
Hermes:
A distributed messaging tool for NLP

Ilaria Bordino, Andrea Ferretti, Marco Firrincieli, Francesco
Gullo, Marcello Paris, and Gianluca Sabena

UniCredit R&D

{ilaria.bordino, andrea.ferretti2, marco.firrincieli, francesco.gullo,
marcello.paris, gianluca.sabenag}@unicredit.eu

August 26th, 2016

Hermes

Natural Language Processing (NLP)

“Set of techniques for automated generation, manipulation and analysis
of human (natural) languages”

Major tasks:

Language modeling

Part-of-speech (POS) tagging

Entity recognition and disambiguation

Sentiment analysis

Word sense disambiguation

Hermes

What for? Information Extraction Tasks

Entity recognition and disambiguation

Relation Extraction

Hermes

What for? Information Extraction Tasks

Event Extraction

Hermes

What for? Information Extraction Tasks

Sentiment Analysis

Hermes

Use Cases

Online Reputation Management

Opinion Mining

Automatic Summarization

Question Answering

Hermes

A distributed-messaging tool for NLP

1 Efficient and extendable architecture: independent
modules interact via message passing

2 Large scale processing

3 Completeness

4 Versatility

Hermes

Message queues

Three queues
implemented as
kafka topics

All modules
written in Scala

All messages are
JSON strings

Hermes

Producers

Retrieve the text sources to
be analyzed, and feed them
into the system

Four different source types are
currently supported:

1 Twitter
2 News articles
3 Documents
4 Mail messages

Producers perform minimal
processing and push on the
news queue

Hermes

Cleaner

Consumes raw news pushed
on the news queue

Performs text extraction

Goose is used for text
extraction
Tika for content extraction
and language recognition

Pushes extracted text onto
the clean-news queue

Hermes

NLP Module

Handles sentence splitting,
tokenization, HTML/Creole
parsing, entity linking, topic
detection, clustering of related
news, sentiment analysis

Client/Server Design: The client
news on the clean-news queue,
asks for NLP annotations to the
service, and places the result on
the tagged-news queue

The service is an Akka application
providing APIs to the NLP tasks

Hermes

Persister and Indexer

Index service: ElastichSearch

Key-value store: HBase

Two long-running Akka
applications listen to the
clean-news and tagged-news
queues, and respectively index and
persist raw and decorated news

Hermes

Frontend

A single-page client (written in
Coffee-Script using Facebook
React) interacts with a Play
application

The client home page shows
annotated news ranked by a
relevance function that combines
various metrics but users can also
search.

The Play application retrieves news
from the index and enriches them
with content from the key-value
store.

Hermes

NLP: dealing with (named) entities

Entity: concept of interest in a text (e.g., a person, a place, a company)

Entity Recognition and Disambiguation (ERD):

Entity Recognition (ER):
identification of (candidate) entities in a plain text (i.e., which parts of the text

to be linked)

Entity Disambiguation (ED), aka Entity Linking (EL):
resolving (i.e., “linking”) named entity mentions to entries in a structured

knowledge base

Non-uniform terminology: in some cases EL ≡ ERD

Hermes

Solving ERD

We need a knowledge base! ⇒ e.g., Wikipedia

Mentions: anchor text of all Wikipedia hyperlinks (pointing to a Wikipedia page)

Entities: all Wikipedia pages

Mentions and entities are connected by a one-to-many relationship (a specific
anchor text can point to several Wikipedia pages)

Entities are connected to each other in a graph structure (arcs ≡ hyperlinks)

Offline step: scan Wikipedia corpus and take (1) anchor text of all Wikipedia

hyperlinks, (2) all Wikipedia pages (=entities) pointed by each anchor text, and (3) all

hyperlinks among Wikipedia pages (to infer the Wikipedia graph structure)

Hermes

Entity linking: voting approach

Wikify! [Mihalcea and Csomai, CIKM’07]

Tagme [Ferragina and Scaiella, CIKM’10]

Wat [Piccinno and Ferragina, ERD’14]

Main idea

Compute a score for each candidate mention-entity linking a 7→ e (based
on the other possible mention-entity linkings b 7→ e ′ derived from the
input text), and link each mention a to the entity e∗ that maximizes that
score, i.e., e∗ = arg maxe score(a 7→ e).

