Collaborative Clustering of XML Documents

Sergio Greco
Francesco Gullo
Giovanni Ponti
Andrea Tagarelli

DEIS – University of Calabria
Outline

- Introduction
 - Motivations
- Our proposal:
 - distributed collaborative approach to XML document clustering
- Experimental evaluation
- Conclusion
Motivations

- In a nutshell, **XML**
 - The extensible, self-describing de-facto standard for data representation and exchange on the Web

- Rapid increase of the volume and heterogeneity of XML sources
 - Documents exhibit too diverse structure and contents
 - may encode related semantics
 - Documents are often schema-less

- **XML data management and XML mining**
 - Web source integration, Querying semistructured data, Document classification
 - Change detection, schema matching
Motivations

- The size of collections of XML documents is often **huge** and inherently distributed
- Classical centralized approaches may be not efficient

Our proposal: a distributed framework for efficiently clustering XML documents
- Peer-to-peer network
- Each peer has access to a portion of the whole document collection
- Centroid-based partitional clustering
- Each peer computes “local” centroids and a subset of “global” centroids
Clustering semantically related XML documents

[Tagarelli and Greco, SDM’06]
[Tagarelli and Greco, TOIS’09]

- **XML features**
 - Structure information (from tag paths)
 - Content information (from textual elements)

- **XML transactional model**
 - based on the notion of XML tree tuple
 - identifies semantically cohesive substructures
 - enables relational-like representation of XML data
Preliminaries

- **XML tree path**
 - A sequence \(p = [s_1, \ldots, s_m] \) of symbols in \(Tag \cup Att \cup \{\$\} \)
 - **Tag Path**: last symbol is a tag name
 - **Complete Path**: last symbol is either an attribute name or a textual element content

- **Path answer:**
 - A set of node identifiers (Tag path case)
 - A set of string values (Complete path case)
Extracting XML tree tuples

Definition:

- Given an XML tree XT, a *tree tuple* τ is a maximal subtree of XT such that, for every path p that can be applied to XT, the answer $A_\tau(p)$ contains at most one element.

Meaning in the XML context:

- A (sub)tree representation of a complete set of distinct concepts that are correlated according to the structure semantics of the original tree.
Extracting XML tree tuples: The DBLP Example
Extracting XML tree tuples: The DBLP Example
Modeling XML transactions

- Decomposition of each tree tuple into a set of tree tuple items
 - Tree tuple item is a pair \((p, A_{\tau}(p))\), such that:
 - \(p\) is a complete path on \(\tau\)
 - \(A_{\tau}(p)\) is the (string) answer of \(p\) applied to \(\tau\)

- **Item**: a tree tuple item

- **Item domain**: the union of the tree tuple item sets over all the tree tuples extracted from a target collection

- **Transaction**: a tree tuple, represented by its set of tree tuple items
 - Each path applied to a tree tuple yields a unique answer \(\Rightarrow\) each item in a transaction refers to a distinct information
Modeling XML transactions: The DBLP Example

### Path (p)	$\tau_1.p$	node ID
`dblp.inproceedings.@key` | “conf/kdd/ZakiA03” | n_3
`dblp.inproceedings.author.s` | “M. J. Zaki” | n_5
`dblp.inproceedings.title.s` | “XRules: an effective ...” | n_9
`dblp.inproceedings.year.s` | “2003” | n_{11}
`dblp.inproceedings.booktitle.s` | “KDD” | n_{13}
`dblp.inproceedings.pages.s` | “316-325” | n_{15}

### Path (p)	$\tau_2.p$	node ID
`dblp.inproceedings.@key` | “conf/kdd/ZakiA03” | n_3
`dblp.inproceedings.author.s` | “C. C. Aggarwal” | n_7
`dblp.inproceedings.title.s` | “XRules: an effective ...” | n_9
`dblp.inproceedings.year.s` | “2003” | n_{11}
`dblp.inproceedings.booktitle.s` | “KDD” | n_{13}
`dblp.inproceedings.pages.s` | “316-325” | n_{15}

### Path (p)	$\tau_3.p$	node ID
`dblp.inproceedings.@key` | “conf/kdd/Zaki02” | n_{17}
`dblp.inproceedings.author.s` | “M. J. Zaki” | n_{19}
`dblp.inproceedings.title.s` | “Efficiently mining ...” | n_{21}
`dblp.inproceedings.year.s` | “2002” | n_{23}
`dblp.inproceedings.booktitle.s` | “KDD” | n_{25}
`dblp.inproceedings.pages.s` | “71-80” | n_{27}

