

To be connected,

or not to be connected...

That is the Minimum Inefficiency Subgraph Problem

Natali Ruchansky Francesco Bonchi David Garcia-Soriano Francesco Gullo Nicolas Kourtellis Biologists in Lab X have constructed a large protein-protein interaction network (PPI).

Biologists in Lab X have constructed a large protein-protein interaction network (PPI).

The PI has tasked them with making an amazing discovery about relationship among **specific proteins** P1, P2, and P3.

Given a set of **subjects in a terrorist network** suspected of organizing an attack. Which other subjects, likely to be involved, should we keep under control?

Given a set of users who clicked on an ad, who else should the ad be displayed to?

Given a set of **patients infected** with a viral disease, which other people should we monitor?

Community search / seed set expansion

• General class of problems of the form:

Given a graph G=(V,E) and a set of vertices Q ⊂ V ,
find a subgraph H of G that "explains" the connections among Q.
(H minimizes/maximizes some objective function)

- Several approaches in the literature
 - H must be a connected subgraph
 - Mostly based on random-walks
 - Tend to return rather large solutions
 - Solutions get very large when query nodes belong to different communities
 - Have parameters

The Minimum Wiener Connector Problem (SIGMOD 2015)

<u>Our proposal</u>: find the connected subgraph H containing Q and minimizing the **Wiener Index** (the sum of pairwise distances)

$$H^* = \underset{G[S]:Q\subseteq S\subseteq V}{\operatorname{arg\,min}} \sum_{\{u,v\}\in S} d_{G[S]}(u,v)$$

- Parameter-free
- Returns smaller and denser subgraphs No matter whether the query nodes belong to the same community or not
- Add "important" nodes (high centrality)
- Efficient algorithm with approximation guarantees

	email	yeast	oregon	astro	qplb	youtube	
[N[H]]	671	819	9028	12758	11804	17865	CTP
	155	188	4556	1735	7349	5615	CPS
	137	100	1846	598	842	684	\mathbf{PPR}
	26	24	26	26	25	19	\mathbf{ST}
	24	24	23	23	23	17	WS-Q
$\delta(H)$	0.016	0.016	0.01	< 0.01	< 0.01	0.01	CTP
	0.047	0.028	0.02	0.019	0.01	< 0.01	CPS
	0.029	0.039	0.02	0.07	0.01	0.02	PPR
	0.080	0.088	0.090	0.09	0.08	0.1	\mathbf{ST}
	0.093	0.091	0.106	0.13	0.11	0.13	WS-Q
bc(H)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	CTP
	0.03	0.02	< 0.01	< 0.01	< 0.01	< 0.01	\mathbf{CPS}
	0.03	< 0.01	< 0.01	0.02	0.01	< 0.01	PPR
	0.09	0.07	0.10	0.11	0.10	0.13	\mathbf{ST}
	0.11	0.11	0.12	0.14	0.12	0 .18	WS-Q
$\mathbf{W}(H)$	$\approx 750k$	$\approx 2M$	$\approx 137M$	$\approx 292M$	$\approx 400M$	$\approx 1.5G$	CTP
	54598	69296	$\approx 50M$	$\approx 8.3M$	$\approx 12.6M$	$\approx 561M$	\mathbf{CPS}
	52222	15838	$\approx 7.5M$	40079	$\approx 1.2M$	$\approx 1.3M$	PPR
	1200	1259	1164	1318	3371	1324	\mathbf{ST}
	968	931	923	1007	2043	956	WS-Q

Smaller, denser, and more central vertices

Relaxing connectivity

instead of forcing connectivity

relax the constraint

Desired Properties

Parsimonious vertex addition

• vertices should be added iff they help forming a more **cohesive** subgraph

Outlier Tolerance

• query vertices which are far from others should remain disconnected

Multi-community awareness

 if the query vertices span multiple communities, connectedness should not be imposed among them

Cohesiveness

- As with the Wiener Connector, we leverage shortest path distances; however, the distance between disconnected vertices is infinite.
- Idea: use the reciprocal of the shortest-path distance! This has the useful property of handling disconnection neatly ($\infty^{-1} = 0$)

Network Efficiency (Latora and Marchiori):
$$\mathcal{E}(G) = \frac{1}{|V|(|V|-1)} \sum_{\substack{u,v \in V \\ u \neq v}} \frac{1}{d_G(u,v)}$$

Harmonic Centrality (Boldi and Vigna):
$$c(u) = \sum_{v \in V} \frac{1}{d_G(v, u)}$$

What about these problem statements?

Given a graph G=(V,E) and a set of vertices $Q \subset V$, find a (not-necessarily connected) subgraph H of G, with $Q \subset V(H)$ that maximizes network efficiency E(H)

Given a graph G=(V,E) and a set of vertices $Q \subset V$, find a (not-necessarily connected) subgraph H of G, with $Q \subset V(H)$ that maximizes the total harmonic centrality C(H)

These do not work...

Minimize Network Inefficiency

Given a graph G=(V,E), we define its inefficiency as:

$$\mathcal{I}(G) = \sum_{\substack{u, v \in V \\ u \neq v}} 1 - \frac{1}{d_G(v, u)}$$

Note:

$$\mathcal{E}(G) = C(G)/(n(n-1))$$
$$I(G) = n(n-1) - C(G)$$

... and this works

Problem statement and hardness

PROBLEM 1 (MIN-INEFFICIENCY-SUBGRAPH). Given an undirected graph G = (V, E) and a query set $Q \subseteq V$, find $H^* = \underset{G[S]:Q \subseteq S \subseteq V}{\operatorname{Min}}$

THEOREM 4.1. MIN-INEFFICIENCY-SUBGRAPH is NP-hard, and it remains hard even on undirected graphs with diameter 3.

