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Uncertainty

Uncertainty inherently affects data from a wide range of emerging
application domains:

sensor data

location-based services (e.g., moving objects data)

biomedical and biometric data (e.g., gene expression data)

distributed applications

RFID data

Generally due to noisy factors, such as signal noise, instrumental
errors, wireless transmission
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Uncertainty

(a) (b)

(c)
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Uncertainty representation

Different granularities:

table
tuple
attribute

Different models:

fuzzy
evidence-oriented
probabilistic

Attribute-level uncertainty modeled according to a probabilistic
model (i.e., a probability distribution) ⇒ uncertain object
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Uncertain object

Modeling by regions (domains) of definition and probability
density functions (pdfs)

Figure borrowed from [Kriegel and Pfeifle, ICDM 2005]
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Uncertain object

m-dimensional region

multivariate pdf defined over the region

Definition (uncertain object)

An uncertain object o is a pair (R, f ):

R ⊆ Rm is the m-dimensional domain region in which o is defined

f : Rm → R+
0 is the probability density function of o at each point x ∈ Rm

such that:

f (x) > 0, ∀x ∈ R and f (x) = 0, ∀x ∈ Rm \ R
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Dealing with uncertainty

Two main general tasks:

1 Defining a proximity measure between uncertain objects

needed in almost all major data-management and data-mining
tasks (e.g., visualization, classification, clustering)

2 Defining a model to summarize a set of uncertain objects

required for tasks like data compression or clustering, and to
speed-up complex data-analysis/management tasks
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Similarity detection in uncertain data
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Distance between uncertain objects

Traditional approaches:

1 Difference between expected values

2 Expected Distance (ED)

ED(o1, o2) =

∫
x∈R1

∫
y∈R2

‖x− y‖2
2 f1(x) f2(y) dx dy

Main drawbacks:

1 Difference between expected values is inaccurate: it considers only
very little information stored in the pdfs:

2 Expected distance is slow: it has quadratic complexity in the
number of statistical samples used to represent/approximate pdfs
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Distance between uncertain objects

Need for a novel distance measure that trades off between
accuracy and efficiency

Idea: resort to Information Theory

Information Theory alone is not enough
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Distance measures for pdfs

Distance measures for pdfs: information-theoretic (IT)
measures: Kullback-Leibler (KL), Chernoff, Hellinger, . . .

IT measures are accurate, but they work out for pdfs that share a
reasonably large overlapping probability values area
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Compound distance for uncertain objects

∆(oi , oj) = f(∆IT (oi , oj),∆EV (oi , oj))

∆IT involves a comparison by means of a certain IT measure

∆EV measures the distance proportionally to the difference of the
expected values

Two critical choices for defining ∆:

1 IT-measure used for ∆IT ⇒ Hellinger distance (H)

ρ(f , f ′) =

∫
x∈<m

√
f (x) f ′(x) dx H(f , f ′) =

√
1− ρ(f , f ′)

2 way of combining ∆IT and ∆EV ⇒ ∆IT should prevail on ∆EV as

long as discriminating among different cases by means of

IT-measures is possible
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Compound distance for uncertain objects

Definition (uncertain distance)

The uncertain distance between two uncertain objects o = (R, f ) and
o′ = (R′, f ′) is defined as

∆(o, o′) = H(f , f ′)︸ ︷︷ ︸
∆IT term

−
(

1−
√
ρ(f , f ′)

)
︸ ︷︷ ︸

combination
between ∆IT and ∆EV

× e−ED2(f̃ ,f̃ ′)︸ ︷︷ ︸
∆EV term

ED2(f̃ , f̃ ′) is the expected distance between the
uniform-approximation of f and f ′
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Centroid-based agglomerative hierarchical clustering

F. Gullo, G. Ponti, A. Tagarelli, S. Greco [ICDM’08]

Application: hierarchical clustering of uncertain objects

The U-AHC Algorithm

Input: a set of uncertain objects
D = {o1, . . . , on}

Output: a set of partitions D
1: C← {{o1}, . . . , {on}}
2: D← {C}
3: repeat
4: let Ci , Cj be the pair of clusters in

