BE *certain* OF HOW-TO BEFORE MINING *uncertain* DATA

F. Gullo * <u>G. Ponti</u>[†] A. Tagarelli[‡]

* Yahoo Labs Barcelona, Spain

[†] ENEA Research Center Portici (NA), Italy

[‡] University of Calabria Cosenza, Italy

7th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2014) September 15-19, 2014, Nancy (France) *Uncertainty* inherently affects data from a wide range of emerging application domains:

- sensor data
- location-based services (e.g., moving objects data)
- biomedical and biometric data (e.g., gene expression data)
- distributed applications
- RFID data

Generally due to noisy factors, such as signal noise, instrumental errors, wireless transmission

Uncertainty

Uncertainty representation

- Different granularities:
 - table
 - tuple
 - attribute
- Different models:
 - fuzzy
 - evidence-oriented
 - probabilistic

Attribute-level uncertainty modeled according to a probabilistic model (i.e., a probability distribution) \Rightarrow uncertain object

Modeling by regions (domains) of definition and probability density functions (pdfs)

Figure borrowed from [Kriegel and Pfeifle, ICDM 2005]

- *m*-dimensional region
- multivariate pdf defined over the region

Definition (uncertain object)

An uncertain object o is a pair (\mathcal{R}, f) :

- $\mathcal{R} \subseteq \mathbb{R}^m$ is the *m*-dimensional domain region in which *o* is defined
- f: ℝ^m → ℝ⁺₀ is the probability density function of o at each point x ∈ ℝ^m such that:

$$f(\mathbf{x}) > 0, \ \forall \mathbf{x} \in R$$
 and $f(\mathbf{x}) = 0, \ \forall \mathbf{x} \in \mathbb{R}^m \setminus \mathcal{R}$

Two main general tasks:

Defining a proximity measure between uncertain objects

- needed in almost all major data-management and data-mining tasks (e.g., visualization, classification, clustering)
- **2** Defining a model to summarize a set of uncertain objects
 - required for tasks like data compression or clustering, and to speed-up complex data-analysis/management tasks

Similarity detection in uncertain data

Distance between uncertain objects

Traditional approaches:

- Difference between expected values
- ② Expected Distance (ED)

$$ED(o_1, o_2) = \int_{\mathbf{x} \in R_1} \int_{\mathbf{y} \in R_2} \|\mathbf{x} - \mathbf{y}\|_2^2 f_1(\mathbf{x}) f_2(\mathbf{y}) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y}$$

Main drawbacks:

- O Difference between expected values is inaccurate: it considers only very little information stored in the pdfs:
- Expected distance is slow: it has quadratic complexity in the number of statistical samples used to represent/approximate pdfs

- Need for a novel distance measure that trades off between accuracy and efficiency
- Idea: resort to Information Theory
- Information Theory alone is not enough

Distance measures for pdfs

Distance measures for pdfs: *information-theoretic* (IT) measures: *Kullback-Leibler* (KL), *Chernoff, Hellinger, ...*

IT measures are accurate, but they work out for pdfs that share a reasonably large overlapping probability values area

Compound distance for uncertain objects

$$\Delta(o_i, o_j) = f(\Delta_{IT}(o_i, o_j), \Delta_{EV}(o_i, o_j))$$

- Δ_{IT} involves a comparison by means of a certain IT measure
- Δ_{EV} measures the distance proportionally to the difference of the expected values

Two critical choices for defining Δ :

IT-measure used for
$$\Delta_{IT} \Rightarrow$$
 Hellinger distance (\mathcal{H})
 $\rho(f, f') = \int_{\mathbf{x} \in \mathbb{R}^m} \sqrt{f(\mathbf{x}) f'(\mathbf{x})} d\mathbf{x} \qquad \mathcal{H}(f, f') = \sqrt{1 - \rho(f, f')}$

2 way of combining Δ_{IT} and $\Delta_{EV} \Rightarrow \Delta_{IT}$ should prevail on Δ_{EV} as long as discriminating among different cases by means of IT-measures is possible

Definition (uncertain distance)

The *uncertain distance* between two uncertain objects $o = (\mathcal{R}, f)$ and $o' = (\mathcal{R}', f')$ is defined as

