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• Our experimental evaluation was mainly conducted on 
seven real-world multilayer network datasets
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Datasets



• We also resorted to a synthetic multilayer network
generator, mLFR Benchmark, mainly for our evaluation
of efficiency of the M-EMCD method

• We used mLFR to create a multilayer network with 1
million of nodes, setting other available parameters as
follows:
• 10 layers,
• average degree 30,
• maximum degree 100,
• mixing at 20% ,
• layer mixing 2.
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• flattening methods
• apply a community detection method on the flattened graph of the

input multilayer network
• it is a weighted multigraph having V as set of nodes, the set of edges,

and edge weights that express the number of layers on which two
nodes are connected
• Nerstrand algorithm1

1 D. LaSalle and G. Karypis, "Multi-threaded modularity based graph clustering using the multilevel paradigm", J. Parallel Distrib.
Comput., 76:66–80, 2015.
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• aggregation methods
• detect a community structure separately for each network layer, after 

that an aggregation mechanism is used to obtain the final community 
structure 
• Principal Modularity Maximization (PMM)2

• frequent pAttern mining-BAsed Community discoverer in mUltidimensional 
networkS (ABACUS)3

2  L. Tang, X. Wang, and H. Liu, “Uncovering groups via heterogeneous interaction analysis,” in Proc. ICDM, 2009, pp. 503–512.
3 M. Berlingerio, F. Pinelli, and F. Calabrese, "ABACUS: frequent pattern mining-based community discovery in multidimensional 
networks", Data Min. Knowl. Discov., 27(3):294– 320, 2013. 
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• direct methods
• directly work on the multilayer graph by optimizing a multilayer quality-

assessment criterion 
• Generalized Louvain (GL)4

• Locally Adaptive Random Transitions (LART)5

• Multiplex-Infomap6

• MultiGA7

• MultiMOGA8

4 P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, “Community structure in time-dependent, multiscale, and 
multiplex networks,” Science, vol. 328, no. 5980, pp. 876–878, 2010. 

5 Z. Kuncheva and G. Montana, “Community detection in multiplex networks using locally adaptive random walks,” in Proc. 
ASONAM, 2015, pp. 1308–1315.

6 M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, "Identifying Modular Flows on Multilayer Networks Reveals Highly 
Overlapping Organization in Interconnected Systems", Phys. Rev. X, 5, 011027, 2015. 

7 A. Amelio and C. Pizzuti, "A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks", In Proc. PSSN, pages 
222–232, 2014. 

8 A. Amelio and C. Pizzuti, "Community detection in multidimensional networks", In Proc. ICTAI, pages 352–359, 2014. 
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Experimental evaluation
Assessment Criteria

• Internal criteria

• redundancy measure
• actual number of redundant connections (i.e., pairs of nodes connected
through edges of different layers) divided by the theoretical maximum
(i.e., total number of layers times total number of node pairs in the
community)

• a global redundancy is finally obtained averaging the redundancy
values over all communities

• multilayer Silhouette
• twofold modification in the definition for single-layer graphs:
• the distance computation terms are linearly combined over all layers
• the distance between two nodes is computed as one minus the Jaccard
coefficient defined over the layer-specific sets of neighbors
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Assessment Criteria

• External criteria

• Normalized Mutual Information
• determines the alignment in terms of community memberships of nodes
between a community structure and another one used as reference

• the reference can be the solution obtained by Nerstrand on the flattened
multilayer graph

• the reference can be the layer-specific community structure solutions obtained
by Nerstrand on each of the layer graphs
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Experimental settings

• The main parameter of EMCD methods, θ, was varied in its
full range of admissible values, at a fine-grain step (0.001)
• We shall present results corresponding to values of θ that

determined meaningful variations in terms of multilayer
modularity
• the values in the set {0.01, 0.03, 0.05, 0.07} and from 0.1 to 0.9 with

step of 0.1.