C such that ∆(PCi ,PCj ) is
minimum

5: C← C \ {Ci , Cj} ∪ {Ci ∪ Cj}
6: D← D ∪ {C}
7: until |C| = 1

Motivations:

Hierarchical clustering is
computationally
expensive: need for a fast
(yet accurate) proximity
measure

The way of combining
∆IT and ∆EV

theoretically guarantees
high accuracy in an
agglomerative hierarchical
clustering scheme
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Uncertain data summarization
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Summarization of a set of uncertain objects

Traditional approaches (e.g., Chau et al., UK-means, PAKDD’06)

⇒ uncertain prototype defined as the average of the expected
values of the objects to be summarized

Main drawbacks:

Deterministic representation ⇒ a lot of information is discarded

Only central tendency is expressed ⇒ variance is completely ignored
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Summarization of a set of uncertain objects

Uncertain objects with the same central tendency: lower-variance,
more-compact cluster (left) and higher-variance, less-compact cluster (right)

Uncertain objects with different central tendency: lower-variance, less-compact
cluster (left) and higher-variance, more-compact cluster (right)
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Summarization of a set of uncertain objects

Solutions:

1 Mixture-model-based uncertain data summarization

2 Random-variable-based uncertain data summarization
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Mixture-model-based uncertain data summarization

Idea

Compute a prototype of a set of uncertain objects as
mixture model :

set of uncertain objects S = {oi}ki=1

uncertain prototype PS = (RS , fS), where
RS =

⋃
o=(R,f )∈S R,

fS(x) = (|S |)−1∑
o=(R,f )∈S f (x)
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Mixture-model-based uncertain data summarization

Despite its simplicity, the mixture-model-based prototype plays a key role in a

task of clustering uncertain objects: capability of employing a novel clustering

criterion that does not require any distance measure between uncertain objects

⇒ minimizing the variance of cluster prototypes

(a) (b)

(c) (d)

(a)–(c):
Sets of

uncertain
objects

(b)–(d):
The

corresponding
mixture
models
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Minimizing the variance of cluster mixture models for
clustering uncertain objects

F. Gullo, G. Ponti, A. Tagarelli [ICDM’10, SAM’13]

A novel criterion for clustering uncertain objects: minimizing
variance of cluster mixture models

J(C) =
∑
C∈C

σ2(PC )

- accuracy: the lower the variance, the higher the cluster compactness

- efficiency: capability of exploiting interesting analytical properties

Computing objective function J

- Moving object o from C ∈ C to Ĉ ∈ C leads to a new
C′ = C \ (C ∪ Ĉ) ∪ (C ′ ∪ Ĉ ′), where C ′ = C \ {o}, Ĉ ′ = Ĉ ∪ {o}

- J(C′) can be efficiently computed in O(m) as:

J(C′) = J(C)− (σ2(PC ) + σ2(PĈ )) + (σ2(PC ′) + σ2(PĈ ′))
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The MMVar algorithm

Input: A set D of UO; the number k of output clusters
Output: A partition C of D
1: compute µ(o), µ2(o), ∀o ∈ D
2: C ← randomPartition(D, k)
3: compute µ(PC ), µ2(PC ), ∀C ∈ C
4: v ← J(C)
5: repeat
6: for all o ∈ D do
7: let C ∈ C be the cluster s.t. o ∈ C
8: C∗ ← arg minĈ JC(C , o, Ĉ)
9: if C∗ 6= C then

10: v = JC(C , o, Ĉ)
11: recompute C by moving o from C to C∗

12: recompute µ(PC),µ2(PC),µ(PC∗),µ2(PC∗)
13: until no object in D is relocated

MMVar
converges to a
local optimum
of function J in
a finite number
I of iterations

MMVar works
in O(I k |D| m)
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One step further from mixture model: U-centroid

