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Min-Disagreement Correlation Clustering
(Min-CC)

Given an undirected graph ¢ = (V, E), with vertex set I/ and edge set E C I/'XV,
and weights w;},,, w,, € R for all edges (u,v) € E, find a clustering C: V — N7 that
minimizes:

- + Any w, (resp. wy,) weight
Wuv Wy expresses the benefit of clustering u
(W,V)EE (W,V)EE and v together (resp. separately)

C(u)=C(v) C(uw)#C(v)



Min-Disagreement Correlation Clustering
(Min-CC)

Given an undirected graph ¢ = (V, E), with vertex set I/ and edge set E C I/'XV,
and weights w;},,, w,, € R for all edges (u,v) € E, find a clustering C: V — N7 that
minimizes:

_ + Any w, (resp. wy,) weight
Wuv + Wy expresses the benefit of clustering u
(W,V)EE (W,V)EE and v together (resp. separately)
C(u)=C(v) C(uw)#C(v)

* Min-CCis NP-Hard

« APX-Hard even for complete graphs and edge weights (w,},,, w;;,) € {(0,1),(1,0)}

* For general graphs and general weights the best known approximation factor is O (log(|V|)), on
rounding the solution to a large linear program? (with a number of Q(|V|3) constraints)



Special case for Min-CC

e Complete graph: E = (‘2/)
* Probability constraint (PC): w,;, + w,,, =1V (u,v) € E



Special case for Min-CC

e Complete graph: E = (‘2/)
* Probability constraint (PC): w,, + w,, =1V (u,v) € E

Pivot algorithm?

Pick a node u uniformly at random
Build a cluster upon u together with its
neighbor similar nodes that are still
unclustered

Remove the built cluster from the
graph

Repeat until the graph is empty

Properties of Pivot:

(expected) 5-approximation
guarantee

Efficiency: O(|E]) time
complexity
Easy-to-implement



General vs Constrained Min-CC instances

1. General graph and general weights
* Linear Programming + Rounding with O (logn)
approximation guarantees
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2. Complete graphandw,, + w,,, =1V (u,v) €E
* Pivot algorithm with constant-factor
approximation guarantees




General vs Constrained Min-CC instances

1. General graph and general weights
* Linear Programming + Rounding with O (logn)
approximation guarantees
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2. Complete graphandw,, + w,,, =1V (u,v) €E
* Pivot algorithm with constant-factor
approximation guarantees

Can probability-constraint-aware approximation algorithms (e.g. Pivot) still achieve
guarantees even if the probability constraint is not met?



Min-CC with Global Weight Bounds:
Theoretical Results and Algorithms

Global Weight Bound (GWB):
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Min-CC with Global Weight Bounds:
Theoretical Results and Algorithms

Global Weight Bound (GWB):

avg Amax
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vy + vyt AN . N
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WIT G with GWB .
Construct G’ in linear G with PC
time and space
Wity 2 0
Clustering C

An a-approximate clustering on G’ is also a-approximate clustering on G too

(R e —



Min-CC with Global Weight Bounds:
Theoretical Results and Algorithms

Algorithm 2 GlobalCC
Input: Graph G = (V, E); nonnegative weights wS, w_ , Ve € E, satisfying Theorem 1;
algorithm A achieving a-approximation guarantee for MIN-PC-CC

Output: Clustering C of V
1: choose M, s.t. % € [Amaz, avg’ + avg™] {Theorem 1}

2: compute 7., Toy, YVu,v € V, as in Equation (3) (using M,y defined in Step 1)
3: C < run A on MIN-PC-CC instance (G’ = (V,V x V), {7, 7. }eevxv)

Corollary: Let I be a Min-CC instance satisfying the GWB, and A be an «-
approximation algorithm for Min-CC with PC. GlobalCC on input < I, A > achieves

factor-a guarantee on I.