ED₂(*f*, *f*') is the expected distance between the uniform-approximation of *f* and *f*'

Centroid-based agglomerative hierarchical clustering

F. Gullo, G. Ponti, A. Tagarelli, S. Greco [ICDM'08]

• Application: hierarchical clustering of uncertain objects

The U-AHC Algorithm

Input: a set of uncertain objects $\mathcal{D} = \{o_1, \dots, o_n\}$

Output: a set of partitions D

1: $\mathbf{C} \leftarrow \{\{o_1\}, \ldots, \{o_n\}\}$

2:
$$\mathbf{D} \leftarrow \{\mathbf{C}\}$$

4: let C_i, C_j be the pair of clusters in **C** such that $\Delta(\mathcal{P}_{C_i}, \mathcal{P}_{C_j})$ is minimum

5:
$$\mathbf{C} \leftarrow \mathbf{C} \setminus \{\mathcal{C}_i, \mathcal{C}_j\} \cup \{\mathcal{C}_i \cup \mathcal{C}_j\}$$

6:
$$\mathbf{D} \leftarrow \mathbf{D} \cup \{\mathbf{C}\}$$

7: until
$$|\mathbf{C}| = 1$$

Motivations:

- Hierarchical clustering is computationally expensive: need for a fast (yet accurate) proximity measure
- The way of combining Δ_{IT} and Δ_{EV} theoretically guarantees high accuracy in an agglomerative hierarchical clustering scheme

Uncertain data summarization

Traditional approaches (e.g., Chau et al., UK-means, PAKDD'06)
 ⇒ uncertain prototype defined as the average of the expected values of the objects to be summarized

Main drawbacks:

- $\bullet\,$ Deterministic representation \Rightarrow a lot of information is discarded
- Only central tendency is expressed \Rightarrow *variance* is completely ignored

Summarization of a set of uncertain objects

Uncertain objects with the same central tendency: lower-variance, more-compact cluster (left) and higher-variance, less-compact cluster (right)

Uncertain objects with different central tendency: lower-variance, less-compact cluster (left) and higher-variance, more-compact cluster (right)

Solutions:

- Mixture-model-based uncertain data summarization
- ② Random-variable-based uncertain data summarization

Idea

Compute a prototype of a set of uncertain objects as *mixture model* :

• set of uncertain objects $S = \{o_i\}_{i=1}^k$

• uncertain prototype
$$\mathcal{P}_{S} = (\mathcal{R}_{S}, f_{S})$$
, where
 $\mathcal{R}_{S} = \bigcup_{o = (\mathcal{R}, f) \in S} \mathcal{R}$,
 $f_{S}(\mathbf{x}) = (|S|)^{-1} \sum_{o = (\mathcal{R}, f) \in S} f(\mathbf{x})$

Mixture-model-based uncertain data summarization

Despite its simplicity, the mixture-model-based prototype plays a key role in a task of clustering uncertain objects: capability of employing a novel clustering criterion that *does not require any distance measure between uncertain objects* \Rightarrow minimizing the variance of cluster prototypes

Minimizing the variance of cluster mixture models for clustering uncertain objects

F. Gullo, G. Ponti, A. Tagarelli [ICDM'10, SAM'13]

A novel criterion for clustering uncertain objects: minimizing variance of cluster mixture models

$$J(\mathcal{C}) = \sum_{C \in \mathcal{C}} \sigma^2(\mathcal{P}_C)$$

- accuracy: the lower the variance, the higher the cluster compactness
- efficiency: capability of exploiting interesting analytical properties

Computing objective function J

- Moving object o from $C \in C$ to $\widehat{C} \in C$ leads to a new $C' = C \setminus (C \cup \widehat{C}) \cup (C' \cup \widehat{C}')$, where $C' = C \setminus \{o\}$, $\widehat{C}' = \widehat{C} \cup \{o\}$
- $J(\mathcal{C}')$ can be efficiently computed in $\mathcal{O}(m)$ as: $J(\mathcal{C}') = J(\mathcal{C}) - (\sigma^2(\mathcal{P}_{\mathcal{C}}) + \sigma^2(\mathcal{P}_{\widehat{\mathcal{C}}})) + (\sigma^2(\mathcal{P}_{\mathcal{C}'}) + \sigma^2(\mathcal{P}_{\widehat{\mathcal{C}}'}))$

