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Introduction

Clustering Ensembles

2] A

input a set £ = {Ci,...,Cm} of clustering solutions (i.e., ensemble)

output a consensus partition C* computed according to a consensus
function F

goal : to reduce the (inevitable) bias of any clustering solution due to the
peculiarities of the specific clustering algorithm being used (ill-posed nature of
clustering)
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Introduction

Projective Clustering

input a set D of D-dimensional points (data objects)
output a partition C of D, a set S of subspaces s.t. each S € S is
assigned to one (and only one) cluster C € C

@ goal : overcoming issues due to the curse of dimensionality

@ assumption : objects within the same cluster C are close to each other if
(and only if) they are projected onto the subspace S associated to C

figure borrowed from [Procopiuc et Al., SIGMOD02]
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Introduction

Clustering Ensembles and Projective Clustering have been so
far considered as two distinct problems...
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Introduction

Projective Clustering Ensembles (PCE)

PCE problem addressed for the first time:

given a set of projective clustering solutions (i.e., a projective ensemble), the
objective is to discover a projective consensus partition

Challenge:

information about feature-to-cluster assignments have to be considered:
traditional clustering ensembles methods do not work!
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Introduction

Contributions

@ rigorous formulations of PCE as an optimization problem
@ two-objective PCE
o single-objective PCE

@ well-founded heuristics for each formulation

o MOEA-PCE
o EM-PCE
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Introduction
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Introduction

Projective clustering solution

Definition (projective clustering solution)

Let D = {G1,...,0n} be a set of D-dimensional points (data objects). A
projective clustering solution C defined over D is a triple (£,T, A):

@ L ={l,...,0k} is a set of cluster labels which uniquely represent the K
clusters

@ I : L XD — S is a function which stores the probability that object o,
belongs to the cluster labeled with ¢, Vk € [1..K], n € [1..N], such that
kK:1 I'wn =1,Vn € [1..N], where [y, hereinafter refers to I'(¢x, G,)

® A: L x[1.D] — [0,1] is a function which stores the probability that the
d-th feature is a relevant dimension for the objects in the cluster labeled
with £k, Vk € [1..K], d € [1..D], such that 25:1 Ay = 1,Vk € [1..K],
where Ay hereinafter refers to A(4k, d)
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Two-objective PCE

Two-objective PCE

A projective consensus partition C* = (£*,[*, A*) derived from an
ensemble £ should meet requirements related to:

@ the data object clustering of the solutions in £

@ the feature-to-cluster assignment of the solutions in €

= PCE can be naturally formulated considering two objectives
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Two-objective PCE

Two-objective PCE: formulation

C* = argmin [wo(é,g,p), \Uf((Af,S,D)]
C

where

Wo(€,6,D) = 37 2 (4a(€, C) + (€. 0))

cee&
V(C,E,D) = Z %(1/11“(6, C) + ¢ (C, 6))
Ce&

and ¥o(Ci, ;) (resp. ¥¢(Ci, G)) is computed by resorting to the extended
Jaccard similarity coefficient applied to the [k, (resp. Agg) values of C; and C;
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Two-objective PCE

Two-objective PCE: heuristic

@ two-objective PCE formulation: objectives are conflicting with
each other

@ naive solutions given by (linear) combining the two objectives
into a single one have several drawbacks:

@ mixing non-commensurable objectives
o hard setting of the weights needed for the linear combination

@ prior knowledge of the application domain

@ idea: resort to the Multi Objective Evolutionary Algorithms
(MOEAs) domain
= we exploit NSGA-II algorithm
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Two-objective PCE

Two-objective PCE: MOEA-PCE algorithm

MOEA-PCE Algorithm

Input: a projective ensemble £ of size M, defined over a set D of N D-dimens.
objects; the number K of clusters in the output projective consensus
partitions; the population size t; the max number / of iterations

Output: a set S* of projective consensus partitions

1: S < populationRandomGen(&,t, K), it — 1

2: repeat

3: p < computeParetoRanking(S)

