, \log |in(e_2)|\}} \]

\[\Rightarrow O(\min\{\deg(e_1), \deg(e_2)\}) \]

\[score(a \mapsto e) = \sum_{b \in \mathcal{M}_T \setminus \{a\}} vote(a \mapsto e \mid b) = \frac{1}{|E(b)|} \sum_{b \in \mathcal{M}_T \setminus \{a\}, \ e' \in E(b)} rel(e, e') \Pr(e' \mid b) \]

for all possible \(a \mapsto e\)

\[\Rightarrow O(N^2) \ (N = \sum_{m \in \mathcal{M}_T} |E(m)|) \]
MinHash

Method for quickly estimating the similarity between two sets

- **U**: universe of elements, \(A, B \subseteq U \): any two sets
- Jaccard similarity coefficient: \(J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|} \)
- Hash function \(h : U \to I \subseteq \mathbb{N} \)
- For any set \(S \subseteq U \), let \(h_{\text{min}}(S) = \min_{x \in S} h(x) \)

MinHash argument:

- \(h_{\text{min}}(A) = h_{\text{min}}(B) \) if \(x_{\text{min}} = \arg \min_{x \in A \cup B} h(x) \in A \cap B \)
 \(\Rightarrow \Pr[h_{\text{min}}(A) = h_{\text{min}}(B)] = \frac{|A \cap B|}{|A \cup B|} = J(A, B) \)
 \(\Rightarrow \) rnd variable \(r := \mathbb{1}[h_{\text{min}}(A) = h_{\text{min}}(B)] \) is an unbiased estimator of \(J(A, B) \)
- Problem: \(r \) has a too large variance (\(r \in \{0, 1\} \), while \(J \in [0, 1] \))
 \(\Rightarrow \) Use multiple hash functions \(h(1), \ldots, h(K) \) and estimate \(J(A, B) \) as
 \(\frac{1}{K} \sum_{i=1}^{K} \mathbb{1}[h_{\text{min}}^{(i)}(A) = h_{\text{min}}^{(i)}(B)] \)
MinHash applied to Milne-Witten function

Problem: given two entities e_1 and e_2, and their corresponding neighbor sets \mathcal{N}_1 and \mathcal{N}_2 (with $|\mathcal{N}_1| = \text{deg}(e_1)$, $|\mathcal{N}_2| = \text{deg}(e_2)$), quickly estimate $|\mathcal{N}_1 \cap \mathcal{N}_2|$

Offline (n: #entities, m: #edges in the entity-interaction graph (e.g., Wikipedia)):

- Choose K hash functions $h^{(1)}, \ldots, h^{(K)} \rightarrow [O(Kn)]$

 - basically, if our universe $U = \{1, \ldots, n\}$ corresponds to the id of the n entities in our dataset, each $h^{(i)}$ is a random permutation of U

- Compute min-hash signature of each entity e as a K-dimensional real-valued vector $\overrightarrow{v}_e = [h^{(1)}_{\min}(\mathcal{N}(e)), \ldots, h^{(K)}_{\min}(\mathcal{N}(e))] \rightarrow [O(K \sum_e \text{deg}(e)) = O(Km)]$

Online:

- Estimate $J(\mathcal{N}(e_1), \mathcal{N}(e_2))$ as $\frac{1}{K} \sum_{i=1}^{K} \mathbb{1} [\overrightarrow{v}_{e_1}(i) = \overrightarrow{v}_{e_2}(i)]$

- Estimate $|\mathcal{N}(e_1) \cap \mathcal{N}(e_2)|$ as $\frac{J}{1+J}(|\mathcal{N}(e_1)| + |\mathcal{N}(e_2)|)$

- $\rightarrow [O(K)]$ (rather than $O(\min\{\text{deg}(e_1), \text{deg}(e_2)\})$)
LSH to speed-up voting-based EL

Offline:
- Compute LSH buckets \(lsh(e) = [b_1(e), \ldots, b_L(e)] \) for each entity \(e \), where \(b_i(e) = lsh(i, \text{minhash}(e)) \rightarrow [O(Ln^{1/L}) = O(Kn)] + [O(Km)] \) for MinHash

Online (given an input text \(T \)):
- Retrieve LSH buckets for all entities in \(T \)
- Compute inverted index: for each bucket \(b \), \(\text{entities}(b) = \{e \mid b(e) \in lsh(e)\} \)
- Approximate \(\text{score}(a \mapsto e) = \frac{1}{|E(b)|} \sum_{b \in \mathcal{M}_T \setminus \{a\}, \text{rel}(e, e')} \Pr(e' \mid b) \) as
 \[
 \frac{1}{|E(b)|} \sum_{e' \in \text{buckets}(e)} \text{rel}(e, e') \Pr(e' \mid b)
 \]

Instead of \(O(N^2) \) comparisons, only need comparisons between entities in the same bucket.
Check out our tool at hermes.rnd.unicredit.it:9603
(Email me to get access credentials)

Thanks!