NETWORK-BASED RECEIVABLE FINANCING

I. Bordino <u>F. Gullo</u>

UniCredit R&D Department Rome, Italy {ilaria.bordino, francesco.gullo}@unicredit.eu

The 27th ACM International Conference on Information and Knowledge Management (CIKM 2018) October 22-26, 2018

Turin, Italy

Background Motivation Challenges and contributions Outiline

Application scenario: Traditional (client-server) receivable financing

- A **receivable** is a debt owed to a company by its customers for goods or services that have been delivered or used but not yet paid for
 - e.g., invoices
- Receivable Financing (RF) is a service for creditors to fund cash flow by selling accounts receivables to a funder or financing company
 - Benefits for funder: service fee
 - Benefits for customers: instant access to capital, no credit control
- Existing funders adopt a client-server approach
 - each request for a receivable to be funded is handled individually by the funder

Background Motivation Challenges and contributions Outiline

A novel, network-based approach to receivable financing

Major limitation of client-server receivable financing

It disregards the fact that receivables constitute a **network where the same customer may act as a creditor or a debtor** of different receivables

Proposal

A novel approach to receivable financing where a **network perspective** is profitably exploited **to trigger a money flow among customers themselves**

Pros for the funder:

- More liquidity
- Reduced risk of exposure

Pros for customers:

- Smaller fees
- Reduced time and effort in service establishment

Background Motivation Challenges and contributions Outiline

A novel, network-based approach to receivable financing

(a) Client-server receivable financing

(b) Network-based receivable financing

Background Motivation Challenges and contributions Outiline

Challenges and contributions

Main challenge

Given a **network of receivables**, identify a proper **subset of receivables** to be **settled** (i.e., for which the receivable-financing service is provided)

- Formulation of network-based receivable settlement as a novel combinatorial-optimization problem
- Theoretical characterization of that problem
 - NP-hardness, bounds on the objective-function value of a set of solutions
- An exact branch-and-bound algorithm
- A more efficient algorithm
 - based on a relaxation of the original problem, and its theoretical characterization (NP-hardness and connection with KNAPSACK-like problems)
- A hybrid algorithm, as an ultimate proposal

Background Motivation Challenges and contributions Outiline

- Introduction: motivation, challenges, contributions
- Service overview
- Problem definition
- Algorithms
 - An exact algorithm
 - A more efficient algorithm
 - A hybrid algorithm

Experiments

• Introduction: motivation, challenges, contributions

Service overview

- Problem definition
- Algorithms
 - An exact algorithm
 - A more efficient algorithm
 - A hybrid algorithm

• Experiments

Receivables

A **receivable** $R \in \mathcal{R}$ is an object with the following attributes:

- $amount(R) \in \mathbb{R}$: amount of the receivable
- $creditor(R) \in \mathcal{U}$: customer being the payee of the receivable
- $debtor(R) \in \mathcal{U}$: customer being the payer of the receivable
- insertdate(R): date the receivable was added to the system;
- duedate(R): date on which the payment falls due
- *life*(R) ∈ N: the maximum number of days the network-based RF service is allowed to try to settle the receivable

R is said **active** for *creditor*(*R*), and **passive** for *debtor*(*R*)

Customers

Every **customer** $u \in \mathcal{U}$ is assigned the following attributes:

- $bl_r(u) \in \mathbb{R}$: receivable balance of u's account
- $bl_a(u) \in \mathbb{R}$: actual balance of u's account
- $cap(u) \in \mathbb{R}$: upper bound on the receivable balance of u's account
 - requiring $bl_r(u) \le cap(u)$ at any time avoids unbalanced situations where a customer utilizes the service only to get money without paying passive receivables