4 (8,8 —(8'csS,8"cS) : 8=18/2, IS =

[S|/2, S'US" =8, p(X) < p(x"),¥x' € S, x" €S

5 S¢m — crossoverAndMutation(S')

6 S — S USey

7 it —it+1

8: until it =/

9: p < computeParetoRanking(S)

0: &*—{x' €8 : p(x) < p(x"),vx" € §,x" # x'}
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Two-objective PCE

Two-objective PCE: MOEA-PCE algorithm (2)

@ The proposed MOEA-PCE heuristic is based on the classic
MOEA notions of:

@ domination
o Pareto-optimality

o Pareto-ranking function (p)

@ MOEA-PCE works in O(/ t M K? (N + D))
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Two-objective PCE

Two-objective PCE: MOEA-PCE algorithm (3)

Weaknesses of MOEA-PCE:

@ high complexity in the approach
o efficiency (mostly due to /)
@ hard setting for / and t

@ results not easily interpretable (multiple output results)
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Single-objective PCE

Single-objective PCE: formulation

PCE formulation alternative to two-objective PCE:
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Single-objective PCE

Single-objective PCE: formulation (2)

Rationale of function Q at the basis of the proposed single-objective PCE
formulation:

@ it embeds both object-based and feature-based representations of the
solutions in the ensemble

@ it is essentially based on measuring, for each object, the “distance error”
between the feature-based representation of the clusters in the consensus
partition and the clusters in the solutions of the ensemble

@ the discrepancy between two clusters is weighted by the probability that
the object belongs to both (i.e., Fxn X Yhn)
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Single-objective PCE

Single-objective PCE: heuristic

A procedure inspired to the popular EM has been defined

Unconstrained function Q) is derived by applying Lagrangian multipliers:

N K K D
QMC.E)=Q(C.&)+ > X, (ka,,,—l) +3 M (ZAW_Q
n=1 k=1

k=1 d’=1

Two systems of equations are solved to derive optimal 'y, and A}, values:

BQ)\_O aQ)\_
. 0 Fin . d Ay
rkn: Akd:

8QA_O aQA_

ON, 8/\2’_
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Single-objective PCE

Single-objective PCE: heuristic (2)

The solutions of the systems of equations are:

-1

x _ (X = «  Zkd
kn = Z X =y

k'=1

where
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Single-objective PCE

Single-objective PCE: EM-PCE algorithm

EM-PCE Algorithm

Input: a projective ensemble £ defined over a set D of data objects; the
number K of clusters in the output projective consensus partition;
Output: the projective consensus partition C*

Lr—A{1,...,K}
(r*, A*) < randomGen(&, K)
repeat
compute '}, values
compute A, values

until convergence
Cr = (L, T", A")

| N hwh e

@ EM-PCE converges to a local optimum of function Q

@ EM-PCE works in O(I M K* N D)

F. Gullo, C. Domeniconi, A. Tagarelli Projective Clustering Ensembles



Experimental Evaluation

Evaluation methodology: datasets

@ eight benchmark datasets from the UCI Machine Learning Repository
(Iris, Wine, Glass, Ecoli, Yeast, Segmentation, Abalone, Letter)

@ two time-series datasets from the UCR Time Series
Classification/Clustering Page (Tracedata, ControlChart)

| dataset | objects | attributes | classes |
Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Segmentation 2,310 19 7
Abalone 4,124 7 17
Letter 7,648 16 10
Tracedata 200 275 4
ControlChart 600 60 6
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Experimental Evaluation

Evaluation methodology: assessment criteria

Accuracy of output consensus partitions C = (£, A), |£| = K,
was evaluated in terms of:

® similarity w.r.t. (hard) reference classification C
@ object-based representation
o feature-based representation

@ error-rate E [Domeniconi et Al.,, SDM'04] (internal criterion):

K D N -1 n
EO)=>> A <Z r/<n> D Tn (Cha — 0nd)”
n=1 n=1

k=1d=1
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Experimental Evaluation

