PROJECTIVE CLUSTERING ENSEMBLES

F. Gullo * C. Domeniconi [†] A. Tagarelli ^{*}

* Dept. of Electronics, Computer and Systems Science University of Calabria, Italy

> [†] Dept. of Computer Science George Mason University, Virginia (USA)

IEEE International Conference on Data Mining (ICDM) 2009

Clustering Ensembles

input a set $\mathcal{E} = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$ of clustering solutions (i.e., ensemble) output a consensus partition \mathcal{C}^* computed according to a consensus function \mathcal{F}

goal : to reduce the (inevitable) bias of any clustering solution due to the peculiarities of the specific clustering algorithm being used (*ill-posed* nature of clustering)

Introduction

Two-objective PCE Single-objective PCE Experimental Evaluation Conclusion

Projective Clustering

input a set \mathcal{D} of \mathcal{D} -dimensional points (data objects) *output* a partition \mathcal{C} of \mathcal{D} , a set \mathcal{S} of *subspaces* s.t. each $S \in \mathcal{S}$ is assigned to one (and only one) cluster $\mathcal{C} \in \mathcal{C}$

• goal : overcoming issues due to the curse of dimensionality

• assumption : objects within the same cluster C are close to each other if (and only if) they are projected onto the subspace S associated to C

figure borrowed from [Procopiuc et Al., SIGMOD'02]

Clustering Ensembles and Projective Clustering have been so far considered as two distinct problems...

Projective Clustering Ensembles (PCE)

PCE problem addressed for the first time:

given a set of *projective clustering solutions* (i.e., a *projective ensemble*), the objective is to discover a *projective consensus partition*

Challenge:

information about *feature-to-cluster* assignments have to be considered: traditional clustering ensembles methods do not work!

- rigorous formulations of PCE as an optimization problem
 - two-objective PCE
 - single-objective PCE
- well-founded heuristics for each formulation
 - MOEA-PCE
 - EM-PCE

Introduction

Two-objective PCE Single-objective PCE Experimental Evaluation Conclusion

- 2 Two-objective PCE
- 3 Single-objective PCE
- 4 Experimental Evaluation

Projective clustering solution

Definition (projective clustering solution)

Let $\mathcal{D} = \{\vec{o}_1, \dots, \vec{o}_N\}$ be a set of *D*-dimensional points (data objects). A projective clustering solution *C* defined over \mathcal{D} is a triple $\langle \mathcal{L}, \Gamma, \Delta \rangle$:

- $\mathcal{L} = \{\ell_1, \dots, \ell_K\}$ is a set of cluster labels which uniquely represent the K clusters
- $\Gamma : \mathcal{L} \times \mathcal{D} \to S_{\Gamma}$ is a function which stores the probability that object \vec{o}_n belongs to the cluster labeled with ℓ_k , $\forall k \in [1..K]$, $n \in [1..N]$, such that $\sum_{k=1}^{K} \Gamma_{kn} = 1, \forall n \in [1..N]$, where Γ_{kn} hereinafter refers to $\Gamma(\ell_k, \vec{o}_n)$
- $\Delta : \mathcal{L} \times [1..D] \to [0,1]$ is a function which stores the probability that the *d*-th feature is a relevant dimension for the objects in the cluster labeled with ℓ_k , $\forall k \in [1..K], d \in [1..D]$, such that $\sum_{d=1}^{D} \Delta_{kd} = 1, \forall k \in [1..K]$, where Δ_{kd} hereinafter refers to $\Delta(\ell_k, d)$

Two-objective PCE

Motivation:

A projective consensus partition $C^* = \langle \mathcal{L}^*, \Gamma^*, \Delta^* \rangle$ derived from an ensemble \mathcal{E} should meet requirements related to:

- \bullet the data object clustering of the solutions in ${\cal E}$
- \bullet the feature-to-cluster assignment of the solutions in ${\cal E}$

 \implies PCE can be naturally formulated considering two objectives

Two-objective PCE: formulation

$$C^* = \arg\min_{\hat{C}} \left[\Psi_o(\hat{C}, \mathcal{E}, \mathcal{D}), \ \Psi_f(\hat{C}, \mathcal{E}, \mathcal{D}) \right]$$

where

$$\Psi_o(\hat{C}, \mathcal{E}, \mathcal{D}) = \sum_{C \in \mathcal{E}} \frac{1}{2} \Big(\psi_o(\hat{C}, C) + \psi_o(C, \hat{C}) \Big)$$