• $fl(u) \in \mathbb{R}$: lower bound on the actual balance of u's account

Network-based receivable financing in action

- Creditor submits a receivable R, setting life(R)
- System asks debtor(R) for confirmation
- System attempts to settle R during the period [insertdate(R), min{insertdate(R) + life(R), duedate(R)}]
- If no settlement happens, the receivable is returned to the creditor; otherwise, amount(R) is transferred from debtor(R) to creditor(R)

Do-ut-des principle

The debtor is encouraged to accept paying a receivable before its *duedate* to gain operability within the service, so as to get her (future) active receivables settled more easily \rightarrow due to the constraint $bl_r(u) \leq cap(u)$

Outline

- Introduction: motivation, challenges, contributions
- Service overview

Problem definition

- Algorithms
 - An exact algorithm
 - A more efficient algorithm
 - A hybrid algorithm

• Experiments

Input: active receivables and S-multigraph

- Receivable settlement works on a daily basis, running offline at the end of any working day t
- Input: set $\mathcal{R}(t)$ of valid receivables at time t
- $\mathcal{R}(t)$ describes a directed, weighted, node-attributed multigraph

Definition (S-multigraph)

Given a set $\mathcal{R}(t)$ of receivables active at time t, the *S*-multigraph induced by $\mathcal{R}(t)$ is a triple $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, where \mathcal{V} is a set of nodes, \mathcal{E} is a multiset of ordered pairs of nodes, i.e., arcs, and $w : \mathcal{E} \to \mathbb{R}^+$ is a function assigning (positive real) weights to arcs. Each arc $(u, v) \in \mathcal{E}$ models the case "u pays v", i.e., it corresponds to a receivable $R \in \mathcal{R}(t)$ where u = debtor(R), v = creditor(R), and w(u, v) = amount(R). Each node $v \in \mathcal{V}$ is assigned attributes $bl_r(u), bl_a(u), cap(u)$, and fl(u).

The MAX-PROFIT BALANCED SETTLEMENT problem

- Objective: maximize the total amount of selected receivables
 - desirable for both funder and customers
- Constraints:
 - (1) Consistency with *fl-cap* range: $bl_r(u) \leq cap(u)$, $bl_a(u) \geq fl(u)$
 - (2) Selected customers should be both payers and payees \rightarrow strategic marketing choice

Problem (MAX-PROFIT BALANCED SETTLEMENT)

Given an S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, find a multisubset \mathcal{E}^* of arcs so that

$$\hat{x}^* = \arg \max_{\hat{\mathcal{E}} \subseteq \mathcal{E}} \sum_{e \in \hat{\mathcal{E}}} w(e)$$
 subject to

$$\sum_{(v,u)\in\hat{\mathcal{E}}} w(v,u) - \sum_{(u,v)\in\hat{\mathcal{E}}} w(u,v) \in [fl(u) - bl_a(u), cap(u) - bl_r(u)],$$
(1)

$$\{(u,v) \mid (u,v) \in \hat{\mathcal{E}}\} \ge 1, \text{ and } |\{(v,u) \mid (v,u) \in \hat{\mathcal{E}}\}| \ge 1,$$
(2)

 $\forall u \in \mathcal{V}(\hat{\mathcal{E}}) = \{ u \in \mathcal{V} \mid (u, v) \in \hat{\mathcal{E}} \lor (v, u) \in \hat{\mathcal{E}} \}.$

MAX-PROFIT BALANCED SETTLEMENT is NP-hard (reduction from SUBSET SUM)

The MAX-PROFIT BALANCED SETTLEMENT problem

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

Outline

- Introduction: motivation, challenges, contributions
- Service overview
- Problem definition

Algorithms

- An exact algorithm
- A more efficient algorithm
- A hybrid algorithm

• Experiments

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: search space

- Binary tree T with $|\mathcal{E}|+1$ levels
- Levels (but the root) \equiv arcs in \mathcal{E}

• Root-to-leaf paths \equiv individual solutions $\hat{\mathcal{E}} \in 2^{\mathcal{E}}$