Benefits of our result

* Practical benefits:
e Extend the validity range of the approximation guarantees of
algorithms for Min-CC (Exp1)
* Application to feature selection for fair clustering (Exp2)
* Theoretical benefits: enable better theoretical results on complex
problems which exploit Min-CC as a building block
* Benefits for the research community: brand new line of research



Expl: Analysis of the global-weight-bounds
condition

Data: 4 real-world graphs augmented with artificially-generated edge
weights, to test different levels of fulfilment (controlled by the

parameter target ratio) of our global-weight-bounds (GWB) condition.
|
( \ V| | |E| |den. |a_deg|a_pl |diam | cc
+ —_—
Amax/(avg™ +avg™) <1 Karate || 34 | 78 |0.14] 459 |2.41] 5 10.26
Dolphins || 62 [159(0.08 | 5.13 [3.36| 8 |[0.31
Adjnoun || 112 425|0.07| 7.59 |2.54| 5 |0.16
GWB: avg* +avg™ = A, Football ||115]613]0.09[10.66[2.51| 4 |0.41

Goal: show that a better fulfilment of the GWB corresponds to better
performance (in terms of Min-CC objective) of Pivot with respect to the
LP algorithms, and vice versa.



Expl: Analysis of the global-weight-bounds
condition
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Fig. 1: MIN-CC objective by varying the target ratio.

A better fulfilment of our GWB leads to Pivot’s performance closer to the
linear programming approach’s one! (LP+R, for short), and vice versa

1. Charikar Moses, Venkatesan Guruswami, and Anthony Wirth. "Clustering with qualitative information." Journal of Computer and System Sciences 71.3 (2005): 360-383.



Expl: Analysis of the global-weight-bounds
condition

Table 2: Running times (left) and avg. clustering-sizes for various target ratios (right).

Pivot | LP+R 0.1 0.5 1 2 3
(secs.) | (secs.) Pivot [LP+R | Pivot | LP+R | Pivot | LP+R | Pivot | LP+R | Pivot | LP+R
Karate <1 | 19 Karate || 21.75] 17.18 [29.61 | 27.93 [27.22| 24.66 | 25.55 | 23.82 | 28.17] 26.81

Dolphins || <1 | 36.58 Dolphins || 49.25 | 50.59 | 45.3 | 38.67 |49.57 | 44.45 [47.91 | 48.05 | 48.89 | 43.66
Adjnoun || <1 | 7754 Adjnoun || 70.35 | 65.93 | 80.97 | 75.86 |90.76 | 84.93 | 85.83 | 70.41 |91.27 | 79.78
Football <1 | 819.8 Football |164.43 | 84.91 |77.14| 96.43 |68.35 | 78.72 | 78.65 | 85.31 |90.87|100.31

* Pivot is faster than LP+R
* Pivot yields more clusters than LP+R on all datasets but Football



Exp2: Application to fair clustering

Data: 4 real-world relational datasets describing a set of objects X

defined over a set of attributes A (numerical or categorical) that can be
divided into:

* Fairness-aware (or sensitive) attributes A"
e Non-sensitive attributes A™F

#objs. | #attrs. | fairness-aware (sensitive) attributes
race, sex, country, education, occupation,
Adult BAD0 7/8 marital-status, workclass, relationship
Bank 41 188 18/3 job, marital-status, education
Credit 10127 17/3 gender, marital-status, education-level
[ - 649 28/5 sex, male_edu, female_edu,
male_job, female_job




Exp2: Application to fair clustering

Fair clustering objective:
1. non-sensitive attributes: minimize the inter-cluster similarities and
maximize the intra-cluster similarities
2. sensitive attributes: minimize the intra-cluster similarities and maximize
the inter-cluster similarities

Fairness requirement: distribute similar objects (in terms of sensitive
attributes) across different clusters, thus helping the formation of
diverse clusters.