 $\Psi_f(\hat{C}, \mathcal{E}, \mathcal{D}) = \sum_{C \in \mathcal{E}} \frac{1}{2} \Big(\psi_f(\hat{C}, C) + \psi_f(C, \hat{C}) \Big)$

and $\psi_o(C_i, C_j)$ (resp. $\psi_f(C_i, C_j)$) is computed by resorting to the extended Jaccard similarity coefficient applied to the Γ_{kn} (resp. Δ_{kd}) values of C_i and C_j

Two-objective PCE: heuristic

- two-objective PCE formulation: objectives are conflicting with each other
- naïve solutions given by (linear) combining the two objectives into a single one have several drawbacks:
 - mixing non-commensurable objectives
 - hard setting of the weights needed for the linear combination
 - prior knowledge of the application domain
- *idea*: resort to the *Multi Objective Evolutionary Algorithms* (MOEAs) domain
 - \implies we exploit *NSGA-II* algorithm

Two-objective PCE: MOEA-PCE algorithm

MOEA-PCE Algorithm

- **Input:** a projective ensemble \mathcal{E} of size M, defined over a set \mathcal{D} of N D-dimens. objects; the number K of clusters in the output projective consensus partitions; the population size t; the max number I of iterations **Output:** a set \mathcal{S}^* of projective consensus partitions
 - 1: $\mathcal{S} \leftarrow populationRandomGen(\mathcal{E}, t, K), it \leftarrow 1$
 - 2: repeat

3:
$$\rho \leftarrow computeParetoRanking(S)$$

4:
$$\langle \mathcal{S}', \mathcal{S}'' \rangle \leftarrow \langle \tilde{\mathcal{S}}' \subset \mathcal{S}, \ \tilde{\mathcal{S}}'' \subset \mathcal{S} \rangle : |\tilde{\mathcal{S}}'| = |\mathcal{S}|/2, \ |\tilde{\mathcal{S}}''| = |\mathcal{S}|/2, \ \tilde{\mathcal{S}}' \cup \tilde{\mathcal{S}}'' = \mathcal{S}, \ \rho(x') \le \rho(x''), \forall x' \in \tilde{\mathcal{S}}', x'' \in \tilde{\mathcal{S}}''$$

5: $S'_{CM} \leftarrow crossoverAndMutation(S')$

$$6: \quad \mathcal{S} \leftarrow \mathcal{S}' \cup \mathcal{S}'_{CM}$$

7:
$$it \leftarrow it + 1$$

- 8: until it = I
- 9: $\rho \leftarrow computeParetoRanking(S)$
- 10: $\mathcal{S}^* \leftarrow \{x' \in \mathcal{S} : \rho(x') \le \rho(x''), \forall x'' \in \mathcal{S}, x'' \ne x'\}$

Two-objective PCE: MOEA-PCE algorithm (2)

- The proposed MOEA-PCE heuristic is based on the classic MOEA notions of:
 - domination
 - Pareto-optimality
 - Pareto-ranking function (ρ)
- MOEA-PCE works in $\mathcal{O}(I \ t \ M \ K^2 \ (N+D))$

Two-objective PCE: MOEA-PCE algorithm (3)

Weaknesses of MOEA-PCE:

- high complexity in the approach
- efficiency (mostly due to *I*)
- hard setting for I and t
- results not easily interpretable (multiple output results)

Single-objective PCE: formulation

PCE formulation alternative to two-objective PCE:

$$C^* = \arg\min_{\hat{C}} Q(\hat{C}, \mathcal{E})$$
s.t.
$$\sum_{k=1}^{K} \hat{\Gamma}_{kn} = 1, \quad \forall n \in [1..N]$$

$$\sum_{d=1}^{D} \hat{\Delta}_{kd} = 1, \quad \forall k \in [1..K]$$

$$\hat{\Gamma}_{kn} \ge 0, \quad \hat{\Delta}_{kd} \ge 0, \quad \forall k \in [1..K], n \in [1..N], d \in [1..D]$$

where

$$Q(\hat{C}, \mathcal{E}) = \sum_{k=1}^{K} \sum_{n=1}^{N} \hat{\Gamma}_{kn}^{\alpha} \sum_{h=1}^{H} \gamma_{hn} \sum_{d=1}^{D} \left(\hat{\Delta}_{kd} - \delta_{hd} \right)^{2}$$

Single-objective PCE: formulation (2)

$$Q(\hat{C}, \mathcal{E}) = \sum_{k=1}^{K} \sum_{n=1}^{N} \hat{\Gamma}_{kn}^{\alpha} \sum_{h=1}^{H} \gamma_{hn} \sum_{d=1}^{D} \left(\hat{\Delta}_{kd} - \delta_{hd} \right)^{2}$$