Results: evaluation w.r.t. reference classification

Object-based representation

ensemble MOEA-PCE EM-PCE
gain gain
w.r.t. w.r.t.
ens. ens.
data avg-max avg max-std (avg) avg max-std (avg)
Iris .632 .925 919 | .925.015 | +.287 762 | .767 .040 | +.130

Wine .738 .910 913 | .928 .105 | +.175 782 | .840 .028 | +.044
Glass .565 .775 .683 | .768 .046 | +.118 .639 | .644 .002 | +.074
Ecoli 1421 .689 .603 | .686 .054 | +.182 .329 | .419 .040 | -.092
Yeast .675 .750 723 | .745 .015 | +.048 .638 | .641 .001 | -.037
Segm. .590 .821 .755 | .835.049 | +.165 .653 | .663 .004 | +4.063
Abal. .509 .520 .518 | .558 .043 | +.009 .512 | 542 .002 | +.003
Letter .522 .640 597 | .612 .031 | +.075 .554 | 562 .006 | +.032
Trace 772 .868 .862 | .998 .059 | +.090 .875 | .935.030 | +.103
Contr. .681 .981 .895 | .965 .049 | +.214 .790 | .806 .007 | +.109
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Experimental Evaluation

Results: evaluation w.r.t. reference classification (2)

Object-based representation

@ both MOEA-PCE and EM-PCE achieved accuracy comparable
or far better than that reached on average by the solutions in
the ensemble

@ avg gains: +13.6% (MOEA-PCE) and +4.3% (EM-PCE)

@ max gains: +29% (MOEA-PCE, on Iris) and +13%
(EM-PCE, on Iris)
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Experimental Evaluation

Results: evaluation w.r.t. reference classification (3)

Feature-based representation

ensemble MOEA-PCE EM-PCE
gain gain
w.r.t. w.r.t.
ens. ens.
data avg-max avg max-std (avg) avg max-std (avg)
Iris .662 .998 .988 1.029 +.326 .845 | .895 .043 | +.183

Wine .822 .989 955 | .997 .027 | +.133 .869 | .899 .080 | +.047
Glass .731 .891 .851 | .900 .027 | +.120 .817 | .877 .041 | 4.086
Ecoli .763 .879 .858 | .884 .016 | +.095 .903 | .953 .052 | +.140
Yeast .720 .805 .790 | .804 .009 | +.070 .684 | .690 .003 | -.036
Segm. .618 .720 729 | 737 .049 | +.111 .625 | .632 .008 | +.007
Abal. 716 .754 759 | .849 .023 | +.043 726 | .748 .013 | +4.010
Letter .646 .693 767 | .818 .012 | +.121 .780 | .786 .007 | +.134
Trace .661 .818 755 | .811.0.25 | +.094 753 | 773 .021 | 4.092
Contr. .663 .894 .880 | .910 .016 | +.217 734 | 774 .022 | 4.071
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Experimental Evaluation

Results: evaluation w.r.t. reference classification (4)

Feature-based representation

@ results comparable to the object-based representation case
@ avg gains: +13.3% (MOEA-PCE) and +7.3% (EM-PCE)

@ max gains: +32.6% (MOEA-PCE, on Iris) and +18.3%
(EM-PCE, on lris)
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Experimental Evaluation

Results: evaluation in terms of error rate

@ both MOEA-PCE and EM-PCE outperformed average results
by the solutions in the ensemble and by reference classification

@ avg gains w.r.t. ensemble: +0.358% (MOEA-PCE) and
+0.27% (EM-PCE)

@ avg gains w.r.t. reference classification: +0.6% (MOEA-PCE)
and +0.51% (EM-PCE)
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Conclusion

Conclusion

@ Projective Clustering Ensembles (PCE) problem addressed for
the first time

@ Two formulations of PCE as an optimization problem
@ Two-objective PCE
@ Single-objective PCE
@ Heuristic algorithms for each one of the proposed formulations
s MOEA-PCE
s EM-PCE

@ Accuracy improvements achieved by both the proposed
heuristics w.r.t. avg ensemble results in terms of external as
well as internal criteria
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Conclusion

Thanks!
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