Cluster centroid as random variable summarizing all possible deterministic

representations of the objects in the cluster

Two key advantages:

Shortcomings of a deterministic centroid notion are still addressed

Clear stochastic meaning (unlike mixture-model-based prototypes)
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U-centroid: main advantages

F. Gullo, A. Tagarelli [VLDB’12]

The notion of U-centroid can be coupled with a cluster criterion that aims at
minimizing the expected distance between uncertain objects and U-centroid

J(C) =
∑
C∈C

∑
o∈C

ÊD(o,C)

Observation 1: J takes into account both central tendency and variance

Observation 2: Given a cluster C , the value of the objective function of any other

cluster resulting from adding/removing an object to/from C can be computed

according to an efficient closed-form expression

An efficient local-search method can be employed to optimize J:

1 Start with a random partition

2 At each step, perform the object move that leads to the best increment
of J (if any)

3 Stop when J cannot be improved anymore (warranty to end up with a
local optimum of J)
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Conclusions

Similarity detection and summarization are critical tasks that
are commonly encountered when dealing with uncertain data

We show how traditional measures for similarity detection in
uncertain data can be empowered by combining notions from
Information Theory and central-tendency-based comparison
methods

We discuss how to improve existing uncertain data
summarization techniques by incorporating the variance of the
uncertain objects to be summarized

We provide evidence on how the tasks of similarity detection
and summarization in uncertain data find natural application
in data mining/machine learning
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Thanks!
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Backup: experiments about U-AHC
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Methodology

Goals

Assessment of effectiveness and efficiency of the U-AHC
algorithm in clustering uncertain data

Comparison of U-AHC with state-of-the-art algorithms

UK-means, CK-means, UK-medoids, FDBSCAN, FOPTICS
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Datasets

Table : Benchmark datasets used in the experiments

dataset # of objects # of attributes # of classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
ImageSegmentation 2,310 19 7
Abalone 4,124 7 17
LetterRecognition 7,648 16 10

Table : Non-benchmark datasets used in the experiments

dataset # of objects # of attributes
(genes)

Leukaemia 22,690 21
Neuroblastoma 22,282 14
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Clustering validity criteria

External criteria (benchmark datasets): F-measure, Precision,
Recall

Internal criteria (non-benchmark datasets): intra-cluster
distance, inter-cluster distance
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F-measure results (benchmark datasets, univariate models)

dataset pdf UK-means CK-means UK-medoids FDBSCAN FOPTICS U-AHC

Uniform 0.841 0.963 0.886 0.919 0.886 0.993
Iris Normal 0.849 0.849 0.855 0.871 0.907 0.905

Gamma 0.622 0.501 0.848 0.893 0.905 0.628
Uniform 0.500 0.724 0.810 0.664 0.695 0.984

Wine Normal 0.500 0.704 0.578 0.653 0.713 0.954
Gamma 0.500 0.581 0.581 0.692 0.713 0.595
Uniform 0.639 0.670 0.697 0.768 0.718 0.828

Glass Normal 0.577 0.552 0.513 0.514 0.438 0.822
Gamma 0.379 0.314 0.644 0.468 0.438 0.550
Uniform 0.653 0.795 0.696 0.436 0.477 0.915

Ecoli Normal 0.609 0.741 0.528 0.544 0.477 0.726
Gamma 0.533 0.412 0.693 0.401 0.477 0.450
Uniform 0.497 0.562 0.618 0.515 0.543 0.719

Yeast Normal 0.471 0.458 0.288 0.291 0.316 0.577
Gamma 0.403 0.306 0.469 0.331 0.316 0.406
Uniform 0.810 0.798 0.769 0.426 0.419 0.552

ImageSegmentation Normal 0.623 0.655 0.451 0.416 0.419 0.836
Gamma 0.545 0.353 0.656 0.339 0.419 0.503
Uniform 0.331 0.294 0.590 0.447 0.439 0.719