• To generate the ensemble from each of the evaluation
network datasets, we applied Nerstrand on the individual
layer-specific graphs
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Experimental settings
• GL determines a community structure for each layer of a

network,
• a final solution was derived by assigning each node to the

community which lays on most of the layers
• PMM requires an input number of communities
• two configurations:
1. exhaustive search for the number of communities corresponding to the

best performance in terms of modularity, on every dataset
2. input parameter set to the number of communities determined by our

method
• we set to 50 the number of runs of the k-means clustering method,

whose application is required by PMM to obtain the consensus
solution



Experimental evaluation
Experimental settings

• ABACUS utilizes the eclat frequent-pattern mining method
to generate the transactional representation of the ensemble
• As by default configuration, the main model parameter in ABACUS

(i.e., the minimum support threshold) was kept quite low on each
dataset, typically in the range from three to ten

• For the genetic approaches (i.e., MultiGA and MultiMOGA),
LART, and Multiplex-Infomap, we referred to the default
parameters as specified in their respective works
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Results
Evaluation of EMCD methods

• First, the modularity value, for all methods, tends to follow a
non-increasing trend as the threshold value increases

• On the contrary, the number of communities tends to increase
as the threshold value becomes higher

• Among the three methods, M-EMCD turns out to be the
absolute winner, reaching the highest modularity over all
datasets

• Moreover, the M-EMCD solution has as good as or better
modularity than that obtained by the other two methods for the
same θ
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Evaluation of EMCD methods

• The table highlights the evident superiority of M-EMCD
against the other EMCD methods
• Also, with the exception of Higgs-Twitter and DBLP, CC-

EMCD tends to prevail against C-EMCD in terms of
modularity
• The table also provides indications about the fraction of

singleton communities in the consensus, i.e., disconnected
components comprised of a single node of the graph
• ability of M-EMCD to detect outliers in the consensus solution

• With the exception of EU-Air, the best-modularity consensus
includes zero or a small fraction of singletons
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Results
Evaluation of EMCD methods

• The silhouette of M-EMCD is higher (i.e., better) than CC-
EMCD and C-EMCD over the various θ values

• In most cases M-EMCD outperforms the other methods

• Interestingly, the latter occurs consistently with the best-
modularity performance
• the largest gain in silhouette is obtained by M-EMCD over the same θ

range that leads to the best modularity
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• The two NMI measures behave similarly, possibly by a
scaling factor, on most θ regimes
• The highest NMI values do not necessarily correspond to the

θ value by which the best-modularity consensus was
obtained
• It indicates that the community membership in the solution by

Nerstrand on the flattened graph can be quite different from
that in the modularity-based optimal structure of consensus
obtained by M-EMCD
• Also, the community membership of nodes in the consensus

keeps a moderate similarity with the community
memberships over each layer on average
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Evaluation of EMCD methods

Layer coverage

• M-EMCD is able to produce consensus communities
whose internal connectivity is, on average, characterized
by most of the layers

• M-EMCD has also the same ability in terms of
redundancy as C-EMCD, whose solution indeed
represents the topological upper bound, for a given θ, of
the communities being identified
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Results
Evaluation of EMCD methods

• The per-layer boxplots for M-EMCD are quite similar to
those for C-EMCD

• Coupling redundancy results from Table 4 and results
shown in this figure, it should be noted that the highest
values of redundancy of M-EMCD, observed in AUCS
(0.91) and VC-Graders (0.95), correspond to situations in
which the distribution of layer-characteristic communities is
more uniform
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• On Higgs-Twitter, there is one layer predominant on the
others

• Conversely, on DBLP, all layers participated almost equally in
the edge distribution of the consensus communities

• On London, the mid value of redundancy (0.533) should be
reconsidered as actually all three layers participate well in the
composition of the communities (the first and third layers are
highly characteristic for all communities, and the second one
corresponds to a distribution with median of 0.6; cf. Fig. 9-j)
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Evaluation of EMCD methods

• Robustness against ensemble perturbations

• We configured it by specifying the number of desired communities as
input parameter, rather than leaving Nerstrand free to automatically
determine the number of communities

• For a given dataset network, we generated multiple (e.g., 50)
ensembles, by varying each time the setting of the number of
communities to obtain on each layer of the network