• Non-leaf tree node \equiv set of solutions

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: search-space exploration

Algorithm 1: Settlement-BB

Input: An S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$ **Output:** A multiset $\mathcal{E}^* \subseteq \mathcal{E}$

- 1: $\mathcal{T} := \text{tree-like representation of } 2^{\mathcal{E}}$
- 2: $\mathcal{X} \leftarrow \{ \text{root of } \mathcal{T} \}, \quad LB_{max} \leftarrow 0$
- 3: while ${\mathcal X}$ contains some non-leaf tree-nodes do
- 4: $X \leftarrow \text{extract} (\text{and remove}) \text{ a non-leaf tree-node from } \mathcal{X}$
- 5: $UB_X \leftarrow$ upper bound on the solutions spanned by X {Alg. 3}
- 6: if $UB_X \ge LB_{max}$ then
- 7: $LB_X \leftarrow$ lower bound on the solutions spanned by X {Alg. 2}
- 8: **if** $LB_X = UB_X$ **then** $\mathcal{E}^* \leftarrow arcs(X)$ and stop the algorithm
- 9: $LB_{max} \leftarrow \max\{LB_{max}, LB_X\}$
- 10: add all X's children to \mathcal{X}
- 11: $\mathcal{L} \leftarrow \{ \text{leaf } X \in \mathcal{X} | arcs(X) \text{ satisfy constraints of Problem 1} \}$

12:
$$\mathcal{E}^* \leftarrow \arg \max_{arcs(X): X \in \mathcal{L}} \sum_{e \in arcs(X)} w(e)$$

- Standard branch-and-bound exploration
- Crucial point: definition of lower bound and upper bound

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: lower bound

- For a tree-node X at level i of T,
 E_X = *E⁺_X* ∪ *E⁻_X*: arcs for which a decision has been taken
- Lower bound on the solutions spanned by X: any feasible solution $\hat{\mathcal{E}}$ to MAX-PROFIT BALANCED SETTLEMENT, subject to the additional constraint of containing all arcs in \mathcal{E}_X^+ and no arcs in \mathcal{E}_X^-
- Find the set \mathscr{C} of **cycles** of the multigraph induced by $\mathcal{E} \setminus \mathcal{E}_X^-$
- Greedily selects cycles based on their amount, as long as they meet the *fl-cap* problem constraints
 - other problem constraint always satisfied
 - cycle enumeration is a well-established problem (we use the classic Johnson's algorithm)
- Time complexity
 - dominated by cycle enumeration \Rightarrow we look for cycle up to length L
 - the rest takes $\mathcal{O}(L \left| \mathscr{C} \right| \log \left| \mathscr{C} \right|)$ time

