
General-purpose query processing on summary graphs

Francesco Gullo

University of L’Aquila – DISIM Department

Italy

francesco.gullo@univaq.it

https://fgullo.github.io/

September 3rd, 2024

mailto:giovanni.stilo@univaq.it
mailto:giovanni.stilo@univaq.it
https://fgullo.github.io/

Joint work with

Aris
Anagnostopoulos

Giorgia
Salvatori

Lorenzo
Severini

Valentina
Arrigoni

Thank you!

Introduction

Graphs

entities of interest
(nodes) linked to one

another via
relationships (edges)

Graphs are ubiquitous!

image source

Internet Web

image source image source

computer networks social networks

image source

food web

image source image source

protein networks financial networks

image source image source

text networks

image source

road networks

subway maps

image source

http://internet-map.net/
https://doi.org/10.1145/2436256.2436269
https://doi.org/10.2498/cit.1001319
https://www.consulenzasocialmedia.it/social-network-elenco-completo-la-lista-di-tutte-le-reti-sociali-online/
https://www.blendspace.com/lessons/h4STxUQwXUJIvg/copy-of-food-webs
https://doi.org/10.1073/pnas.1603992113
http://dx.doi.org/10.1126/science.1173644
https://cbail.github.io/textasdata/text-networks/rmarkdown/Text_Networks.html
https://halshs.archives-ouvertes.fr/halshs-00841520/document
https://www.visitlondon.com/

Today’s real graphs may be gigantic!

image source

The size of today’s real
graphs may be huge:
they can count billions
nodes/edges or even more!

Graph compression is a
valuable option to process
big graphs in a more efficient
and sustainable way.

https://towardsdatascience.com/large-graph-visualization-tools-and-approaches-2b8758a1cd59

Graph summarization

Graph summarization is one
type (among the many
existing ones) of graph
compression which produces
a summary graph.

Summary graph: coarse-
grained representation of a
graph in terms of
supernodes and superedges.

Graph summarization: benefits

• No need for redefining
graph-processing methods
• A summary graph is a

graph by itself!

• No loss of information
• Every node is part of (at

least) a supernode

Motivation

Existing query-processing methods on summary graphs are either:
• General-purpose, but reconstruct the original graph on-the-fly, while processing the query
• Special-purpose (i.e., query-specific)

No query-processing method on summary graphs exist that are general-purpose
and use the summary graph only (without reconstructing the input graph).
=> In this work we fill this gap!

Contributions

We study for the first time the problem of general-purpose (approximate) query
processing on summary graphs (GPQPS)

• We set the stage of this problem

We devise algorithms for GPQPS

We set up an evaluation methodology that constitutes a benchmark testbed for
this and future GPQPS studies

We perform extensive experiments

We provide nontrivial directions for further research

Problem definition

Summary graph

Graph query

Graph query 𝑄: computable function

Input: (weighted) graph 𝐺 = 𝑉, 𝐸, 𝑤 and query context 𝒞
Output: query answer 𝑄 𝐺, 𝒞 , an object from a domain 𝒪𝑄

Query context 𝒞:
complementary input of the query (e.g., pairs or sets of vertices, subgraphs,
functions, numerical values; it can also be empty).

Object from domain 𝒪𝑄:

a Boolean, a numerical value, a set of vertices, a subgraph, a partition of the
vertices, and so on.

Graph query: examples

Global queries computing numerical stats on G (e.g., number
of triangles, clustering coefficient, diameter):
𝒞 = ∅, 𝒪𝑄 = ℝ

Node embedding queries:

𝒞 = {𝑢}, 𝒪𝑄 = ℝ𝑑

Inner-most core queries:
𝒞 = ∅, 𝒪𝑄 = 2𝑉

Reachability queries:
𝒞 = {(𝑢, 𝑣)}, 𝒪𝑄 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}

Top-ranked centrality queries:
𝒞 = 𝑠, 𝒪𝑄 = 2𝑉

Community detection queries:
𝒞 = parameters of community-detection algorithm, 𝒪𝑄 = all partitions of 𝑉 (𝑩𝑉)

Graph query

In this work, we restrict our study to query answers that are either
numerical or sets/partitions of vertices,
that is 𝒪𝑄 = {ℝ, 2𝑉 , 𝑩𝑉}

Summary-based approximate query answer

Answer to a query is approximated by exploiting solely a summary 𝒢 of a graph 𝐺,
without accessing 𝐺 at all.

