A Time Series Based Approach for Classifying Mass Spectrometry Data

Francesco Gullo

DEIS - Università della Calabria

joint work with:

- G. Ponti, A. Tagarelli (DEIS Università della Calabria)
- G. Tradigo, P. Veltri (Università di Catanzaro)

Focus in MS-based Proteomics:

identify discriminating values in the spectra (i.e. (m/z, intensity) couples corresponding to biomarkers) that are indicators of biological states (e.g. disease).

Mandatory requirement: **AUTOMATIC DATA MANAGEMENT**

Traditional data mining tasks
directly applied on raw spectra
may not reach satisfying results

Need for a proper mass spectra representation

Mass Spectra modelled as TIME SERIES

Basic Motivations:

- From spectra to time series: trivial modelling
- Several well-established and valid approaches for mining of time series
- Many proper solutions for time series dimensionality reduction

TIME

Our idea allowed us to reach excellent results in classifying mass spectra:

Ovarian Cancer dataset

classification accuracy: 87%

MALDI UNICZ dataset

classification accuracy: 96%

Outline

- Introduction
- Overview of time series data management
 - □ The DSA model
- A Time Series based Framework for Mass Spectrometry Data
- Experimental results
- Conclusions

Time Series data

Traditional time series form:

$$T = [(x_1, t_1), \dots, (x_n, t_n)]$$

Time series form under condition of fixed sampling period:

$$T = [x_1, \dots, x_n]$$

Time Series Data Mining

Automatic management of time series data is typically accomplished by applying data mining tasks.

Two main issues:

Distance Measures

- One-to-one alignment (euclidean distance)
- Warping time axis
- String matching

Dimensionality Reduction

- Piecewise discontinuous functions
- Low-order continuous functions

Time Series Distance Measures: Dynamic Time Warping

Fixed Time Axis
Sequences are aligned "one to one"

Dynamic Time Warping

"Warped" Time Axis
Nonlinear alignments are possible

Time Series Dimensionality Reduction

Time Series Dimensionality Reduction: DSA model

DSA (*Derivative time series Segment Approximation*) – CIKM'06

- High rate data compression
- > Feature-reach representations
- Best trade-off between effectiveness and efficiency

$$T = [(x_1, t_1), (x_2, t_2), ..., (x_n, t_n)]$$
Time Series

$$T = \begin{bmatrix} (x_1, t_1), (x_2, t_2), \dots, (x_n, t_n) \end{bmatrix} \qquad \qquad \tau = \begin{bmatrix} (\alpha_1, t_1'), (\alpha_2, t_2'), \dots, (\alpha_p, t_p') \end{bmatrix}$$
Time Series

DSA sequence

DSA steps:

- 1. Derivation
- 2. Segmentation
- 3. Segment Approximation

Classification of MS data: our proposal

Novelty:

Time Series based representation for Mass Spectra

The proposed framework

Three main parts:

- 1. MS Data Preprocessing
- 2. Time Series Modelling
- 3. Classification and Evaluation

Three main parts:

- 1. MS Data Preprocessing
- 2. Time Series Modelling
- 3. Classification and Evaluation

The MS Data Preprocessing Module performs a set of preliminary steps on the original raw spectra.

- Noise reduction
- Identification of valid peaks
- Quantization

The MS Data Preprocessing Module performs a set of preliminary steps on the original raw spectra.

- Noise reduction
- Identification of valid peaks
- Quantization

The MS Data Preprocessing Module performs a set of preliminary steps on the original raw spectra.

- Noise reduction
- Identification of valid peaks
- Quantization

The MS Data Preprocessing Module performs a set of preliminary steps on the original raw spectra.

- ➤ Noise reduction
- Identification of valid peaks
- Quantization

The proposed framework: time series modelling

Three main parts:

- 1. MS Data Preprocessing
- 2. Time Series Modelling
- 3. Classification and Evaluation

The proposed framework: time series modelling

The *Time Series Modelling Module* represents the preprocessed spectra into a time series based model.

$$S = [(I_1, (m/z)_1), (I_2, (m/z)_2), ..., (I_n, (m/z)_n)]$$
 Mass Spectrum

$$T = [(x_1, t_1), (x_2, t_2), ..., (x_n, t_n)]$$
 Time Series

$$\tau = \left[(\alpha_1, t_1'), (\alpha_2, t_2'), \dots, (\alpha_p, t_p') \right]$$
 DSA sequence

The proposed framework: classification and evaluation

Three main parts:

- 1. MS Data Preprocessing
- 2. Time Series Modelling
- 3. Classification and Evaluation

The proposed framework: classification and evaluation

The Classification Module

performs a task of *clustering* (i.e. unsupervised classification) on mass spectra

- High intra-cluster similarity
- Low inter-cluster similarity

The Evaluation Module

is in order to assess the accuracy of the output classification w.r.t. the desired classification.

$$R = \frac{1}{k} \sum_{i=1}^{k} \frac{\left| C_i \cap \Gamma_i \right|}{\left| \Gamma_i \right|} \quad recall$$

 $P = \frac{1}{k} \sum_{i=1}^{k} \frac{\left| C_i \cap \Gamma_i \right|}{\left| C_i \right|} \quad precision$

$$\Gamma = \{\Gamma_1, ..., \Gamma_k\}$$

$$C = \{C_1, ..., C_k\}$$

$$extraction$$
 output classification

$$F = \frac{2PR}{P + R}$$
 f-measure

Experimental Results

Ovarian Cancer(*) SELDI dataset

50 spectra
2 classes (control - diseased)
56,384 (m/z, intensity) couples

Classification Results:

$$P = 0.88$$
 $R = 0.86$
 $F = 0.87$

Experimental Results

MALDI unicz

MALDI dataset

20 spectra2 classes (healthy - diseased)34,671 (m/z, intensity) couples

Classification Results:

$$P = 0.99$$
 $R = 0.93$
 $F = 0.96$

Conclusions

- Mass Spectrometry meets Time Series:
 a new framework
 for classifying MS data
- High capability in classifying and discriminating mass spectra

The S...