Greedy Algorithm

Connect	Start with the Minimum Wiener Connector for Q
Remove	Remove one vertex at a time until Q is disconnected
Choose	Choose the intermediate solution <mark>S</mark> that minimizes I(S)

Competitors

Figure 1: Comparison on the Dolphins social network: query vertices are in blue, added vertices are in green.

Research Track Paper		The Community-search Problem and		The Minimum Wiener Connector Problem		Bump hunting in the dark: Local discrepan	<i>y</i>	Mining Connection Pathways for Marked Nodes in Large Graphs	
Center-Piece Subgraphs: Problem Definition and Fast Solutions		How to Plan a Successful Cocktail Party Mauro Sozio" Aristides Gionis MaxPans-Institut für Informatik Barcelona, Spain msozio@mpi-lin.fm.g.de gionis@yaho-inc.com		Natali Ruchansky Francesco Bonchi David Garcla-Soriano Computer Science Dept. Francesco Gullo Nicolas Kourtellis Boston University, USA Yahoo Labs, Barcelona natalir@ba.selu (bonchi davidjs.gullo.kourtell @yakeo-inc.com		maximization on graphs Aristides Gionis, Michael Mathioudakis, Anti Ukkonen Helsoki Jostiante for Information Technology HIIT Anto Kinisterio, Faland TERECOME - LATLANDERS HIIT Advance-We study the problem of discrepance Antonio Anto	Leman Akoglu Jilles V SUNY at Stony Brook University leman@cs.stonybrook.edu jilles.vreeke Duen Homg Chau Nikola Georgia Tech KU L polo@gatech.edu nikolaj.tati@c	of Antwerp City College, City University of NY n@ua.ac.be tong@cs.ccny.cuny.edu j Tatti Christos Faloutsos euven Carnegie Mellon University	
ABSTRACT Glove Q nodes in a social network (og. anthorship ort- work), how can we find the node/anthor that is the center- piers, and has direct or indirect constraints to all, or mout of them? For example, this node could be the oronous ad- dy mode below, in the nonstraint criminal, connected to all current suspects, non-equivalent states of the second of proteins), you regulatory underskill find the pro- terior states of the second state of the second state of given Q proteins), yield marketing and many more. Properties indexide in minoreast the state states of the second of proteins in the second state of the second states of th	Categories and Subject Descriptors L23: Database Management]: Database Applications – Data Mining General Perms Application, experimentation Keywords Catter-jetee subgraph, goothese store, KastfAND	ABSTRACT A lot of research in graph mining has been devoted in the dis- covery of communities. Most of the work has focused in the second row of the second second second second second ing applications one is interstored in finding the community fermed by a given set of nodes. In this paper we study a graph <i>G</i> , and a set of gener softs in the graph, we soft to find a subgraph of <i>G</i> that contains the query nodes and it is donely constrained.	1. INTRODUCTION Graphe is one of most ubiquitons data representations, and they find applications in a wide range of areas including the start of the start of the start of the start of the weak of the start of the start of the start of the start is need for designing algorithmic data-analysis tools and for developing applications that exploit the lotent structure in the start of the start of the start of the start of the developing application of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the robust of the start of the start of the start of the robust of the start of the start of the start of the start of the start of the start of the start of the start is the second where community and to be denomined to be a start of the s	ABSTRACT The Wiener index of a graph is the sum of all pairwise ishertor-path distances between its vertices. In this paper we study the model poolen of diffinition a minimum Wiener momentum W_{CM} (L_{CM}) and a set all query vertices and has minimum Wiener index. We show that Mite Wiener Coxetterion admits a polynomial-time (albeit imparticul) acat algorithm for the special case where the number of query vertices is bounded. We show there the number of query vertices is bounded.	methods tend to return too large a subgraph, often so large as to be meaningless and unusable in real applications. The goal of this paper is different, as we do not aim at re- constructing a community. Instead we seek a <i>small</i> connec-	we there is priority as conversely the gradual of $C/2$ the free tools in the variable of the free tools. This variable tools in the variable of the free tools. This variable tools in the variable of the free tools in the variable of the varia	Abstract Suppose we are given a large graph in which, by some external process, a handfill of nodes are marked. What can graph? or, if vegregated, how may groups do they form? propress this problem in terms of the Minimum Description Leggit principle: a pathway is simple when we do they the minimum between the the Minimum Description Leggit principle: a pathway is simple when we	(a) What to say about this "list" of authors?	
	KDD'06		KDD'10		SIGMOD'15	ICDE'	.5	SDM'13	

Brain Co-activation Network

The data is a graph where each vertex is an area of the brain and edges are added according to co-activation in experiments. (The graph is one connected component)

The 3 components in the solution end up corresponding to different functions: **motor**, **visual**, and **emotional**.

relaxing connectivity highlights three different functional relationships and gives a smaller, more interpretable solution

Brain Co-activation Network: competitors

Experimental Results

Parsimonious vertex addition

• vertices should be added iff they help forming a more **cohesive** subgraph

Outlier Tolerance

• query vertices which are far from others should remain disconnected

Multi-community awareness

 if the query vertices span multiple communities, connectedness should not be imposed among them

Experimental Results

Cohesive meal creation

Biology

Thanks!