• if we indicate with k1,...,kl the number of communities Nerstrand would
automatically detect, we selected the number of communities to obtain at
the i-th layer graph (i = 1..l) by picking it in the interval [ki−ε, ki+ε] uniformly
at random, where ε is an offset selected empirically



Results
Evaluation of EMCD methods

• We report results on EU-Air since it has much more layers
than the other datasets but DBLP, however unlike the latter,
there is no excessive proliferation in the number of
consensus communities
• We carried out 50 runs and analyzed the distribution of

performance scores corresponding to the 50 ensembles
• We perturbed the size of each layer in the ensemble at 5% of the size

of the consensus solution obtained by M-EMCD (with the default
configuration of Nerstrand), i.e., we set ε = 0.05 × |C∗| ≈ 15

• Results revealed a good robustness of M-EMCD to
variations in the size of the ensemble clusterings



Results
Evaluation of EMCD methods
• Efficiency evaluation

• We focused our evaluation on two networks: EU-Air and
mLFR-1M

• For each of the two network datasets, we ordered the
layer graphs by increasing size, then we derived several
subsets by grouping the layer graphs according to their
size order
• For every subset considered, the ensemble corresponded

to the community structures of the layer graphs belonging
to the subset
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(a) (b)

Fig. 10 Time performance of M-EMCD on (a) EU-Air and (b) mLFR-1M. 
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• The time performance trend grows linearly with the size (in
terms of layers, hence edge set) of the network under
consideration
• Therefore, our M-EMCD method scales well by increasing

the size of the network
• Note also that in Fig. 10(b) the slope of the trend line tends to

increase with θ, which might imply an increase in the number
of consensus communities
• It should also be noted that the number of iterations, required

by M-EMCD to converge, turns out to be small
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• Looking at modularity results, M-EMCD outperformed all
competing methods

• Also in terms of silhouette, M-EMCD tends to outperform all
competing methods

• Considering global redundancy values, M-EMCD generally
shows higher values than those of competitors over the
various networks
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• M-EMCD obtains higher global redundancy w.r.t. ABACUS and
LART, and lower redundancy than communities produced by the
other methods

• Coupled with modularity and silhouette results, this suggests that
M-EMCD can utilize less information from the various layers than
other methods to obtain higher quality consensus community
structures

• M-EMCD produces much more communities than Nerstrand,
ABACUS, PMM, MultiGA and MultiMOGA, while different relative
behaviors correspond to comparison with the other methods on
some networks
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• All methods but Nerstrand incurred memory issues on some datasets

• Some competitors methods inherently suffer from efficiency and
scalability issues
• the two genetic methods MultiGA and MultiMOGA have high computational complexity
• LART requires the computation of similarity matrix from the pair-wise transition
probabilities, and hence could not scale well with large multilayer networks

• By comparing the runtimes obtained by the competing methods with
those obtained by M-EMCD, we found that M-EMCD outperforms the
competing methods in terms of efficiency as well



Results
Summary of findings
• The modularity-based approach to the EMCD problem is

highly effective in producing consensus communities with
improved modularity w.r.t. the CC-EMCD and C-EMCD
methods

• M-EMCD also outperforms CC-EMCD and C-EMCD in
terms of silhouette of community membership

• Internal connectivity of the M-EMCD consensus com-
munities is characterized by the presence of most of the
layers
• M-EMCD has the same ability in terms of redundancy as C-EMCD



Results
Summary of findings
• M-EMCD is relatively robust to the presence of

disconnected components in a multilayer graph, as its
solutions tend to have a small number of singleton
communities

• Our method is relatively robust against perturbations in the
input ensemble, in terms of size of its constituting
clusterings

• M-EMCD scales well with the size of a multilayer network,
in accordance to its computational cost that is linear in the
number of edges



Results
Summary of findings

• M-EMCD consensus communities have shown to be
substantially better than those generated by the competing
methods, in terms of both modularity and silhouette of
community membership

• Also, the method tends to use less information from the
layers of the network than the competing methods, while
producing better consensus community structures