### Item ID	corresponding node IDs
e_1 | n_3
e_2 | n_5, n_{10}
e_3 | n_9
e_4 | n_{11}
e_5 | n_{13}, n_{25}
e_6 | n_{15}
e_7 | n_7
e_8 | n_{17}
e_9 | n_{21}
e_{10} | n_{23}
e_{11} | n_{27}

Transactions

- tr_1: $e_1 \ e_2 \ e_3 \ e_4 \ e_5 \ e_6$
- tr_2: $e_1 \ e_7 \ e_3 \ e_4 \ e_5 \ e_6$
- tr_3: $e_8 \ e_2 \ e_9 \ e_{10} \ e_5 \ e_{11}$
Clustering XML transactions: XML tree tuple item similarity

- Function of structure and content features
 \[\text{sim}(e_i, e_j) = f \times \text{sim}_S(e_i, e_j) + (1 - f) \times \text{sim}_C(e_i, e_j) \]

- Match at a degree not below a threshold \(\gamma \)
 - Notion of \(\gamma \)-matched items

- Similarity by structure
 - computed by comparing tag paths

- Similarity by content
 - cosine similarity between TCUs
 - terms in TCUs are weighted by a syntactic relevance function
Clustering XML transactions: XML tree tuple item similarity

- **Structure similarity**
 - Comparison of tag paths by resorting to a simple case of string matching of their respective element names

The *structural similarity* between the XML tree tuple items e_i and e_j, having $p_i = t_{i1}.t_{i2}. \ldots .t_{in}$ and $p_j = t_{j1}.t_{j2}. \ldots .t_{jn}$ as their respective tag paths, is:

$$
\text{sim}_S(e_i, e_j) = \frac{1}{n + m} \left(\sum_{t \in p_i} \text{sim}(t, p_j) + \sum_{t \in p_j} \text{sim}(t, p_i) \right)
$$

where

$$
\text{sim}(t_{ih}, p_j) = \text{avg}_{t_{jk} \in p_j} \left\{ \frac{1}{1 + |h - k|} \times \delta(t_{ih}, t_{jk}) \right\}
$$
Clustering XML transactions: XML tree tuple item similarity

Content similarity

- Syntactic relevance function: TF-IDF
 - Proportional to the term density (number of occurrences) in a TCU
 - Proportional to the informativeness of term (its rarity across the whole collection of TCUs)

- Tree tuple Term Frequency – Inverse Tree tuple Frequency: TTF-ITF
 - Proportional to the term frequency within the local TCU
 - Proportional to the term popularity across the TCUs of the local tree tuple and the TCUs of the local document tree
 - Proportional to the term rarity across the whole collection of TCU
Clustering XML transactions:
XML tree tuple item similarity

- Content similarity

\[ttf.\text{itf}(w_j, u_i|\tau) = \text{tf}(w_j, u_i) \times \exp\left(\frac{n_{j,\tau}}{N_\tau}\right) \times \frac{n_{j,XT}}{N_{XT}} \times \ln\left(\frac{N_T}{n_{j,T}}\right) \]

- \(\text{tf}(w_j, u_i) \) is the number of occurrences of \(w_j \) in \(u_i \),
- \(n_{j,\tau} \) is the number of TCUs in \(\tau \) that contain \(w_j \),
- \(N_\tau \) is the number of TCUs in \(\tau \),
- \(n_{j,XT} \) is the number of TCUs in XT that contain \(w_j \),
- \(N_{XT} \) is the number of TCUs in XT,
- \(n_{j,T} \) is the number of TCUs in \(T \) that contain \(w_j \),
Clustering XML transactions: XML tree tuple item similarity

Content similarity

- A TCU u_i is modeled with a vector \vec{u}_i whose j-th component corresponds to an index term w_j and contains the $ttf.itf$ relevance weight.
- The well-known cosine similarity is used to measure the similarity between TCU vectors:

$$sim_C(e_i, e_j) = \frac{\vec{u}_i \cdot \vec{u}_j}{\|\vec{u}_i\| \times \|\vec{u}_j\|}$$
Clustering XML Transactions: XML Transaction Similarity

- Search for shared items, when comparing two transactions
 - Enhance the notion of standard intersection to capture even minimal similarities between XML elements

- Set of γ-shared items:
 - Intuitively, the union of best γ-matched items between two XML transactions