Hermes

Entity linking: voting approach

Relatedness between two entities (Wikipedia pages) e1 and e2 (directly proportional to
the in-neighbors shared by e1 and e2) [Milne and Witten, CIKM’08]:

rel(e1, e2) = 1− max{log |in(e1)|, log |in(e2)|} − log |in(e1) ∩ in(e2)|
|W | −min{log |in(e1)|, log |in(e2)|}

Vote given by mention b to the candidate mention-entity linking a 7→ e:

vote(a 7→ e | b) =
1

|E(b)|
∑

e′∈E(b)

rel(e, e′) Pr(e′ | b)

Ultimate score for the candidate mention-entity linking a 7→ e:

score(a 7→ e) =
∑

b∈MT \{a}

vote(a 7→ e | b)

Hermes

Voting-based entity linking: critical steps

rel(e1, e2) = 1− max{log |in(e1)|, log |in(e2)|} − log |in(e1) ∩ in(e2)|
|W | −min{log |in(e1)|, log |in(e2)|}

⇒ O(min{deg(e1), deg(e2)})

score(a 7→ e) =
∑

b∈MT \{a}

vote(a 7→ e | b) =
1

|E(b)|
∑

b∈MT \{a},
e′∈E(b)

rel(e, e′) Pr(e′ | b)

for all possible a 7→ e

⇒ O(N2) (N =
∑

m∈MT
|E(m)|)

Hermes

MinHash

Method for quickly estimating the similarity between two sets

U: universe of elements, A,B ⊆ U: any two sets

Jaccard similarity coefficient: J(A,B) = |A∩B|
|A∪B| = |A∩B|

|A|+|B|−|A∩B|

Hash function h : U → I ⊆ N
For any set S ⊆ U, let hmin(S) = minx∈S h(x)

⇓
MinHash argument:

hmin(A) = hmin(B) if xmin = arg minx∈A∪B h(x) ∈ A ∩ B

⇒ Pr[hmin(A) = hmin(B)] = |A∩B|
|A∪B| = J(A,B)

⇒ rnd variable r := 1[hmin(A) = hmin(B)] is an unbiased estimator of J(A,B)

Problem: r has a too large variance (r ∈ {0, 1}, while J ∈ [0, 1])
⇒ Use multiple hash functions h(1), . . . , h(K) and estimate J(A,B) as
1
K

∑K
i=1 1[h

(i)
min(A) = h

(i)
min(B)]

Hermes

MinHash applied to Milne-Witten function

Problem: given two entities e1 and e2, and their corresponding neighbor sets N1 and
N2 (with |N1| = deg(e1), |N1| = deg(e2)), quickly estimate |N1 ∩N2|

Offline (n:#entities, m:#edges in the entity-interaction graph (e.g., Wikipedia)):

Choose K hash functions h(1), . . . , h(K) → [O(Kn)]

basically, if our universe U = {1, . . . , n} corresponds to the id of the n entities in

our dataset, each h(i) is a random permutation of U

Compute min-hash signature of each entity e as a K -dimensional real-valued
vector ~ve = [h

(1)
min(N (e)), . . . h

(K)
min(N (e))] → [O(K

∑
e deg(e)) = O(Km)]

Online:

Estimate J(N (e1),N (e2)) as 1
K

∑K
i=1 1[~ve1(i) = ~ve2(i)]

Estimate |N (e1) ∩N (e2)| as J
1+J

(|N (e1)|+ |N (e2)|)
→ [O(K)] (rather than O(min{deg(e1), deg(e2)}))

Hermes

LSH to speed-up voting-based EL

Offline:

Compute LSH buckets lsh(e) = [b1(e), . . . , bL(e)] for each entity e, where
bi (e) = lsh(i ,minhash(e)) → [O(Ln K

L
) = O(Kn)] (+ [O(Km)] for MinHash)

Online (given an input text T):

Retrieve LSH buckets for all entities in T

Compute inverted index: for each bucket b, entities(b) = {e | b(e) ∈ lsh(e)}
Approximate score(a 7→ e) = 1

|E(b)|
∑

b∈MT \{a},
e′∈E(b)

rel(e, e′) Pr(e′ | b) as

1
|E(b)|

∑
e′∈buckets(e) rel(e, e

′) Pr(e′ | b)

Instead of O(N2) comparisons, only need comparisons between entities in the same
bucket

Hermes

Check out our tool at
hermes.rnd.unicredit.it:9603

(Email me to get access credentials)

Thanks!

Hermes

hermes.rnd.unicredit.it:9603