Input: A set \mathcal{D} of UO; the number k of output clusters **Output:** A partition C of D1: compute $\mu(o)$, $\mu_2(o)$, $\forall o \in \mathcal{D}$ 2: $\mathcal{C} \leftarrow randomPartition(\mathcal{D}, k)$ 3: compute $\mu(\mathcal{P}_C), \mu_2(\mathcal{P}_C), \forall C \in \mathcal{C}$ 4: $v \leftarrow J(\mathcal{C})$ 5: repeat 6· for all $o \in \mathcal{D}$ do 7: let $C \in C$ be the cluster s.t. $o \in C$ $C^* \leftarrow \arg \min_{\widehat{C}} J_{\mathcal{C}}(C, o, \widehat{C})$ 8: 9: if $C^* \neq C$ then $v = J_{\mathcal{C}}(C, o, \widehat{C})$ 10: 11: recompute C by moving o from C to C^* 12: recompute $\mu(\mathcal{P}_{C}), \mu_{2}(\mathcal{P}_{C}), \mu(\mathcal{P}_{C^{*}}), \mu_{2}(\mathcal{P}_{C^{*}})$ 13: **until** no object in \mathcal{D} is relocated

MMVar

converges to a local optimum of function *J* in a finite number *I* of iterations

MMVar works
 in \$\mathcal{O}(I \ k \ |\mathcal{D}| \ m)\$

One step further from mixture model: U-centroid

Cluster centroid as *random variable* summarizing all possible deterministic representations of the objects in the cluster

Two key advantages:

- Shortcomings of a deterministic centroid notion are still addressed
- Clear stochastic meaning (unlike mixture-model-based prototypes)

F. Gullo, A. Tagarelli [VLDB'12]

The notion of U-centroid can be coupled with a cluster criterion that aims at minimizing the expected distance between uncertain objects and U-centroid

$$J(\mathcal{C}) = \sum_{C \in \mathcal{C}} \sum_{o \in C} \widehat{ED}(o, \overline{C})$$

Observation 1: J takes into account both central tendency and variance

Observation 2: Given a cluster *C*, the value of the objective function of any other cluster resulting from adding/removing an object to/from *C* can be computed according to an efficient closed-form expression

An efficient local-search method can be employed to optimize *J*:

- Start with a random partition
- At each step, perform the object move that leads to the best increment of J (if any)
- Stop when J cannot be improved anymore (warranty to end up with a local optimum of J)

Conclusions

- Similarity detection and summarization are critical tasks that are commonly encountered when dealing with uncertain data
- We show how traditional measures for similarity detection in uncertain data can be empowered by combining notions from Information Theory and central-tendency-based comparison methods
- We discuss how to improve existing uncertain data summarization techniques by incorporating the variance of the uncertain objects to be summarized
- We provide evidence on how the tasks of similarity detection and summarization in uncertain data find natural application in data mining/machine learning

Thanks!

Backup: experiments about U-AHC

Goals

- Assessment of effectiveness and efficiency of the U-AHC algorithm in clustering uncertain data
- Comparison of U-AHC with state-of-the-art algorithms
 - UK-means, CK-means, UK-medoids, FDBSCAN, FOPTICS

dataset	<i># of objects</i>	<i># of attributes</i>	# of classes	
Iris	150	4	3	
Wine	178	13	3	
Glass	214	10	6	
Ecoli	327	7	5	
Yeast	1,484	8	10	
ImageSegmentation	2,310	19	7	
Abalone	4,124	7	17	
LetterRecognition	7,648	16	10	

Table : Benchmark datasets used in the experiments

Table : Non-benchmark datasets used in the experiments

dataset	<i># of objects</i>	<i># of attributes</i>
	(genes)	
Leukaemia	22,690	21
Neuroblastoma	22,282	14

