MINIMIZING THE VARIANCE OF CLUSTER MIXTURE MODELS FOR CLUSTERING UNCERTAIN OBJECTS

F. Gullo G. Ponti A. Tagarelli

Dept. of Electronics, Computer and Systems Science University of Calabria, Italy

10th IEEE International Conference on Data Mining (ICDM) December 14-17, 2010 Sydney, Australia Uncertainty

Exploiting Mixture Model Variances for Clustering UO Experimental Evaluation Conclusion Jncertain Objects (UC Clustering UO

Uncertainty

Uncertainty inherently affects data from a wide range of emerging application domains:

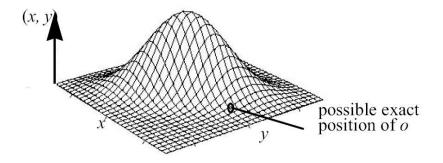
- sensor data
- location-based services (e.g., moving objects data)
- biomedical and biometric data (e.g., gene expression data)
- distributed applications
- RFID data
- . . .

It is generally due to noisy factors, such as signal noise, instrumental errors, wireless transmission

Uncertain Objects (UO) Clustering UO

Uncertain Objects (UO) (1)

Modeling by regions (domains) of definition and probability density functions (pdfs)



Uncertain Objects (UO) Clustering UO

Uncertain Objects (UO) (2)

- *m*-dimensional region
- multivariate pdf defined over the region

Definition (uncertain object)

An uncertain object o is a pair (\mathcal{R}, f) :

- $\mathcal{R} \subseteq \Re^m$ is the *m*-dimensional in which *o* is defined
- $f: \Re^m \to \Re_0^+$ is the probability density function of o at each point $\vec{x} \in \Re^m$ such that:

$$f(\vec{x}) = 0, \quad \forall \vec{x} \in \Re^m \setminus \mathcal{R} \quad \text{and} \quad f(\vec{x}) > 0, \ \forall \vec{x} \in \mathcal{R}$$

Uncertainty

Exploiting Mixture Model Variances for Clustering UO Experimental Evaluation Conclusion Uncertain Objects (UO Clustering UO

Clustering Uncertain Objects (1)

Major approaches:

- partitional clustering methods:
 - uncertain version of k-Means [Chau et Al., PAKDD'06] and its relative optimizations [Ngai et Al., ICDM'06, Lee et Al., ICDM Work.'07, Chui et Al., ICDM'08]
 - uncertain version of k-Medoids [Gullo et Al., SUM'08]
- density-based clustering methods:
 - uncertain version of DBSCAN [Kriegel and Pfeifle, KDD'05]
 - uncertain version of OPTICS [Kriegel and Pfeifle, ICDM'05]
- hierarchical clustering methods [Gullo et Al., ICDM'08]

Uncertainty

Exploiting Mixture Model Variances for Clustering UO Experimental Evaluation Conclusion Uncertain Objects (UO) Clustering UO

Clustering Uncertain Objects (2)

Issues of existing algorithms:

- they require some notion of distance between uncertain objects
 - hard task as existing notions are either inaccurate or inefficient
- they generally suffer from efficiency issues
 - intrinsically due to the adopted formulations, which require to continuously execute critical operations

Main Intuition MMVar Heuristic Algorithm

Minimizing Mixture Model Variances for Clustering Uncertain Objects

Goal: to solve both the issues arising from existing algorithms for clustering uncertain objects

Proposal

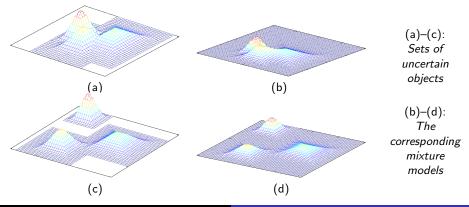
Novel formulation to the problem of clustering uncertain objects whose major features are:

- exploiting *mixture models* for representing the clusters to be identified
- employing the minimization of the variance of the mixture models as optimization criterion

Main Intuition MMVar Heuristic Algorithm

Cluster Mixture Models (Uncertain Prototypes)

Mixture model (uncertain prototype) of cluster C: $\mathcal{P}_{C} = (\mathcal{R}_{C}, f_{C})$ $\mathcal{R}_{C} = \bigcup_{o = (\mathcal{R}, f) \in C} \mathcal{R} \qquad f_{C}(\vec{x}) = (|C|)^{-1} \sum_{o = (\mathcal{R}, f) \in C} f(\vec{x})$