Exp2: Application to fair clustering

Mapping to Min-CC instance°

Wap:= @  (ay’ - sim, oF (u,v) + (1 — a,(,‘F) sim gk (u,v))
W, = @ (ak - sim 4F, (u,v) + (1 —ak) - sim 4E (u,v))
N |A | _F _ |AI_|VF| + | A7 B _ |A7F| P
NI 1A Y A e TP \ar a0 TP\

Attribute selection for fair clustering. Given a set of objects X defined over the
attribute sets A" and A™F, find maximal subsets Sy € AF and S_p € A7F, with
ISF| = 1 and |S_g| = 1, s.t. the above correlation-clustering weights satisfy the
global-weight-bounds condition.



Exp2: Application to fair clustering

Table 3: Fair clustering results.

it | target | %(w™t | orig.-weights |ave. Eucl. avg. intra-clust | intra-clust | inter-clust | inter-clust time
g g g g g

ratio | >w™)| Min-CC obj. fairness | #clusts. AE A7 AE AF (seconds)

Adult
linitial | — [1.086]90.34 | 1.1915E+08 | 0.082 | 77 | 0699 | 0672 | 0378 [ 0181 | - |
Hiv 12 [ 0.986 | 93.19 [ 1.122659E+08 | 0.031 9 0.465 0.326 0.347 0.194 | 545.249
Hiv_B 12 [ 0.765 | 78.09 | 1.119757E+08 | 0.039 69 0.608 0.547 0.375 0.184 | 529.674
Hmv 5 10974 | 90.83 [ 1.21187E+08 0.094 79 0.689 0.687 0.373 0.203 | 220.056
HmvB | 4 [0.936 [ 87.39 | 1.25516E+08 0.109 905 0.963 0.96 0.377 0.199 | 178.813
Hiv.BW | 5 [0.963 | 83.17 | 1.343503E+08 | 0.152 1479 0.969 0.964 0.384 0.199 | 217.333
Hmv SW| 9 [0.926 [ 91.41 | 1.159874E+08 | 0.037 5 0.451 0.308 0.329 0.195 | 380.875
Greedy | 2 |0.967 | 92.36 | 1.094787E+08 | 0.036 32 0.668 0.654 0.361 0.195 | 595.610

Bank
linitial [ — [1.612|98.84 | 7.738171E+07 | 0019 | 9 | 0593 | 0466 | 0413 | 0.083 | - |
Hiv 19 | 0.95 | 99.88 [ 7.063441E+07 | 0.001 3 0.52 0.209 0.368 0.082 | 1289.785
Hiv_B 16 | 0.906 | 97.19 | 8.489668E+07 | 0.038 752 0.859 0.818 0.456 0.077 | 1223.205
Hmv 17 | 0.972 | 100.0 [ 7.032421E+07| 0.0 2 0.497 0.136 0.151 0.03 | 1254.341
HmvB |16 [ 0.981 [ 97.19 | 8.250374E+07 | 0.032 35 0.775 0.665 0.451 0.079 [1143.517
Hiv.BW | 17 [ 0.984 | 92.87 | 1.163447E+08 | 0.095 1048 0.997 0.996 0.444 0.076 | 1212.091
Hmv_ SW | 17 | 0.972 | 100.0 | 7.032421E+07| 0.0 2 0.497 0.136 0.151 0.03 | 1336.888
Greedy | 13 | 0.981 [ 99.57 | 7.240143E+07 | 0.006 3 0.508 0.371 0.381 0.076 [11978.472

Each method decreases the initial target ratio below 1 so as to satisfy the global condition, and
the per-dataset best-performing method improves all intra-/inter-cluster similarities and
Euclidean fairness w.r.t. the baseline.



Conclusion & Future Work

Summary:
* We studied for the first time global weight bounds in correlation
clustering
 We derived a sufficient condition to extend the range of validity of
approximation guarantees beyond local weight bounds, such as the
probability constraint

Future Work:
* extending our results to other constraints (e.g., triangle inequality)

» studying the by-product problem of feature selection guided by our
condition