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: lower-bound

Algorithm 2: Settlement-BB-LB

Input: An S-multigraph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$$
, two multisets $\mathcal{E}_X^+ \subseteq \mathcal{E}, \mathcal{E}_X^- \subseteq \mathcal{E}$
Output: A multiset $\hat{\mathcal{E}} \subseteq \mathcal{E} \setminus \mathcal{E}_X^-$
1: $\mathscr{C} \leftarrow$ cycles of multigraph $\mathcal{G}^- = (\mathcal{V}, \mathcal{E} \setminus \mathcal{E}_X^-, w)$ {Johnson's algorithm
2: $\hat{\mathcal{E}} \leftarrow \emptyset, \quad \hat{\mathscr{C}} \leftarrow \emptyset$
3: while $\mathscr{C} \neq \emptyset \land \mathcal{E}_X^+ \nsubseteq \hat{\mathcal{E}}$ do
4: $\mathscr{C} \leftarrow \{C \in \mathscr{C} \mid \hat{\mathcal{E}} \cup C \text{ meets Constraint (1) of MAX-PROFIT BALANCED SETTLEMENT}\}$
5: $C \leftarrow$ cycle in \mathscr{C} minimizing $[|C \cap (\mathcal{E}_X^+ \setminus \hat{\mathcal{E}})| \times \sum_{e \in C \setminus \hat{\mathcal{E}}} w(e)]^{-1}$
6: $\hat{\mathscr{C}} \leftarrow \hat{\mathscr{C}} \cup \{C\}, \quad \mathscr{C} \leftarrow \mathscr{C} \setminus \{C\}, \quad \hat{\mathcal{E}} \leftarrow \hat{\mathcal{E}} \cup C$
7: while $\mathscr{C} \neq \emptyset$ do
8: $\mathscr{C} \leftarrow \{C \in \mathscr{C} \mid \hat{\mathcal{E}} \cup C \text{ meets Constraint (1) of MAX-PROFIT BALANCED SETTLEMENT}\}$
9: $C \leftarrow$ cycle in \mathscr{C} maximizing $\sum_{e \in C \setminus \hat{\mathcal{E}}} w(e)$
10: $\mathscr{C} \leftarrow \mathscr{C} \setminus \{C\}, \quad \hat{\mathcal{E}} \leftarrow \hat{\mathcal{E}} \cup C$
11: if $\mathcal{E}_X^+ \nsubseteq \hat{\mathcal{E}}$ then $\hat{\mathcal{E}} \leftarrow \emptyset$

Exact branch-and-bound algorithm

The Settlement-BB algorithm: upper bound

Relaxation of MAX-PROFIT BALANCED SETTLEMENT where

- Constraint (2) is discarded
- Arcs are allowed to be selected fractionally

Problem (RELAXED SETTLEMENT)

Given an S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, find $\{x_e \in [0,1]\}_{e \in \mathcal{E}}$ so as to

Maximize $\sum_{e \in \mathcal{E}} x_e w(e)$ subject to $\left(\sum_{e=(v,u)\in\mathcal{E}}^{-} x_e w(e) - \sum_{e=(u,v)\in\mathcal{E}}^{-} x_e w(e)\right)$ $\in [fl(u) - bl_a(u), cap(u) - bl_r(u)], \forall u \in \mathcal{V}$

The desired upper bound relies on an interesting characterization of the RELAXED SETTLEMENT problem as a network-flow problem:

Solving Relaxed Settlement on multigraph \mathcal{G} is equivalent to solving MIN-COST FLOW on a modified version of $\mathcal G$

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: upper bound

Algorithm 3: Settlement-BB-UB

Input: An S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, two multisets $\mathcal{E}_X^+ \subseteq \mathcal{E}$, $\mathcal{E}_X^- \subseteq \mathcal{E}$ **Output:** A real number UB_X

1:
$$\mathcal{G}^- := (\mathcal{V}, \mathcal{E} \setminus \mathcal{E}^-_X, w)$$

 UB_X ← solve MIN-COST FLOW applying Theorem 4.2 on G⁻ and forcing flow f(e)=w(e), ∀e∈ E⁺_X; return −1 if no admissible solution exists

- We solve MIN-COST FLOW with the well-established Cost Scaling algorithm (Goldberg and Tarjan, Math. Oper. Res., 1990)
 - $\mathcal{O}(|\mathcal{E}|(|\mathcal{V}| \log |\mathcal{V}|) \log(|\mathcal{V}| w_{max}))$ time complexity, where $w_{max} = \max_{e \in \mathcal{E}} w(e)$

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: upper bound

The modified version of $\mathcal G$ considered in this context is as follows:

Definition (S-flow graph)

The S-flow graph $\mathcal{G}_f = (\mathcal{V}_f, \mathcal{E}_f, w_f)$ of an S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$ is a simple weighted directed graph where:

- All arcs (u, v) ∈ E between the same pair of nodes are collapsed into a single one, and the weight w_f(u, v) is set to ∑(u,v)∈E w(u, v);
- $\mathcal{V}_f = \mathcal{V} \cup \{\tilde{s}, \tilde{t}\}$, i.e., the node set of \mathcal{G}_f is composed of all nodes of \mathcal{G} along with two dummy nodes \tilde{s} and \tilde{t} ;
- *E_f* = *E* ∪ {(*š*, *u*) | *u* ∈ *V*} ∪ {(*u*, *t̃*) | *u* ∈ *V*} ∪ {(*t̃*, *š̃*)}, i.e., the arc set of *G_f* is composed of (*i*) all (collapsed) arcs of *G*, (*ii*) for each node *u* ∈ *V*, a dummy arc (*š*, *u*) with weight w_f(*š*, *u*) = bl_a(*u*) − fl(*u*) and a dummy arc (*u*, *t̃*) with weight w_f(*t̃*, *š̃*) = ∞.

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BB algorithm: upper bound

Theorem 4.2

Given an S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, let $\mathcal{G}_f = (\mathcal{V}_f, \mathcal{E}_f, w_f)$ be the S-flow graph of \mathcal{G} . Let also cost, lower-bound, upper-bound and supply/demand functions $c : \mathcal{E}_f \to \mathbb{R}$, $\lambda : \mathcal{E}_f \to \mathbb{R}, \ \mu : \mathcal{E}_f \to \mathbb{R}$ and $b : \mathcal{V}_f \to \mathbb{R}$ be defined as:

•
$$\lambda(e) = 0, \ \mu(e) = w_f, \ \forall e \in \mathcal{E}_f;$$

•
$$c(\tilde{t}, \tilde{s}) = 0$$
, and $c(\tilde{s}, u) = c(u, \tilde{t}) = 0$, $\forall u \in \mathcal{V}_f$;

•
$$c(e) = -1$$
, $\forall e \in \mathcal{E}_f \cap \mathcal{E}$

•
$$b(u) = 0, \forall u \in \mathcal{V}_f.$$

It holds that solving MIN-COST FLOW on input $\langle \mathcal{G}_f, c, \lambda, \mu, b \rangle$ is equivalent to solving Relaxed Settlement on input \mathcal{G} .

Corollary

Given an S-multigraph \mathcal{G} , the solution to MAX-PROFIT BALANCED SETTLEMENT on \mathcal{G} is upper-bounded by the solution to MIN-COST FLOW on the input $\langle \mathcal{G}_f, c, \lambda, \mu, b \rangle$ of Theorem 4.2.

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

Outline

- Introduction: motivation, challenges, contributions
- Service overview
- Problem definition

Algorithms

- An exact algorithm
- A more efficient algorithm
- A hybrid algorithm

• Experiments

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BEAM algorithm

- Main idea: enumerating cycles and properly selecting a subset
- \bullet We formulate the <code>Optimal Cycle Selection</code> problem
 - find a subset of cycles exhibiting the maximum total amount and satisfying the constraints of MAX-PROFIT BALANCED SETTLEMENT
- We theoretically characterize **OPTIMAL CYCLE SELECTION**
 - NP-hardness (reduction from MAXIMUM INDEPENDENT SET)
 - connection with KNAPSACK-like problems (i.e., SET UNION KNAPSACK)
- We devise our Settlement-BEAM inspired by the well-established Aruselvan's algorithm for SET UNION KNAPSACK
 - arcs \equiv elements, cycles \equiv items
 - extension to handle MULTIDIMENSIONAL SET UNION KNAPSACK
 - coupling it with a beam-search methodology