Query processing is required to be agnostic of both the specific query and the
graph-summarization technique that has produced 𝒢.

In other words, we are interested in:

GPQPS problem

The problem we tackle:

Simply speaking, Problem 1 asks for summary-based query answers
which approximate well the true answer to the given query.

Algorithms

Algorithm 1: Naïve-GPQPS

Naïve-GPQPS processes a query 𝑄 on summary 𝒢 as if it were a normal graph, with the only
precaution of letting each vertex 𝑢 in the input graph 𝐺 conceptually be identified with the
supernode 𝑆𝑢 of 𝐺 it belongs to, and vice versa.

Algorithm 2: Probabilistic-GPQPS

Probabilistic-GPQPS
interprets a summary 𝒢 as
an uncertain (or
probabilistic) graph, that
is, a graph whose edges
are assigned a probability
of existence:

Edge-probability function 𝜋 can
be defined, e.g., as as the
expected number of edges
between two supernodes:

Algorithm 2: Probabilistic-GPQPS

1. Sample a set of worlds from 𝒢

2. Compute query answer from any sampled world by Naïve-GPQPS algorithm

3. Aggregate answers from all the worlds into a single ultimate output answer

Experiments

Experimental methodology

6 real datasets: Facebook, LastFM, Enron, Gnutella, Ubuntu, AS-Skitter

2 graph-summarization methods:
S2L (Riondato et al., 2017) and SWeG (Shin et al., 2019)

4 queries:

• Clustering coefficient (numerical query, 𝒪𝑄 = ℝ)

• Community detection (partitioning query, 𝒪𝑄 = 𝑩𝑉)

• Top-ranked centrality and core decomposition (vertex-set queries,
𝒪𝑄 = 2𝑉)

Experimental methodology

GPQPS methods:
• Naïve-GPQPS; On S2L summaries, in two variants:

• Nw: superedge weights considered; N: superedge weights discarded
• Probabilistic-GPQPS, in 3 variants, depending on the superedge weights considered:

• P: no weights; Pa: average weight; Pe: expected weight

Assessment criteria:
• Clustering coefficient: relative error
• Community detection: relative error in modularity
• Top-ranked centrality: centrality rank comparison in terms of precision and recall

• Precision and recall computed on 𝑔-set (resp. 𝑠-set), i.e., the set of vertices with centrality score no
less than 𝑥𝑔 (resp. 𝑥𝑠)

• Core decomposition: similar criterion to top-ranked centrality
• Taking the inner-most core of the graph as a ground-truth set and the top-z inner-most cores

computed via GPQPS

Results (summary of main findings)

Promising effectiveness overall

Obstacles for a more effective GPQPS:

• weighted graphs handled with non-weighted summary graphs
• handling directed graphs
• summaries overly sparse or not well-connected

Consistent gain in storage space achieved by any tested GPQPS method

Drastic speedup by Naïve-GPQPS

Speedup by probabilistic-GPQPS appreciable for large datasets or expensive
queries

Results (summary of main findings)

Increasing summary size corresponds to an increase of effectiveness and a
decrease of speedup

Naive-GPQPS vs. Probabilistic-GPQPS: no clear winner

No clear winner among weighted and unweighted variants of the various GPQPS
methods

Conclusion

We introduce general-purpose (approximate) query processing on summary graph (GPQPS), a
new tool to support scalable data-management workloads on graphs

• Our major goal in studying this problem is to set its stage, and stimulate and drive further
research on it, by devising initial, basic methodologies

We devise algorithms for GPQPS

We set up an evaluation methodology that constitutes a benchmark testbed for this and future
GPQPS studies

We perform extensive experiments according to the proposed evaluation methodology. Results
attest promising results achieved by the proposed methods.

Reproducibility: data and code are available at https://github.com/fgullo/GPQPS

https://github.com/fgullo/GPQPS

Thanks!
Questions?

Backup
slides