- XML transaction similarity:
 $$sim_\gamma(tr_1, tr_2) = \frac{|match_\gamma(tr_1, tr_2)|}{|tr_1 \cup tr_2|}$$
Collaborative Clustering of XML transactions

CXK-Means

- Centroid based partitional
 - notion of *representative* of cluster of XML transactions
- Transaction-centric
 - pair-wise similarity between transactions guides the construction of clusters
- Suitable for a collaborative distributed environment
 - peer network: each peer node is responsible of “local” and “global” choices

Define three main notions:

- XML transaction similarity
- XML local cluster representative
- XML global cluster representative
Collaborative Clustering of XML transactions

- **CXK-means**: process N_0

 - Data are distributed over m peer nodes
 - Each node communicates with all the other ones sending local representatives and receiving global representatives
 - An initial process corresponding to a node N_0 defines a partition of the k clusters into m subsets Z_j:

 Process N_0

 Method:

 define a partition of \{1..k\} into m subsets Z_1, \ldots, Z_m;

 for $i = 1$ to m do

 send ($\{Z_1, \ldots, Z_m\}, k, \gamma$) to N_i;
Collaborative Clustering of XML transactions

CXK-means: process \(N_i \)

- Each node \(N_i \) computes:
 - Local clusters \(C_1^i, \ldots, C_k^i \)
 - Local representatives \(c_1^i, \ldots, c_k^i \)
 - (A subset of) global representatives \(c_{i_1}, \ldots, c_{i_{q_i}} \), using the local representatives computed by all nodes
Collaborative Clustering of XML transactions

CXK-means:

process N_i

Method:

1. receive $(\{Z_1, \ldots, Z_m\}, k, \gamma)$ from N_0;
2. let $Z_i = \{i_1, \ldots, i_{q_i}\}$, with $0 \leq q_i \leq k$;
3. /* selects q_i initial global clusters */
4. select $\{c_{i_1}, \ldots, c_{i_{q_i}}\}$ transactions coming from distinct original trees;
5. $C_{j}^{i} = \{\}$, $\forall j \in [1..k]$;
6. repeat
 - send (broadcast) $\{c_{i_1}, \ldots, c_{i_{q_i}}\}$ to N_1, \ldots, N_m;
 - receive c_j from N_h with $h \in [1..m]$ and $j \in Z_h$;
 - repeat /* computes local clusters */
 - $C_{j}^{i} := \{tr \mid tr \in S^i \land \text{sim}_j^\gamma(tr, c_{j}^{i}) > \text{sim}_l^\gamma(tr, c_{l}^{i}), l \in [1..k]\}$, $\forall j \in [1..k]$;
 - $C_{k+1}^{i} := \{tr \mid \text{sim}_j^\gamma(tr, c_{j}^{i}) = 0\}$, $\forall j \in [1..k]$;
 - $c_{j}^{i} := \text{computeLocalRepresentative}(C_{j}^{i})$, $\forall j \in [1..k]$;
 - until $Q(C^i)$ is maximized;
7. if c_j^i does not change, $\forall j \in [1..k]$ then
 - send (broadcast) $([], \text{done})$;
8. else
 - send $(\{c_j^i, |C_j^i|\} | j \in Z_h\}$, continue) to $N_h, \forall h \in [1..m]$;
9. receive $(\{c_j^h\} | j \in Z_h\}, V_h)$ from $N_h, \forall h \in [1..m]$;
10. if $(\exists h \in [1..m] s.t. V_h = \text{continue})$ then
 - for $j \in Z_i$ do $c_j = \text{ComputeGlobalRepresentative}(\{c_j^1, \ldots, c_j^m\})$
 - until $V_1 = \cdots = V_m = \text{done}$;
Collaborative Clustering of XML Transactions: Local XML Cluster Representative

Compute the set of γ-shared items among all the transactions within cluster C

1. for each transaction in C, compute the union of the γ-shared item sets w.r.t. all the other transactions in C

2. compute a raw representative
 - by selecting the items with the highest frequency from the previously obtained union sets
 - possibly conflate those items sharing the same path

3. perform a greedy heuristic to refine the raw representative
 - by iteratively adding the remaining most frequent items until the sum of pair-wise similarities between transactions and representative cannot be further maximized
Collaborative Clustering of XML Transactions: Global XML Cluster Representative