- External criteria (benchmark datasets): *F-measure*, *Precision*, *Recall*
- Internal criteria (non-benchmark datasets): *intra-cluster distance*, *inter-cluster distance*

dataset	pdf	UK-means	CK-means	UK-medoids	FDBSCAN	FOPTICS	U-AHC
	Uniform	0.841	0.963	0.886	0.919	0.886	0.993
Iris	Normal	0.849	0.849	0.855	0.871	0.907	0.905
	Gamma	0.622	0.501	0.848	0.893	0.905	0.628
	Uniform	0.500	0.724	<u>0.810</u>	0.664	0.695	0.984
Wine	Normal	0.500	0.704	0.578	0.653	<u>0.713</u>	0.954
	Gamma	0.500	0.581	0.581	0.692	<u>0.713</u>	0.595
	Uniform	0.639	0.670	0.697	<u>0.768</u>	0.718	0.828
Glass	Normal	<u>0.577</u>	0.552	0.513	0.514	0.438	0.822
	Gamma	0.379	0.314	<u>0.644</u>	0.468	0.438	0.550
	Uniform	0.653	<u>0.795</u>	0.696	0.436	0.477	0.915
Ecoli	Normal	0.609	<u>0.741</u>	0.528	0.544	0.477	0.726
	Gamma	0.533	0.412	<u>0.693</u>	0.401	0.477	0.450
	Uniform	0.497	0.562	0.618	0.515	0.543	0.719
Yeast	Normal	<u>0.471</u>	0.458	0.288	0.291	0.316	0.577
	Gamma	0.403	0.306	0.469	0.331	0.316	0.406
	Uniform	<u>0.810</u>	0.798	0.769	0.426	0.419	0.552
ImageSegmentation	Normal	0.623	<u>0.655</u>	0.451	0.416	0.419	0.836
	Gamma	0.545	0.353	<u>0.656</u>	0.339	0.419	0.503
	Uniform	0.331	0.294	0.590	0.447	0.439	0.719
Abalone	Normal	0.288	0.217	0.265	0.136	0.209	0.577
	Gamma	0.360	0.200	0.313	0.565	<u>0.607</u>	0.406
	Uniform	0.529	0.629	<u>0.776</u>	0.344	0.318	0.792
LetterRecognition	Normal	0.449	0.451	<u>0.490</u>	0.247	0.318	0.531
	Gamma	0.432	0.215	<u>0.584</u>	0.265	0.318	0.603
	avg. score	0.539	0.539	0.608	0.506	0.521	0.690
	avg. gain	15.1%	15.1%	8.2%	18.4%	16.9%	_

F-measure results (benchmark datasets, multivariate models)

dataset	pdf	UK-means	CK-means	UK-medoids	FDBSCAN	FOPTICS	U-AHC
Iris	Uniform	0.948	<u>0.962</u>	0.907	0.929	0.907	1
	Normal	0.859	0.897	0.888	<u>0.929</u>	0.907	0.962
Wine	Uniform	0.735	0.747	0.761	<u>0.767</u>	0.713	0.826
	Normal	0.707	0.705	<u>0.749</u>	0.691	0.713	0.795
Glass	Uniform	0.677	<u>0.703</u>	0.653	0.575	0.636	0.779
	Normal	0.540	0.551	0.579	<u>0.868</u>	0.828	0.891
Ecoli	Uniform	0.787	<u>0.790</u>	0.728	0.443	0.477	0.743
	Normal	<u>0.745</u>	0.740	0.560	0.416	0.477	0.795
Yeast	Uniform	0.533	0.538	<u>0.622</u>	0.599	0.528	0.684
	Normal	0.455	<u>0.457</u>	0.318	0.374	0.420	0.486
ImageSegmentation	Uniform	0.780	<u>0.801</u>	0.765	0.482	0.419	0.837
	Normal	0.628	0.637	<u>0.649</u>	0.415	0.419	0.684
Abalone	Uniform	0.288	0.290	<u>0.531</u>	0.499	0.439	0.492
	Normal	0.215	0.217	0.288	0.497	<u>0.558</u>	0.572
LetterRecognition	Uniform	0.637	0.636	<u>0.763</u>	0.320	0.318	0.798
	Normal	0.442	0.435	<u>0.595</u>	0.353	0.318	0.613
	avg. score avg. gain	0.624 12.3%	0.632 11.5%	0.647 10.0%	0.571 17.6%	0.567 18.0%	0.747