Abalone Normal 0.288 0.217 0.265 0.136 0.209 0.577
Gamma 0.360 0.200 0.313 0.565 0.607 0.406
Uniform 0.529 0.629 0.776 0.344 0.318 0.792

LetterRecognition Normal 0.449 0.451 0.490 0.247 0.318 0.531
Gamma 0.432 0.215 0.584 0.265 0.318 0.603

avg. score 0.539 0.539 0.608 0.506 0.521 0.690
avg. gain 15.1% 15.1% 8.2% 18.4% 16.9% —
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F-measure results (benchmark datasets, multivariate
models)

dataset pdf UK-means CK-means UK-medoids FDBSCAN FOPTICS U-AHC

Iris Uniform 0.948 0.962 0.907 0.929 0.907 1
Normal 0.859 0.897 0.888 0.929 0.907 0.962

Wine Uniform 0.735 0.747 0.761 0.767 0.713 0.826
Normal 0.707 0.705 0.749 0.691 0.713 0.795

Glass Uniform 0.677 0.703 0.653 0.575 0.636 0.779
Normal 0.540 0.551 0.579 0.868 0.828 0.891

Ecoli Uniform 0.787 0.790 0.728 0.443 0.477 0.743
Normal 0.745 0.740 0.560 0.416 0.477 0.795

Yeast Uniform 0.533 0.538 0.622 0.599 0.528 0.684
Normal 0.455 0.457 0.318 0.374 0.420 0.486

ImageSegmentation Uniform 0.780 0.801 0.765 0.482 0.419 0.837
Normal 0.628 0.637 0.649 0.415 0.419 0.684

Abalone Uniform 0.288 0.290 0.531 0.499 0.439 0.492
Normal 0.215 0.217 0.288 0.497 0.558 0.572

LetterRecognition Uniform 0.637 0.636 0.763 0.320 0.318 0.798
Normal 0.442 0.435 0.595 0.353 0.318 0.613

avg. score 0.624 0.632 0.647 0.571 0.567 0.747
avg. gain 12.3% 11.5% 10.0% 17.6% 18.0% —

Giovanni Ponti Be certain of how-to before mining uncertain data



F-measure results (benchmark datasets)

Remarks:

U-AHC achieved the highest accuracy on all datasets

average gains (univariate): from 8.2%(vs. UK-medoids) to
18.4%(vs FDBSCAN)

average gains (multivariate): from 10%(vs. UK-medoids) to
18%(vs FOPTICS)

results on univariate and multivariate cases were quite similar
each other
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Quality results (microarray datasets)
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Quality results (microarray datasets) (2)

Remarks:

U-AHC achieved the best results averaged over the cluster
sizes

highest quality on Leukaemia, whereas behaved on average
better than the other methods on Neuroblastoma
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Efficiency results
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Efficiency results (2)

Remarks:

performances followed the (on-line) computational
complexities of the corresponding algorithms:

O(t n), for CK-means
O(t n2), for UK-medoids
O(t s n), for UK-means
O(n2), for FDBSCAN
O(s n2), for U-AHC and FOPTICS

U-AHC performed closely to the density-based algorithms
FDBSCAN and FOPTICS
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Summary

U-AHC, the first (centroid-linkage-based) agglomerative hierarchical
algorithm for uncertain data clustering

Information-theoretic distance between uncertain objects

Uncertain cluster prototype for univariate and multivariate
uncertainty models

Experimental results:

accuracy U-AHC outperforms existing methods

efficiency U-AHC performs comparably to density-based clustering algorithms
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Backup: experiments about MMVar
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Evaluation Methodology

Benchmark datasets from UCI (Iris, Wine, Glass, Ecoli, Yeast,
Image, Abalone, Letter)

Uncertainty generated synthetically and modeled according
to Uniform (U), Normal (N), and Binomial (B) pdfs

Evaluation in terms of:

- accuracy (w.r.t. reference classifications according to
F-Measure)

- efficiency

Competitors: UK-means (UKM), CK-means (CKM),
UK-medoids (UKmed), FDBSCAN (FDB), FOPTICS
(FOPT), U-AHC
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Accuracy Results