Rationale of function Q at the basis of the proposed single-objective PCE formulation:

- it embeds both object-based and feature-based representations of the solutions in the ensemble
- it is essentially based on measuring, for each object, the "distance error" between the feature-based representation of the clusters in the consensus partition and the clusters in the solutions of the ensemble
- the discrepancy between two clusters is weighted by the probability that the object belongs to both (i.e., $\Gamma_{kn} \times \gamma_{hn}$)

Single-objective PCE: heuristic

A procedure inspired to the popular EM has been defined

Unconstrained function Q_{λ} is derived by applying Lagrangian multipliers:

$$Q_{\lambda}(\hat{\mathcal{C}},\mathcal{E}) = Q(\hat{\mathcal{C}},\mathcal{E}) + \sum_{n=1}^{N} \lambda'_n \left(\sum_{k'=1}^{K} \hat{\mathsf{\Gamma}}_{k'n} - 1
ight) + \sum_{k=1}^{K} \lambda''_k \left(\sum_{d'=1}^{D} \hat{\Delta}_{kd'} - 1
ight)$$

Two systems of equations are solved to derive optimal Γ_{kn}^* and Δ_{kd}^* values:

$$\Gamma_{kn}^{*} = \begin{cases} \frac{\partial}{\partial} \frac{Q_{\lambda}}{\hat{\Gamma}_{kn}} = 0 \\ \frac{\partial}{\partial} \frac{Q_{\lambda}}{\lambda_{n}'} = 0 \end{cases} \qquad \Delta_{kd}^{*} = \begin{cases} \frac{\partial}{\partial} \frac{Q_{\lambda}}{\hat{\Delta}_{kd}} = 0 \\ \frac{\partial}{\partial} \frac{Q_{\lambda}}{\lambda_{k}''} = 0 \end{cases}$$

Single-objective PCE: heuristic (2)

The solutions of the systems of equations are:

$$\Gamma_{kn}^* = \left[\sum_{k'=1}^{K} \left(\frac{X_{kn}}{X_{k'n}}\right)^{\frac{1}{\alpha-1}}\right]^{-1} \qquad \Delta_{kd}^* = \frac{Z_{kd}}{Y_k}$$

where

$$X_{kn} = \sum_{h=1}^{H} \gamma_{hn} \sum_{d=1}^{D} \left(\hat{\Delta}_{kd} - \delta_{hd} \right)^2$$
$$Y_k = \sum_{n=1}^{N} \hat{\Gamma}_{kn}^{\alpha} \sum_{h=1}^{H} \gamma_{hn}$$
$$Z_{kd} = \sum_{n=1}^{N} \hat{\Gamma}_{kn}^{\alpha} \sum_{h=1}^{H} \gamma_{hn} \delta_{hd}$$

Single-objective PCE: EM-PCE algorithm

EM-PCE Algorithm

Input: a projective ensemble \mathcal{E} defined over a set \mathcal{D} of data objects; the number K of clusters in the output projective consensus partition; **Output:** the projective consensus partition C^*

- 1: $\mathcal{L}^* \leftarrow \{1, \dots, K\}$
- 2: $\langle \Gamma^*, \Delta^* \rangle \leftarrow randomGen(\mathcal{E}, K)$
- 3: repeat
- 4: compute Γ_{kn}^* values
- 5: compute Δ_{kd}^* values
- 6: until convergence

7:
$$C^* = \langle \mathcal{L}^*, \Gamma^*, \Delta^* \rangle$$

- EM-PCE converges to a local optimum of function Q
- EM-PCE works in $\mathcal{O}(I \ M \ K^2 \ N \ D)$

Evaluation methodology: datasets

- eight benchmark datasets from the UCI Machine Learning Repository (Iris, Wine, Glass, Ecoli, Yeast, Segmentation, Abalone, Letter)
- two time-series datasets from the UCR Time Series Classification/Clustering Page (Tracedata, ControlChart)

dataset	objects	attributes	classes	
lris	150	4	3	
Wine	178	13	3	
Glass	214	10	6	
Ecoli	327	7	5	
Yeast	1,484	8	10	
Segmentation	2,310	19	7	
Abalone	4,124	7	17	
Letter	7,648	16	10	
Tracedata	200	275	4	
ControlChart	600	60	6	

Evaluation methodology: assessment criteria

Accuracy of output consensus partitions $\check{C} = \langle \check{\mathcal{L}}, \check{\Gamma}, \check{\Delta} \rangle$, $|\check{\mathcal{L}}| = \check{K}$, was evaluated in terms of:

- similarity w.r.t. (hard) reference classification \widetilde{C}
 - object-based representation
 - feature-based representation

• error-rate E [Domeniconi et Al., SDM'04] (internal criterion):

$$E(\check{C}) = \sum_{k=1}^{\check{K}} \sum_{d=1}^{D} \check{\Delta}_{kd} \left(\sum_{n=1}^{N} \check{\Gamma}_{kn} \right)^{-1} \sum_{n=1}^{N} \check{\Gamma}_{kn} \left(\overline{c}_{kd} - o_{nd} \right)^{2}$$

Results: evaluation w.r.t. reference classification

Object-based representation

	ensemble	MOEA-PCE		EM-PCE			
				gain			gain
				w.r.t.			w.r.t.
				ens.			ens.
data	avg-max	avg	max-std	(avg)	avg	max-std	(avg)
Iris	.632 .925	.919	.925 .015	+.287	.762	.767 .040	+.130
Wine	.738 .910	.913	.928 .105	+.175	.782	.840 .028	+.044
Glass	.565 .775	.683	.768 .046	+.118	.639	.644 .002	+.074
Ecoli	.421 .689	.603	.686 .054	+.182	.329	.419 .040	092
Yeast	.675 .750	.723	.745 .015	+.048	.638	.641 .001	037
Segm.	.590 .821	.755	.835 .049	+.165	.653	.663 .004	+.063
Abal.	.509 .520	.518	.558 .043	+.009	.512	.542 .002	+.003
Letter	.522 .640	.597	.612 .031	+.075	.554	.562 .006	+.032
Trace	.772 .868	.862	.998 .059	+.090	.875	.935 .030	+.103
Contr.	.681 .981	.895	.965 .049	+.214	.790	.806 .007	+.109

Results: evaluation w.r.t. reference classification (2)

Object-based representation

- both MOEA-PCE and EM-PCE achieved accuracy comparable or far better than that reached on average by the solutions in the ensemble
- avg gains: +13.6% (MOEA-PCE) and +4.3% (EM-PCE)
- max gains: +29% (MOEA-PCE, on Iris) and +13% (EM-PCE, on Iris)

Results: evaluation w.r.t. reference classification (3)

Feature-based representation

	ensemble	MOEA-PCE		EM-PCE			
				gain			gain
				w.r.t.			w.r.t.
				ens.			ens.
data	avg-max	avg	max-std	(avg)	avg	max-std	(avg)
Iris	.662 .998	.988	1 .029	+.326	.845	.895 .043	+.183
Wine	.822 .989	.955	.997 .027	+.133	.869	.899 .080	+.047
Glass	.731 .891	.851	.900 .027	+.120	.817	.877 .041	+.086
Ecoli	.763 .879	.858	.884 .016	+.095	.903	.953 .052	+.140
Yeast	.720 .805	.790	.804 .009	+.070	.684	.690 .003	036
Segm.	.618 .720	.729	.737 .049	+.111	.625	.632 .008	+.007
Abal.	.716 .754	.759	.849 .023	+.043	.726	.748 .013	+.010
Letter	.646 .693	.767	.818 .012	+.121	.780	.786 .007	+.134
Trace	.661 .818	.755	.811 .0.25	+.094	.753	.773 .021	+.092
Contr.	.663 .894	.880	.910 .016	+.217	.734	.774 .022	+.071

Results: evaluation w.r.t. reference classification (4)

Feature-based representation

- results comparable to the object-based representation case
- avg gains: +13.3% (MOEA-PCE) and +7.3% (EM-PCE)
- max gains: +32.6% (MOEA-PCE, on Iris) and +18.3% (EM-PCE, on Iris)

Results: evaluation in terms of error rate

- both MOEA-PCE and EM-PCE outperformed average results by the solutions in the ensemble and by reference classification
- avg gains w.r.t. ensemble: +0.358% (MOEA-PCE) and +0.27% (EM-PCE)
- avg gains w.r.t. reference classification: +0.6% (MOEA-PCE) and +0.51% (EM-PCE)

Conclusion

- Projective Clustering Ensembles (PCE) problem addressed for the first time
- Two formulations of PCE as an optimization problem
 - Two-objective PCE
 - Single-objective PCE
- Heuristic algorithms for each one of the proposed formulations
 - MOEA-PCE
 - EM-PCE
- Accuracy improvements achieved by both the proposed heuristics w.r.t. avg ensemble results in terms of external as well as internal criteria

Thanks!

F. Gullo, C. Domeniconi, A. Tagarelli Projective Clustering Ensembles