Remarks:

- U-AHC achieved the highest accuracy on all datasets
- average gains (univariate): from 8.2%(vs. UK-medoids) to 18.4%(vs *FDBSCAN*)
- average gains (multivariate): from 10%(vs. UK-medoids) to 18%(vs *F*OPTICS)
- results on univariate and multivariate cases were quite similar each other

Quality results (microarray datasets)

Remarks:

- U-AHC achieved the best results averaged over the cluster sizes
- highest quality on Leukaemia, whereas behaved on average better than the other methods on Neuroblastoma

Efficiency results

Remarks:

- performances followed the (on-line) computational complexities of the corresponding algorithms:
 - $\mathcal{O}(t \ n)$, for CK-means
 - $\mathcal{O}(t \ n^2)$, for UK-medoids
 - $\mathcal{O}(t \ s \ n)$, for UK-means
 - $\mathcal{O}(n^2)$, for $\mathcal{F}DBSCAN$
 - $\mathcal{O}(s \ n^2)$, for U-AHC and \mathcal{F} OPTICS
- U-AHC performed closely to the density-based algorithms *F*DBSCAN and *F*OPTICS

U-AHC, the first (centroid-linkage-based) agglomerative hierarchical algorithm for uncertain data clustering

- Information-theoretic distance between uncertain objects
- Uncertain cluster prototype for univariate and multivariate uncertainty models

Experimental results:

accuracy U-AHC outperforms existing methods

efficiency U-AHC performs comparably to density-based clustering algorithms

Backup: experiments about MMVar

- Benchmark datasets from UCI (Iris, Wine, Glass, Ecoli, Yeast, Image, Abalone, Letter)
- Uncertainty generated **synthetically** and modeled according to *Uniform* (U), *Normal* (N), and *Binomial* (B) pdfs
- Evaluation in terms of:
 - **accuracy** (w.r.t. reference classifications according to *F-Measure*)
 - efficiency
- Competitors: UK-means (UKM), CK-means (CKM), UK-medoids (UKmed), *F*DBSCAN (*F*DB), *F*OPTICS (*F*OPT), U-AHC

			F-measure ($F \in [0,1]$)					
data	pdf	UKM	CKM	UKmed	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	MMVar
	U	0.601	0.675	0.729	0.331	0.575	0.626	0.731
avg score	N	0.54	0.582	0.493	0.441	0.475	0.606	0.657
	В	0.476	0.363	0.602	0.295	0.525	0.508	0.716
overall avg. score		0.539	0.54	0.608	0.356	0.525	0.58	0.701
overall avg. gain		0.162	0.161	0.093	0.345	0.176	0.121	—

- MMVar achieved the best overall scores, from +0.093 (w.r.t. UKmed) to +0.345 (w.r.t. $\mathcal{F}DB$)
- MMVar achieved the best avg scores on all the pdfs
 - maximum avg gain of 0.254 (Binomial)
 - minimum avg gain of 0.134 (Normal)

Efficiency Results

- MMVar performed faster than CKM
- MMVar drastically outperformed all other competitors but CKM (at least 1 order of magnitude, up to 5 orders)
- $\bullet\,$ Slowest methods: UAHC and UKmed; fastest methods: CKM and $\mathcal{F}DB$

Backup: experiments about UCPC

Evaluation methodology (1)

- Benchmark datasets from UCI (Iris, Wine, Glass, Ecoli, Yeast, Image, Abalone, Letter) where uncertainty is generated synthetically and modeled according to Uniform (U), Normal (N), and Exponential (E) pdfs
- Real (gene expression) datasets where uncertainty is inherently present

dataset	obj.	attr.	classes
Iris	150	4	3
Wine	178	13	3
Glass	214	10	6
Ecoli	327	7	5
Yeast	1,484	8	10
Image	2,310	19	7
Abalone	4,124	7	17
Letter	7,648	16	10