F-measure (F ∈ [0, 1])

data pdf UKM CKM UKmed FDB FOPT UAHC MMVar

U 0.601 0.675 0.729 0.331 0.575 0.626 0.731
avg score N 0.54 0.582 0.493 0.441 0.475 0.606 0.657

B 0.476 0.363 0.602 0.295 0.525 0.508 0.716

overall avg. score 0.539 0.54 0.608 0.356 0.525 0.58 0.701
overall avg. gain 0.162 0.161 0.093 0.345 0.176 0.121 —

MMVar achieved the best overall scores, from +0.093 (w.r.t. UKmed) to
+0.345 (w.r.t. FDB)

MMVar achieved the best avg scores on all the pdfs

- maximum avg gain of 0.254 (Binomial)
- minimum avg gain of 0.134 (Normal)
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Efficiency Results

MMVar performed faster than CKM

MMVar drastically outperformed all other competitors but CKM (at least
1 order of magnitude, up to 5 orders)

Slowest methods: UAHC and UKmed; fastest methods: CKM and FDB
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Backup: experiments about UCPC
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Evaluation methodology (1)

Benchmark datasets from UCI (Iris, Wine, Glass, Ecoli, Yeast,
Image, Abalone, Letter) where uncertainty is generated
synthetically and modeled according to Uniform (U), Normal
(N), and Exponential (E) pdfs

Real (gene expression) datasets where uncertainty is
inherently present

(a) Benchmark datasets

dataset obj. attr. classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10

Image 2,310 19 7
Abalone 4,124 7 17

Letter 7,648 16 10

(b) Real datasets

dataset obj. attr.

Neuroblastoma 22,282 14
Leukaemia 22,690 21
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Evaluation methodology (2)

Evaluation in terms of:

- accuracy (external and internal clustering evaluation)
- efficiency

Competitors: MMVar (MMV), UK-means (UKM),
UK-medoids (UKmed), UAHC, FDBSCAN (FDB),
FOPTICS (FOPT)
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Accuracy results: benchmark datasets

F-measure (Θ ∈ [−1, 1])

pdf FDB FOPT UAHC UKmed UKM MMV UCPC

U -.189 .055 .089 .210 .081 .193 .429
avg score N -.081 -.046 .149 -.028 .019 .199 .287

E -.317 -.088 -.008 -.011 -.137 .200 223

overall avg. score -.196 -.026 .077 .057 -.012 .198 .313
overall avg. gain +.509 +.339 +.236 +.256 +.324 +.115 —

Quality (Q ∈ [−1, 1])

pdf FDB FOPT UAHC UKmed UKM MMV UCPC

U .021 .089 .027 .084 .042 .345 .375
avg score N .061 .115 .091 .089 .127 .139 .189

E -.001 .025 0 .011 .015 .199 .200

overall avg. score .027 .076 .039 .061 .061 .228 .255
overall avg. gain +.228 +.179 +.216 +.194 +.194 +.027 —
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Accuracy results: real datasets

Quality (Q ∈ [−1, 1])

data #clust. FDB FOPT UAHC UKmed UKM MMV UCPC

Neuro.avg score -.004 .010 .630 .045 .060 .544 .576
Leuk.avg score -.018 .190 .192 .231 .430 .433 .471

over.avg score -.011 .100 .411 .138 .245 .489 .523
over.avg gain +.534 +.423 +.112 +.385 +.278 +.034 —
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Efficiency results: benchmark datasets

Efficiency evaluation also involves optimized versions of
UK-means, i.e., MinMax-BB and VDBiP

Letter

Giovanni Ponti Be certain of how-to before mining uncertain data



Efficiency results: real datasets

Real datasets
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Backup: details about U-centroid
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U-centroid: analytical expression