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-BEAM algorithm

Algorithm 4: Settlement-BEAM

Input: An S-multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, w)$, an integer K **Output:** A multiset $\mathcal{E}^* \subset \mathcal{E}$ 1: $\mathcal{E}^* \leftarrow \emptyset$ 2: $\mathscr{C} \leftarrow \text{cycles of } \mathcal{G}$ 3: while $\mathscr{C} \neq \emptyset$ do 4: $\mathscr{C}' \leftarrow K$ -sized subset of \mathscr{C} by Greedy MAX COVER 5: $\mathscr{C}'_2 \leftarrow \{\{C_i, C_i\} \mid C_i, C_i \in \mathscr{C}'\}$ 6: for all $\{C_i, C_i\} \in \mathscr{C}'_2$ do 7: $C_{ii} \leftarrow C_i \cup C_i$ 8: process all $C \in \mathscr{C}' \setminus \{C_i, C_i\}$ one by one, by non-increasing $\omega(\cdot)$ score (Eq.(3)); add C to C_{ii} if $C_{ii} \cup C \cup \mathcal{E}^*$ is feasible for Optimal Cycle Selection 9: $\mathcal{E}^* \leftarrow \mathcal{E}^* \cup \operatorname{arg\,max}_{C_{ii} \in \mathscr{C}'_2} \sum_{e \in C_{ii}} w(e)$ 10: $\mathscr{C} \leftarrow \mathscr{C} \setminus (\mathscr{C}' \cup \{C \in \mathscr{C} \mid C \cap \mathcal{E}^* = C\})$

•
$$\omega(C) = \frac{\sum_{e \in C} w(e)}{\sum_{e \in C} \frac{w(e)}{f(e)}}, \text{ where } f(e) = |\{C \in \mathscr{C} : e \in C\}|$$
 (3)

● $O(LK^2 | C |)$ time complexity

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

Outline

- Introduction: motivation, challenges, contributions
- Service overview
- Problem definition

Algorithms

- An exact algorithm
- A more efficient algorithm
- A hybrid algorithm

• Experiments

Exact branch-and-bound algorithm Beam-search algorithm Hybrid algorithm

The Settlement-HYBRID algorithm

- Run Settlement-BB on the smaller connected components
- Run Settlement-BEAM on the larger connected components

Algorithm 5: Settlement-HYBRID

Implementation details:

- Extract the (1,1)-D-core of the input S-multigraph beforehand
- Tree-like search space of Settlement-BB:
 - sort arcs by non-decreasing amount
 - DFS vs. BFS: no evident difference

Outline

- Introduction: motivation, challenges, contributions
- Service overview
- Problem definition
- Algorithms
 - An exact algorithm
 - A more efficient algorithm
 - A hybrid algorithm

• Experiments

Experimental evaluation: settings

- Random sample of a **real dataset** provided by UniCredit, a noteworthy European banking company
 - 5 413 375 receivables; 369 479 (anonymized) customers; 1 year in 2015-16
- Customers' attributes set based on statistics computed on a training prefix of 3 months of data
- fl(u) = 0, for each customer u
- 6 simulation settings:
 - $cap < \infty$ vs. $cap = \infty$
 - "worst", "normal", "best" scenarios (defined by invoice lifetime and *cap*)
- L = 15 (all algorithms based on cycle enumeration), H = 20 (Settlement-BEAM), and K = 1000 (Settlement-BEAM and Settlement-HYBRID)

Experimental evaluation: general performance

			Settlement-bb-lb			
CAF	Scenario	D Period	Amount	Time (s)	Receivable	s Clients
∞	normal	20150701-0930	553 364 544	64.58	7131	2836
		20151001-1231	643 722 123	6.67	6742	2736
		20160101-0331	693 852 990	29.03	7999	3034
		20160401-0630	751 368 135	30.81	8289	3189
		11	Settlement-beam			
CAP	Scenario		Amount	Time (c)	Receivables	Cliente
	Scenario	Period	Amount	rine (s)	Necelvables	Clients
		20150701-0930	660 907 304	• • •	15 323	3761
				• • •		
∞	normal	20150701-0930	660 907 304	1168.95 618.98	15 323	3761
∞	normal	20150701-0930 20151001-1231	660 907 304 663 873 349	1168.95 618.98	15 323 14 570	3761 3507