(a) Benchmark datasets

(b) Real datasets

dataset	obj.	attr.
Neuroblastoma	22,282	14
Leukaemia	22,690	21

- Evaluation in terms of:
 - accuracy (external and internal clustering evaluation)
 - efficiency
- Competitors: MMVar (MMV), UK-means (UKM), UK-medoids (UKmed), UAHC, *F*DBSCAN (*F*DB), *F*OPTICS (*F*OPT)

		<i>F-measure</i> ($\Theta \in [-1,1]$)						
	pdf	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	UKmed	UKM	MMV	UCPC
avg score	U	189	.055	.089	.210	.081	.193	.429
	Ν	081	046	.149	028	.019	.199	.287
	E	317	088	008	011	137	.200	223
overall avg. score		196	026	.077	.057	012	.198	.313
overall avg. gain		+.509	+.339	+.236	+.256	+.324	+.115	—

		Quality ($Q \in [-1,1])$						
	pdf	$\mathcal{F}DB$	$\mathcal{F}OPT$	UAHC	UKmed	UKM	MMV	UCPC
	U	.021	.089	.027	.084	.042	.345	.375
avg score	N	.061	.115	.091	.089	.127	.139	.189
	E	001	.025	0	.011	.015	.199	.200
overall avg. score		.027	.076	.039	.061	.061	.228	.255
overall avg. gain		+.228	+.179	+.216	+.194	+.194	+.027	_

			Quality ($Q \in [-1,1])$					
data	#clust.	FDB	$\mathcal{F}OPT$	UAHC	UKmed	UKM	MMV	UCPC
Neur	o. avg score	004	.010	.630	.045	.060	.544	.576
Leu	k. avg score	018	.190	.192	.231	.430	.433	.471
ove	r. avg score	011	.100	.411	.138	.245	.489	.523
ov	er. avg gain	+.534	+.423	+.112	+.385	+.278	+.034	_

Efficiency results: benchmark datasets

 Efficiency evaluation also involves optimized versions of UK-means, i.e., MinMax-BB and VDBiP

Backup: details about U-centroid

Theorem

Given a cluster $C = \{o_1, \ldots, o_{|C|}\}$ of m-dimensional uncertain objects, where $o_i = (\mathcal{R}_i, f_i)$ and $\mathcal{R}_i = \left[\ell_i^{(1)}, u_i^{(1)}\right] \times \cdots \times \left[\ell_i^{(m)}, u_i^{(m)}\right]$, $\forall i \in [1..|C|]$, let $\overline{C} = (\overline{\mathcal{R}}, \overline{f})$ be the U-centroid of C defined by employing the squared Euclidean norm as distance to be minimized. It holds that:

$$\overline{f}(\mathbf{x}) = \int_{\mathbf{x}_1 \in \mathcal{R}_1} \cdots \int_{|C| \in \mathcal{R}_{|C|}} \mathbf{I}\left[\mathbf{x} = \frac{1}{|C|} \sum_{i=1}^{|C|} \mathbf{x}_i\right] \prod_{i=1}^{|C|} f_i(\mathbf{x}_i) d\mathbf{x}_1 \cdots d\mathbf{x}_{|C|}$$
$$\overline{\mathcal{R}} = \left[\frac{1}{|C|} \sum_{i=1}^{|C|} \ell_i^{(1)}, \frac{1}{|C|} \sum_{i=1}^{|C|} u_i^{(1)}\right] \times \cdots \times \left[\frac{1}{|C|} \sum_{i=1}^{|C|} \ell_i^{(m)}, \frac{1}{|C|} \sum_{i=1}^{|C|} u_i^{(m)}\right]$$

where I[A] is the indicator function, which is 1 when the event A occurs, 0 otherwise.