Theorem

Given a cluster C = {o1, . . . , o|C |} of m-dimensional uncertain objects, where

oi = (Ri , fi ) and Ri =
[̀

(1)
i , u

(1)
i

]
×· · ·×

[̀
(m)
i , u

(m)
i

]
, ∀i ∈ [1..|C |], let C = (R, f )

be the U-centroid of C defined by employing the squared Euclidean norm as
distance to be minimized. It holds that:

f (x)=

∫
x1∈R1

· · ·
∫

x|C|∈R|C|

I

[
x=

1

|C |

|C |∑
i=1

xi

]|C |∏
i=1

fi (xi )dx1 · · · dx|C |

R=

 1

|C |

|C |∑
i=1

`
(1)
i ,

1

|C |

|C |∑
i=1

u
(1)
i

× ···×
 1

|C |

|C |∑
i=1

`
(m)
i ,

1

|C |

|C |∑
i=1

u
(m)
i


where I[A] is the indicator function, which is 1 when the event A occurs, 0
otherwise.
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Minimizing the expected distance between uncertain
objects and U-centroid (1)

J(C) =
∑
o∈C

ÊD(o,C)

Observation 1: J takes into account both central tendency and variance

Theorem

Let C = {o1, . . . , o|C |} be a cluster of uncertain objects, where

oi = (Ri , fi ), and C = (R, f ) be the U-centroid of C . It holds that:

J(C )=
m∑
j=1

(
Ψ

(j)
C

|C |
+ Φ

(j)
C −

Υ
(j)
C

|C |

)
=

1

|C |

|C |∑
i=1

σ2(oi )+
∑
o∈C

ED

(
o,

1

|C |
∑
o∈C

µ(o)

)
where

Ψ
(j)
C =

|C |∑
i=1

(σ2)j(oi ) Φ
(j)
C =

|C |∑
i=1

(µ2)j(oi ) Υ
(j)
C =

|C |∑
i=1

µj(oi )

2
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Minimizing the expected distance between uncertain
objects and U-centroid (2)

Observation 2: Given a cluster C , the value of J of any other cluster resulting

from adding/removing an object to/from C can be computed according to an

efficient closed-form expression

Corollary

Let C be a cluster of uncertain objects, and C+ = C ∪ {o+},
C− = C \ {o−} be two clusters defined by adding an object o+ /∈ C to C
and removing an object o− ∈ C from C , respectively. It holds that:

J(C+)=
m∑
j=1

(
Ψ

(j)
C+

|C |+1
+Φ

(j)
C+−

Υ
(j)
C+

|C |+1

)
J(C−)=

m∑
j=1

(
Ψ

(j)
C−

|C |−1
+Φ

(j)
C−−

Υ
(j)
C−

|C |−1

)
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The UCPC local-search algorithm

Input: A set D of UO; the number k of output clusters
Output: A partition C of D, where |C| = k
1: compute µ(o), µ2(o), σ2(o), ∀o ∈ D
2: C ← initialPartition(D, k), compute Ψ

(j)
C , Φ

(j)
C , Υ

(j)
C ,

J(C)
3: repeat
4: V ←

∑
C∈C J(C)

5: for all o ∈ D do
6: C∗←argminC∈CV−[J(C o)+J(C)] +

[J(C o\{o})+J(C∪{o})]
7: if C∗ 6= C o then
8: C ← C \ {C∗,C o} ∪ {C+,C−}
9: replace Ψ

(j)
C∗ , Φ

(j)
C∗ , Υ

(j)
C∗ , J(C∗) with Ψ

(j)

C+ ,

Φ
(j)

C+ , Υ
(j)

C+ , J(C+), ∀j ∈ [1..m]

10: replace Ψ
(j)
Co , Φ

(j)
Co , Υ

(j)
Co , J(C o) with Ψ

(j)

C−
,

Φ
(j)

C−
, Υ

(j)

C−
, J(C−), ∀j ∈ [1..m]

11: until no object in D is relocated

UCPC
converges to a
local optimum
of function J in
a finite number
I of iterations

UCPC works in
O(I k |D| m)
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