			Settlement-hybrid					
САР	Scenario	Period	Amount	%Gain vs. S-bb-lb	%Gain vs. S-beam	Time (s)	Receivables	Clients
		20150701-0930 20151001-1231 20160101-0331	779733K	40.91	17.98	1006.17	17 082	4268
∞	normal	20151001-1231	784315K	21.84	18.14	690.14	16761	4133
	normai	20160101-0331	827346K	19.24	11.21	1329.80	19544	4701
		20160401-0630	987866K	31.48	15.41	865.92	19576	4718

I. Bordino, F. Gullo

Network-based Receivable Financing

Experimental evaluation: scalability

Table: Scalability of the proposed Settlement-HYBRID algorithm

Days	Nodes	Arcs	Amount	Time (s)
5	15 983	14 466	185 959	1
10	41088	43 244	873 317	4
15	68 183	85 454	3 471 960	17
30	106 167	183 570	16151068	65
60	143 989	377 635	38 063 145	3291
90	168861	600 172	73 101 255	27 504

Conclusion

- We introduce a novel, network-based approach to receivable financing
- We provide a principled formulation and solution of such a novel service
- We define and characterize a novel optimization problem on a network of receivables, and design both an exact algorithm and a more efficient algorithm
- Experiments on real receivable data show that our algorithms work well in practice

We believe our work is a well-suited example of how a real-world problem from a specific application domain (i.e., finance) requires non-trivial algorithmic and theoretical effort to be effectively solved in practice

Thanks!

I. Bordino, F. Gullo Network-based Receivable Financing

The MIN-COST FLOW problem

Problem (MIN-COST FLOW)

Given a simple directed graph G = (V, E), a cost function $c : E \to \mathbb{R}$, lower-bound and upper-bound functions $\lambda : E \to \mathbb{R}$, $\mu : E \to \mathbb{R}$, and a supply/demand function $b : V \to \mathbb{R}$, find a flow $f : E \to \mathbb{R}$ so as to

$$\begin{array}{ll} \textit{Minimize} & \sum_{e \in E} c(e) f(e) \\ \textit{subject to} & \lambda(e) \leq f(e) \leq \mu(e), \quad \forall e \in E \\ & \sum_{u:(v,u) \in E} f(v,u) - \sum_{u:(u,v) \in E} f(u,v) = b(u), \ \forall u \in V \end{array}$$

The SET UNION KNAPSACK problem

Problem (SET UNION KNAPSACK)

Let $U = \{x_1, \ldots, x_h\}$ be a universe of elements, $S = \{S_1, \ldots, S_k\}$ be a set of items, where $S_i \subseteq U$, $\forall i \in [1..k]$, $p : S \to \mathbb{R}$ be a profit function for items in S, and $q : U \to \mathbb{R}$ be a cost function for elements in U. For any $\hat{S} \subseteq S$ define also: $U(\hat{S}) = \bigcup_{S \in \hat{S}} S$, $P(\hat{S}) = \sum_{S \in \hat{S}} p(S)$, and $Q(\hat{S}) = \sum_{x \in U(\hat{S})} q(x)$. Given a real number $B \in \mathbb{R}$, SET UNION KNAPSACK finds $S^* = \arg \max_{\hat{S} \subseteq S} P(\hat{S})$ s.t. $Q(\hat{S}) \leq B$.

The MULTIDIMENSIONAL SET UNION KNAPSACK problem

Problem (MULTIDIMENSIONAL SET UNION KNAPSACK)

Given U, S, p as in SET UNION KNAPSACK, a d-dimensional cost function $q: U \to \mathbb{R}^d$, and a d-dimensional vector $\mathbf{B} \in \mathbb{R}^d$, find $S^* = \arg \max_{\hat{S} \subseteq S} P(\hat{S})$ s.t. $\mathbf{Q}(\hat{S}) \leq \mathbf{B}$, where $\mathbf{Q}(\hat{S}) = \sum_{x \in U(\hat{S})} q(x)$.