Minimizing the expected distance between uncertain objects and U-centroid (1)

$$J(C) = \sum_{o \in C} \widehat{ED}(o, \overline{C})$$

Observation 1: J takes into account both central tendency and variance

Theorem

Let $C = \{o_1, ..., o_{|C|}\}$ be a cluster of uncertain objects, where $o_i = (\mathcal{R}_i, f_i)$, and $\overline{C} = (\overline{\mathcal{R}}, \overline{f})$ be the U-centroid of C. It holds that:

$$J(C) = \sum_{j=1}^{m} \left(\frac{\Psi_{C}^{(j)}}{|C|} + \Phi_{C}^{(j)} - \frac{\Upsilon_{C}^{(j)}}{|C|} \right) = \frac{1}{|C|} \sum_{i=1}^{|C|} \sigma^{2}(o_{i}) + \sum_{o \in C} ED\left(o, \frac{1}{|C|} \sum_{o \in C} \mu(o)\right)$$

where

$$\Psi_{C}^{(j)} = \sum_{i=1}^{|C|} (\sigma^{2})_{j}(o_{i}) \qquad \Phi_{C}^{(j)} = \sum_{i=1}^{|C|} (\mu_{2})_{j}(o_{i}) \qquad \Upsilon_{C}^{(j)} = \left(\sum_{i=1}^{|C|} \mu_{j}(o_{i})\right)^{2}$$

Observation 2: Given a cluster *C*, the value of *J* of any other cluster resulting from adding/removing an object to/from *C* can be computed according to an efficient closed-form expression

Corollary

Let C be a cluster of uncertain objects, and $C^+ = C \cup \{o^+\}$, $C^- = C \setminus \{o^-\}$ be two clusters defined by adding an object $o^+ \notin C$ to C and removing an object $o^- \in C$ from C, respectively. It holds that:

$$J(C^{+}) = \sum_{j=1}^{m} \left(\frac{\Psi_{C^{+}}^{(j)}}{|C|+1} + \Phi_{C^{+}}^{(j)} - \frac{\Upsilon_{C^{+}}^{(j)}}{|C|+1} \right) \quad J(C^{-}) = \sum_{j=1}^{m} \left(\frac{\Psi_{C^{-}}^{(j)}}{|C|-1} + \Phi_{C^{-}}^{(j)} - \frac{\Upsilon_{C^{-}}^{(j)}}{|C|-1} \right)$$

The UCPC local-search algorithm

Input: A set \mathcal{D} of UO; the number k of output clusters **Output:** A partition C of D, where |C| = k1: compute $\mu(o)$, $\mu_2(o)$, $\sigma^2(o)$, $\forall o \in \mathcal{D}$ 2: $\mathcal{C} \leftarrow initialPartition(\mathcal{D}, k)$, compute $\Psi_{\mathcal{C}}^{(j)}$, $\Phi_{\mathcal{C}}^{(j)}$, $\Upsilon_{\mathcal{C}}^{(j)}$, J(C)3: repeat 4: $V \leftarrow \sum_{C \in C} J(C)$ 5: for all $o \in \mathcal{D}$ do 6: $C^* \leftarrow \operatorname{argmin}_{C \in C} V - [J(C^\circ) + J(C)] +$ $[J(C^{\circ}\setminus\{o\})+J(C\cup\{o\})]$ 7: if $C^* \neq C^\circ$ then 8: $\mathcal{C} \leftarrow \mathcal{C} \setminus \{\mathcal{C}^*, \mathcal{C}^\circ\} \cup \{\mathcal{C}^+, \mathcal{C}^-\}$ replace $\Psi_{C^*}^{(j)}$, $\Phi_{C^*}^{(j)}$, $\Upsilon_{C^*}^{(j)}$, $J(C^*)$ with $\Psi_{C^+}^{(j)}$, 9: $\Phi_{C^+}^{(j)}, \Upsilon_{C^+}^{(j)}, J(C^+), \forall j \in [1..m]$ replace $\Psi_{C^o}^{(j)}$, $\Phi_{C^o}^{(j)}$, $\Upsilon_{C^o}^{(j)}$, $J(C^o)$ with $\Psi_{C^o}^{(j)}$, 10: $\Phi_{C^{-}}^{(j)}, \Upsilon_{C^{-}}^{(j)}, J(C^{-}), \forall j \in [1..m]$ 11: **until** no object in \mathcal{D} is relocated

UCPC

converges to a local optimum of function *J* in a finite number *I* of iterations

• UCPC works in $\mathcal{O}(I \ k \ |\mathcal{D}| \ m)$