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¡  different definitions of dense subgraphs: cliques, 
n-cliques, n-clans, k-plexes, k-cores, etc.  

¡ most of them are computationally prohibitive: 
NP-hard or at least quadratic  
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k-core decomposition 
¡ G =(V,E) is an undirected graph 

¡  k-core of G is a maximal subgraph H = (C, E|C) 
such that ∀v∈C : degH(v) ≥ k  

¡  core index of a vertex v is the highest order of a 
core that contains v  
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Uncertain graphs 
¡ Many real live networks are associated with 

uncertainty:  
¡  data collection process  

¡  employed machine-learning methods 

¡  privacy-preserving reasons  

 

¡  biological networks, protein-interaction networks  

¡  social networks 



Uncertain graphs 
¡  Edges in an uncertain graph are associated with 

a probability of existence  
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We want to extend the graph tool of core 
decomposition to the context of uncertain 
graphs.  
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¡  The fact that core decomposition can be 

performed in linear time in deterministic graphs 
does not guarantee efficiency in uncertain 
graphs.  

¡ Are any two vertices connected? 
¡  in deterministic graph: a simple scan of the graph  

¡  in uncertain graph: computing the probability that 
two vertices are connected is a #P-complete 
problem  
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This probability is monotonically non-increasing with k   
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Probabilistic (k,η)-cores  
¡ η-degree of any vertex v ∈ V is defined as           
η-deg(v) = max { k∈[0..dv ] | Pr[deg(v) ≥ k] ≥ η} 

¡  We use η-degree to define (k,η)-core 
decomposition in a similar manner as degree in 
deterministic case.  
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Computing probabilistic 
cores  
¡ We have proven uniqueness and existence of 

(k,η)-core decomposition of G.  



Computing probabilistic 
cores  
¡  Since naïve computation of η-degrees leads to 

exponential time complexity, we defined a 
dynamic-programming method for (k,η)-core 
decomposition. 



Computing probabilistic 
cores  
¡ We have shown the running time of (k,η)-core 

decomposition is O(m∆), where  
¡  m is the number of edges  

¡  ∆ is the maximum η-degree over all vertices  



Computing probabilistic 
cores  
¡ We have derived a fast-to-compute lower bound 

on the η-degree to speed up (k,η)-core 
computations. 
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1. Task-driven team 
formation problem 
¡ A collaboration graph:  
¡  vertices are individuals  

¡  edges exhibit a probabi l ist ic topic model 
representing the topic(s) of past collaborations 

¡ A query is a pair ⟨T,Q⟩:   
¡  T is a set of terms describing a new task 

¡  Q is a set of vertices 

¡  The goal is to find an answer set of vertices A, 
such that A⊇Q is a good team for the task 
described by T.  
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¡  Finding a set S, |S|=s,  of vertices that maximizes 

the expected spread σ(S) is a NP-hard problem 

¡ Greedy algorithm adds the vertex bringing the 
largest marginal gain in the objective function.  

¡ We reduce the input graph G by some rule and 
run the Greedy algorithm.  

¡ On deterministic graph k-core index is a direct 
indicator of the expected spread of any vertex 
(experimentally observed). 
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experiment 
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probabilities learned from past propagations of 
URLs (|V| = 21882,|E| = 372005).  
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(k,η)-cores-based method 
outperforms all the baselines 
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Conclusions 
¡ We have defined the (k,η)-core concept, and 

devised efficient algorithms for computing a 
(k,η)-core decomposition.  

 



Conclusions 
¡ We have extensively evaluated our definitions 

and methods on a number of real-world datasets 
and applications. 

 



Conclusions 
¡ We plan to investigate the relationship between 

(k,η)-cores and other definitions of (probabilistic) 
dense subgraphs.  

 



Questions? 