- The global representative of a cluster \(C \) is computed by considering the \(m \) local representatives \(c^1, \ldots, c^m \)
 - Procedure similar to that used for computing local representatives
 - Only a difference: the structural rank \(g_{\text{rank}} \) associated with an item \(e \) considers the rank associated with each item (instead of the number of items) having a \(\gamma \)-matching
Collaborative Clustering of XML transactions: CXK–Means - other features

- Trash cluster
 - Contains only transactions having zero-similarity when compared with each cluster representative

- Cluster initialization
 - Tree tuples selected as initial cluster centroids are constrained to come from different XML documents
 - favoring the construction of clusters with low intersimilarity
Experimental evaluation: Data description

- Real XML data sources
 - the IEEE collection version 2.2
 - benchmark in the INEX document data mining track 2008
 - complex article schemas: front matter, back matter, section headings, text formatting tags, mathematical formulas, ...
 - the DBLP digital bibliography
 - variety of structures, small average depth
 - short text descriptions (paper titles, event topics, author names)

<table>
<thead>
<tr>
<th>data</th>
<th># docs</th>
<th># trans.</th>
<th># items</th>
<th>max fan out</th>
<th>avg depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>4,874</td>
<td>211,909</td>
<td>135,869</td>
<td>43</td>
<td>5</td>
</tr>
<tr>
<td>DBLP</td>
<td>3,000</td>
<td>5,884</td>
<td>8,231</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>
Experimental evaluation: Methodology and goals

- **Structure-driven** clustering
- **Content-driven** clustering
- **Structure/Content-driven** clustering
 - detecting common structures across different topics
 - identifying classes that both cover common topics and share structure type
Experimental evaluation: Methodology and goals

- **Evaluation**

 - Clustering quality (*F-Measure)*:

 \[
 P_{ij} = \frac{|C_j \cap \Gamma_i|}{|C_j|}, \quad R_{ij} = \frac{|C_j \cap \Gamma_i|}{|\Gamma_i|}, \quad F_{ij} = \frac{2P_{ij}R_{ij}}{P_{ij} + R_{ij}}
 \]

 \[
 F(C, \Gamma) = \frac{1}{|S|} \sum_{i=1}^{H} |\Gamma_i| \max_{j \in [1..K]} F_{ij}
 \]

 - Time performances
Experimental evaluation:

Accuracy results

<table>
<thead>
<tr>
<th>dataset</th>
<th># of clusters</th>
<th># of nodes</th>
<th>F-measure (avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>8</td>
<td>1</td>
<td>0.593</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.421</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.376</td>
</tr>
<tr>
<td>DBLP</td>
<td>6</td>
<td>1</td>
<td>0.764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.662</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.547</td>
</tr>
</tbody>
</table>

TABLE I

Clustering results with $f \in [0..0.3]$ (content-driven similarity)
Experimental evaluation: Accuracy results

<table>
<thead>
<tr>
<th>dataset</th>
<th># of clusters</th>
<th># of nodes</th>
<th>F-measure (avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>14</td>
<td>1, 3, 5, 7, 9</td>
<td>0.564, 0.497, 0.451, 0.404, 0.356</td>
</tr>
<tr>
<td>DBLP</td>
<td>16</td>
<td>1, 3, 5, 7, 9</td>
<td>0.772, 0.721, 0.676, 0.614, 0.558</td>
</tr>
</tbody>
</table>

TABLE II

Clustering results with $f \in [0.4..0.6]$ (structure/content-driven similarity)
Experimental evaluation: Accuracy results

<table>
<thead>
<tr>
<th>dataset</th>
<th># of clusters</th>
<th># of nodes</th>
<th>F-measure (avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>2</td>
<td>1</td>
<td>0.618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.542</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.386</td>
</tr>
<tr>
<td>DBLP</td>
<td>4</td>
<td>1</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.819</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.716</td>
</tr>
</tbody>
</table>

TABLE III
Clustering results with $f \in [0.7..1]$
(structure-driven similarity)
Experimental evaluation: Efficiency results

![Graph](image)

- **IEEE (100%)**
- **IEEE (50%)**
Experimental evaluation: Efficiency results

- DBLP (100%)
- DBLP (50%)
Conclusion

- **Collaborative distributed framework for clustering XML documents**
 - CXK-means: a distributed, centroid-based partitional clustering algorithm
 - Peer-to-peer network
 - Local and global decisions for each peer

- **XML documents modeled in a transactional domain**
 - Modeling of XML transactions starting from the notion of tree tuple
 - Similarity between transaction computed according to both structure and content features
Thank you