E. GALIMBERTI, F. BONCHI, F. GULLO CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

AGENDA

- Multilayer Networks
- Core Decomposition and Densest Subgraph
- Multilayer Core Decomposition
- Experiments
- Multilayer Densest Subgraph

ETWORKS

CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

MULTILAYER NETWORKS

MULTILAYER NETWORKS

- Many real-world applications:
 - social media
 - biology
 - finance
 - transportation systems
 - critical infrastructures
- Represented by multilayer graphs G=(V,E,L) where
 - V is a set of **vertices**
 - L is a set of **layers**
 - $E \subseteq V \times V \times L$ is a set of **labeled edges**

CORE DECOMPOSITION AND DENSEST SUBGRAPH

CORE DECOMPOSITION

Given a simple, single-layer, graph G. degree at least k.

The set of all k-cores forms the **core decomposition** of G.

The k-core (or core of order k) of G is a maximal subgraph $G[C_k]$ such that every vertex u in C_k has

CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

CORE DECOMPOSITION

- It can be computed in linear time
- It has been studied for various types of graph
 - uncertain
 - directed
 - weighted
- standpoint, without providing any algorithm

> Azimi-Tafreshi et al. study the core-percolation problem on multilayer networks from a physics

DENSEST SUBGRAPH

Given a simple, single-layer, graph G. The **densest subgraph** is the subgraph of G maximizing the average-degree density.

- Exact polynomial time algorithm
- Linear-time 1/2-approximation algorithm
- maximizing the minimum average degree over all layers

> Jethava et al. formulate the densest common subgraph problem, i.e., find a subgraph

MULTILAYER CORE DECOMPOSITION

MULTILAYER CORE DECOMPOSITION

Let G = (V, E, L) be a multilayer graph and an |L|-dimensional integer vector $\mathbf{k} = [k_1]$. The multilayer k-core of G is a maximal subgraph $G[C_k]$ whose vertices have at least degree k_l in C_k , for all layers I in L.

Given a multilayer graph G=(V,E,L), find the set of all **non-empty** and **distinct** multilayer cores G.

Such a set constitutes the multilayer core decomposition of G.

- The number of multilayer cores to be output may be exponential in the number of layers
- No polynomial-time algorithm can exist

)	of

SEARCH SPACE: CORE LATTICE

A k-core with coreness vector k=[k_l] is contained into any k'-core described by a coreness vector k'=[k_{l'}] whose components k_{l'} are all no more than components k_l

ł

CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

NAIVE ALGORITHM

- Every possible core is computed separately and without a specific ordering
- Weaknesses:
 - each core is computed starting from the whole input graph
 - a lot of non-distinct and/or empty (thus, unnecessary) cores may be computed

BREADTH-FIRST ALGORITHM

- > The core lattice is explored level by level
- Cores are computed from the intersection of all their fathers
- Cores having less fathers then the number of non-zero components of its coreness vector k are not visited
- Weaknesses:
 - the computation of the cores within a straight path can be performed more efficiently
 - non-distinct cores are computed

DEPTH-FIRST ALGORITHM

- The core lattice is explored path by path, resembling a depth-first search
- The algorithm iteratively picks a non-leaf core k=[k_l] and computes all cores in the path varying a component of k
- Not all paths have to be explored to visit the whole core lattice
- Weaknesses:
 - cores may be computed multiple times
 - cores are computed starting from larger subgraphs
 - non-distinct cores are still computed

CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

HYBRID ALGORITHM

- The algorithm starts with a single-layer core decomposition for each layer
- Then it performs a breadth-first search equipped with a "look-ahead" mechanism
- All cores are computed once and nondistinct cores are skipped

EXPERIMENTS

DATASETS

dataset		E	L	domain
Homo	18k	153k	7	genetic
SacchCere	6.5k	247k	7	genetic
DBLP	513k	1.0	10	co-authorship
ObamaInIsrael	2.2M	3.8M	3	social
Amazon	410k	8.1M	4	co-purchasing
FriendfeedTwitter	155k	13M	2	social
Higgs	456k	13M	4	social
Friendfeed	510k	18M	3	social

EFFICIENCY

dataset	#output cores	method	time (s)	#computed core
SacchCere	74,426	Ν	19,282	278,402
		BFS	802	89,883
		DFS	2,117	223,643
		Н	819	83,978
DBLP	3,346	Ν	104,361	34,572
		BFS	66	6,184
		DFS	219	38,887
		Н	26	5,037
Amazon	1,164	BFS	2,349	1,354
		DFS	3,809	2,459
		Н	2,464	1,334
Friendfeed	365,666	BFS	45,568	546,631
		DFS	12,211	568,107
		Н	37,495	389,323

es

RESULTS

SacchCere

CASE STUDY: BRAIN

- Dataset to study the effect of LSD on the human brain:
 - 3 neuroimaging techniques
 - ► 15 individuals
 - 2 states
- 6 multilayer networks:
 - ► 165 vertices
 - 15 layers

MULTILAYER DENSEST SUBGRAPH

MULTILAYER DENSEST SUBGRAPH

Given a multilayer graph G = (V, E, L), a positive real number β , and a real-valued function

 $\delta(S) = \max_{\hat{I} \subset I}$

find a subset S* of V that maximizes function δ .

- \triangleright β controls the importance of the two ingredients of the objective function δ
- subgraph S*

$$\operatorname{axmin}_{L \in \hat{L}} \frac{\left| E_{I}[S] \right|}{\left| S \right|} \left| \hat{L} \right|^{\beta}$$

Solving the problem allows for automatically finding a set of layers of interest for the densest

APPROXIMATION ALGORITHM

- Compute the multilayer core decomposition of the input graph
- subgraph

Let C^{*} denote the core maximizing the density function δ , then $\delta(C^*) \geq \frac{1}{2|L|^{\beta}} \delta(S^*),$ i.e., the algorithm achieves 1/2|L|^B approximation guarantees.

Among all cores, take the one maximizing the objective function δ as the output densest

CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

RESULTS

E. GALIMBERTI, F. BONCHI, F. GULLO CORE DECOMPOSITION AND DENSEST SUBGRAPH IN MULTILAYER NETWORKS

ANECDOTAL EVIDENCE: DBLP