Main Intuition MMVar Heuristic Algorithm

Proposed Formulation

Idea: minimizing variance of cluster mixture models

$$J(\mathcal{C}) = \sum_{C \in \mathcal{C}} \sigma^2(\mathcal{P}_C)$$

- accuracy: the lower the variance, the higher the cluster compactness

- efficiency: capability of exploiting interesting analytical properties

Computing objective function J

- Moving object o from $C \in C$ to $\widehat{C} \in C$ leads to a new $C' = C \setminus (C \cup \widehat{C}) \cup (C' \cup \widehat{C}')$, where $C' = C \setminus \{o\}$, $\widehat{C}' = \widehat{C} \cup \{o\}$
- $J(\mathcal{C}')$ can be efficiently computed in $\mathcal{O}(m)$ as:

$$J(\mathcal{C}') = J(\mathcal{C}) - (\sigma^2(\mathcal{P}_{\mathcal{C}}) + \sigma^2(\mathcal{P}_{\widehat{\mathcal{C}}})) + (\sigma^2(\mathcal{P}_{\mathcal{C}'}) + \sigma^2(\mathcal{P}_{\widehat{\mathcal{C}}'}))$$

Main Intuition MMVar Heuristic Algorithm

MMVar algorithm

Input: A set \mathcal{D} of UO; the number k of output clusters **Output:** A partition C of D1: compute $\vec{\mu}(o)$, $\vec{\mu}_2(o)$, $\forall o \in \mathcal{D}$ 2: $C \leftarrow randomPartition(D, k)$ 3: compute $\vec{\mu}(\mathcal{P}_C)$, $\vec{\mu}_2(\mathcal{P}_C)$, $\forall C \in \mathcal{C}$ 4: $v \leftarrow J(\mathcal{C})$ 5: repeat for all $o \in \mathcal{D}$ do 6: 7: let $C \in C$ be the cluster s.t. $o \in C$ 8: $C^* \leftarrow \arg\min_{\widehat{C}} J_{\mathcal{C}}(C, o, \widehat{C})$ 9: if $C^* \neq C$ then $v = J_{\mathcal{C}}(C, o, \widehat{C})$ 10: 11: recompute C by moving o from C to C^* 12: recompute $\vec{\mu}(\mathcal{P}_C), \vec{\mu}_2(\mathcal{P}_C), \vec{\mu}(\mathcal{P}_{C^*}), \vec{\mu}_2(\mathcal{P}_{C^*})$ end if 13: 14: end for 15: **until** no object in \mathcal{D} is relocated

 MMVar converges to a local optimum of function J in a finite number I of iterations

MMVar works
in \$\mathcal{O}(I \ k \ |\mathcal{D}| \ m)\$

Evaluation Methodology Accuracy Results Efficiency Results

Evaluation Methodology

- Benchmark datasets from UCI (Iris, Wine, Glass, Ecoli, Yeast, Image, Abalone, Letter)
- Uncertainty generated synthetically and modeled according to Uniform (U), Normal (N), and Binomial (B) pdfs
- Evaluation in terms of:
 - **accuracy** (w.r.t. reference classifications according to *F-Measure*)
 - efficiency
- Competitors: UK-means (UKM), CK-means (CKM), UK-medoids (UKmed), *F*DBSCAN (*F*DB), *F*OPTICS (*F*OPT), U-AHC

Evaluation Methodology Accuracy Results Efficiency Results

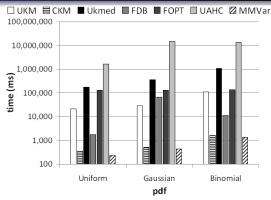
Accuracy Results

		F-measure ($F \in [0,1]$)						
data	pdf	UKM	CKM	UKmed	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	MMVar
	U	0.601	0.675	0.729	0.331	0.575	0.626	0.731
avg score	N	0.54	0.582	0.493	0.441	0.475	0.606	0.657
	В	0.476	0.363	0.602	0.295	0.525	0.508	0.716
overall avg. score		0.539	0.54	0.608	0.356	0.525	0.58	0.701
overall avg. gain		0.162	0.161	0.093	0.345	0.176	0.121	

- MMVar achieved the best overall scores, from +0.093 (w.r.t. UKmed) to +0.345 (w.r.t. $\mathcal{F}DB$)
- MMVar achieved the best avg scores on all the pdfs
 - maximum avg gain of 0.254 (Binomial)
 - minimum avg gain of 0.134 (Normal)

Evaluation Methodology Accuracy Results Efficiency Results

Efficiency Results



- MMVar performed faster than CKM
- MMVar drastically outperformed all other competitors but CKM (at least 1 order of magnitude, up to 5 orders)
- Slowest methods: UAHC and UKmed; fastest methods: CKM and $\mathcal{F}DB$

Conclusion

- Novel formulation to the problem of clustering uncertain objects
 - Cluster mixture models
 - Minimization of the variance of mixture models
- MMVar heuristic algorithm
- Significant advantages achieved by MMVar in terms of efficiency and accuracy w.r.t. existing algorithms

Thanks!

F. Gullo, G. Ponti, A. Tagarelli Minimizing Mixture Model Variances for Clustering UO

Datasets

dataset	# objects	# attributes	# classes
Iris	150	4	3
Wine	178	13	3
Glass	214	10	6
Ecoli	327	7	5
Yeast	1,484	8	10
Image	2,310	19	7
Abalone	4,124	7	17
Letter	7,648	16	10