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Introduction 



Graphs 

entities of interest 
(nodes) linked to one 

another via 
relationships (edges) 



Graphs are ubiquitous! 
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Today’s real graphs may be gigantic! 
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The size of today’s real 
graphs may be huge: 
they can count billions 
nodes/edges or even more! 
 
Graph compression is a 
valuable option to process 
big graphs in a more efficient 
and sustainable way. 

https://towardsdatascience.com/large-graph-visualization-tools-and-approaches-2b8758a1cd59


Graph summarization 

Graph summarization is one 
type (among the many 
existing ones) of graph 
compression which produces 
a summary graph. 
 
Summary graph: coarse-
grained representation of a 
graph in terms of 
supernodes and superedges. 



Graph summarization: benefits 

• No need for redefining 
graph-processing methods 
• A summary graph is a 

graph by itself!  
 

• No loss of information 
• Every node is part of (at 

least) a supernode 



Motivation 

Existing query-processing methods on summary graphs are either: 
• General-purpose, but reconstruct the original graph on-the-fly, while processing the query 
• Special-purpose (i.e., query-specific) 

No query-processing method on summary graphs exist that are general-purpose 
and use the summary graph only (without reconstructing the input graph). 
=> In this work we fill this gap! 



Contributions 

We study for the first time the problem of general-purpose (approximate) query 
processing on summary graphs (GPQPS) 

• We set the stage of this problem 
 
We devise algorithms for GPQPS 
 
We set up an evaluation methodology that constitutes a benchmark testbed for 
this and future GPQPS studies 
 
We perform extensive experiments 
 
We provide nontrivial directions for further research 



Problem definition 



Summary graph 



Graph query 

Graph query 𝑄: computable function 
 
Input: (weighted) graph 𝐺 =  𝑉, 𝐸, 𝑤  and query context 𝒞 
Output: query answer 𝑄 𝐺, 𝒞 , an object from a domain 𝒪𝑄 

Query context 𝒞:  
complementary input of the query (e.g., pairs or sets of vertices, subgraphs, 
functions, numerical values; it can also be empty). 

Object from domain 𝒪𝑄:  

a Boolean, a numerical value, a set of vertices, a subgraph, a partition of the 
vertices, and so on. 



Graph query: examples 

Global queries computing numerical stats on G (e.g., number 
of triangles, clustering coefficient, diameter): 
𝒞 = ∅, 𝒪𝑄 = ℝ 

Node embedding queries: 

𝒞 = {𝑢}, 𝒪𝑄 = ℝ𝑑  

Inner-most core queries: 
𝒞 = ∅, 𝒪𝑄 = 2𝑉 

Reachability queries: 
𝒞 = {(𝑢, 𝑣)}, 𝒪𝑄 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} 

Top-ranked centrality queries: 
𝒞 = 𝑠, 𝒪𝑄 = 2𝑉 

Community detection queries: 
𝒞 = parameters of community-detection algorithm, 𝒪𝑄 = all partitions of 𝑉 (𝑩𝑉) 



Graph query 

In this work, we restrict our study to query answers that are either 
numerical or sets/partitions of vertices,  
that is 𝒪𝑄 = {ℝ, 2𝑉 , 𝑩𝑉} 



Summary-based approximate query answer 

Answer to a query is approximated by exploiting solely a summary 𝒢 of a graph 𝐺, 
without accessing 𝐺 at all. 

Query processing is required to be agnostic of both the specific query and the 
graph-summarization technique that has produced 𝒢. 

In other words, we are interested in: 



GPQPS problem 

The problem we tackle: 

Simply speaking, Problem 1 asks for summary-based query answers 
which approximate well the true answer to the given query. 



Algorithms 



Algorithm 1: Naïve-GPQPS 

Naïve-GPQPS processes a query 𝑄 on summary 𝒢 as if it were a normal graph, with the only 
precaution of letting each vertex 𝑢 in the input graph 𝐺 conceptually be identified with the 
supernode 𝑆𝑢 of 𝐺 it belongs to, and vice versa. 



Algorithm 2: Probabilistic-GPQPS 

Probabilistic-GPQPS 
interprets a summary 𝒢 as 
an uncertain (or 
probabilistic) graph, that 
is, a graph whose edges 
are assigned a probability 
of existence: 

Edge-probability function 𝜋 can 
be defined, e.g., as as the 
expected number of edges 
between two supernodes: 
 
 
 



Algorithm 2: Probabilistic-GPQPS 

1. Sample a set of worlds from 𝒢 
 

2. Compute query answer from any sampled world by Naïve-GPQPS algorithm 
 

3. Aggregate answers from all the worlds into a single ultimate output answer 



Experiments 



Experimental methodology 

6 real datasets: Facebook, LastFM, Enron, Gnutella, Ubuntu, AS-Skitter 
 
2 graph-summarization methods:  
S2L (Riondato et al., 2017) and SWeG (Shin et al., 2019)  
 
4 queries: 

• Clustering coefficient (numerical query, 𝒪𝑄 = ℝ) 

• Community detection (partitioning query, 𝒪𝑄 = 𝑩𝑉) 

• Top-ranked centrality and core decomposition (vertex-set queries, 
𝒪𝑄 = 2𝑉) 

 
 



Experimental methodology 

GPQPS methods: 
• Naïve-GPQPS; On S2L summaries, in two variants: 

• Nw: superedge weights considered;  N: superedge weights discarded 
• Probabilistic-GPQPS, in 3 variants, depending on the superedge weights considered: 

• P: no weights;  Pa: average weight;  Pe: expected weight 

 
Assessment criteria: 
• Clustering coefficient: relative error 
• Community detection: relative error in modularity 
• Top-ranked centrality: centrality rank comparison in terms of precision and recall 

• Precision and recall computed on 𝑔-set (resp. 𝑠-set), i.e., the set of vertices with centrality score no 
less than 𝑥𝑔 (resp. 𝑥𝑠 ) 

• Core decomposition: similar criterion to top-ranked centrality 
• Taking the inner-most core of the graph as a ground-truth set and the top-z inner-most cores 

computed via GPQPS 



Results (summary of main findings) 

Promising effectiveness overall 
 
Obstacles for a more effective GPQPS: 

• weighted graphs handled with non-weighted summary graphs 
• handling directed graphs 
• summaries overly sparse or not well-connected 

 
Consistent gain in storage space achieved by any tested GPQPS method 
 
Drastic speedup by Naïve-GPQPS 
 
Speedup by probabilistic-GPQPS appreciable for large datasets or expensive 
queries 
 



Results (summary of main findings) 

Increasing summary size corresponds to an increase of effectiveness and a 
decrease of speedup 
 
Naive-GPQPS vs. Probabilistic-GPQPS: no clear winner 
 
No clear winner among weighted and unweighted variants of the various GPQPS 
methods 



Conclusion 

We introduce general-purpose (approximate) query processing on summary graph (GPQPS), a 
new tool to support scalable data-management workloads on graphs 

• Our major goal in studying this problem is to set its stage, and stimulate and drive further 
research on it, by devising initial, basic methodologies 

 
We devise algorithms for GPQPS 
 
We set up an evaluation methodology that constitutes a benchmark testbed for this and future 
GPQPS studies 
 
We perform extensive experiments according to the proposed evaluation methodology. Results 
attest promising results achieved by the proposed methods. 

 
 
 
 

Reproducibility: data and code are available at https://github.com/fgullo/GPQPS  

https://github.com/fgullo/GPQPS


Thanks! 
Questions? 
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