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Abstract Problem definition Applications

Core decomposition has proven to be a useful primitive for a wide range

of graph analyses. One of its most appealing features is that, unlike Definition: uncertain graph Influence maximization

other n.otions of dense subgraphs, it can be computed linearly in the size o Let G = (V, E, p) be an uncertain graph, where p : E — (0, 1] o Find a set of vertices S, with | S| = s, that maximizes the expected
of th_e input graph. | | | Is a function that assigns a probability of existence to each edge. spread, i.e., the expected number of vertices that would be infected
In thr:S pahper WZ provide an anacljogous t;tog_ll_gor ;mcq?m gra_[i_lpls, ]l'e}é e For any vertex v € V, let N, = {(u, v) € E} denote the set of by a viral propagation started in S, under a certain probabilistic
Jraphs WHose CAges are dssigned a probabliity Ol €xXIStence. © 1ac all edges incident to v, and d, = |N,| its size. propagation model.

that core decomposition can be computed efficiently in deterministic

graphs does not guarantee efficiency in uncertain graphs, where even the e Inthe independent cascade model finding a set 5 of s vertices that

simplest graph operations may become computationally intensive. Here Possible-world semantics maximizes the expected spread o(5) is NP-hard.
we s.how that core decomposition of uncertain graphs can be carried out o possible-world semantics: an uncertain graph G with m edges -
efficiently as well. as a set of 2 possible deterministic graphs (worlds), each of which :
We extensively evaluate our de.finitions and methods on a number of containing a subset of the edges in E. () Inactive Node
reaa:—:vor:(d C(Inla_taset‘f and z;ppllca;c:l.ons, such as influence maximization e an uncertain graph G = (V. E, p) yields a set of possible graphs . T —
and task-driven team formation. {G = (V. Eg)}E.cE. and the probability of observing any possible B @ Newly active
graph G = (V. Eg) C G is: node
] ] - ’ . Successful
Main Findings PrG) =[] re ] (1-pe) 02 & attempt
ecbkc  e€E\Eg . __, Unsuccessful
e We study the problem of core decomposition of uncertain o Atbmps
graphs. Probabilistic (k,n)-cores y
o We define the concept of (k, n)-core and the corresponding notion o Given an uncertain graph G = (V, E,p), and a threshold 1 € Example for the independent cascade model.
of (k, m)-core decomposition. [0, 1], the probabilistic (k, n)-core of G is a maximal subgraph
o We devise fast (polynomial-time) algorithms to compute a ((k, n)- H = (C, E|C, p) such that the probability that each vertex v € C e Submodularity of o(S) allows the Greedy algorithm that itera-
core decomposition. has degree no less than k In ‘H I1s greater than or equal to n, 1.e., tively adds to S the vertex bringing the largest marginal gain in the
Vv e C: Prldegy(v) > k] > n. objective function to achieve (1 — %) approximation guarantee.
Introducti Theorem 1 Given an uncertain graph G and a probability thresh- e Simple idea: reduce the input graph Q by keeping only the inner-
ntroauction old , the (k. m)-core decomposition of G is unique. most (k, n)-shells and run the (optimized version of the) Greedy
algorithm on such a reduced graph. .
Uncertain graphs Examples o Experiment: A small directed graph from Twitter (|V| =

21882, |E| = 372005), and a set of propagations of URLs in the
soclal graph, that we use as past evidence to learn the influence
probabilities

e Redfuced graph has 2064 vertices and 86 142 edges.

e Expected spread achieved by the proposed (k,n)-cores-based
method vs. some baselines with varying the output set size |S]|.

S| =10 |S| =20 |S| =30

(k,n)-cores| 9570 9606 9610

out-degree, 9014 9016 9130

/

S
\

graphs whose edges are associated with a probability: An uncertain graph and its (k,n)-core decomposition for n = n-degree. 9019 9089 9125
e biological networks; protein-interaction networks: vertices are 0.04. Vertex 1 has core number 1, vertices 2 and 7 have core exp-degree| 9012 9093 9123

genes and/or proteins while edges are interactions. number 2, and vertices 3, 4 5 and 6 have core number 3. k-cores, 9134 9192 9223
e soclal networks: edge probabilities may represent the uncertainty  (k,m)-cores runtime: 4-5 hours;

(or the accuracy) of link prediction or the influence of one person e baseline runtime: > 1 week.

on another (viral marketing).

Computing probabilistic cores

Task-driven team formation

Definition: ’r]—degree e Given a collaboration graph G = (V, E, T), where vertices are
iIndividuals and edges are associated with a probabilistic topic model

T, representing (a distribution on) the topics exhibited by past
collaborations.

Motivation

e Core decomposition can be performed In linear time in deterministic

graphs but this does not guarantee efficiency in uncertain graphs. e Given an uncertain graph G = (V, £, p) and a threshold 1 € [0, 1],

the n-degree n-deg(v) of any vertex v € V is defined as

n-deg(v) = maxik € [0..dv] | Prldeg(v) > k| > n}. o Given a collaboration graph G = (V, E, 7) and a query (T, Q), let
Let also n-degy(v) be the m-degree of v in a subgraph H. G' be the uncertain graph derived from G and 7. Given a threshold

e E.g., the two-terminal-reachability problem (are any two query ver-
tices connected?)

— In deterministic graphs: a simple scan of the graph

— in uncertain graphs: computing the probability that two vertices o The n-degree gives an idea of the degree of a vertex given a specific ?7f€ %9 1(]1' Wedvt\;ant to finfd i c_onne\;ted sibghraph H = (Vi Ex)
are connected is a #P-complete problem. threshold 7. of G Induced by a set of vertices V3 such that
o Idea: exploit m-degree to adapt the k-cores algorithm to uncertain V3y = arg max Lflﬂelg n-deg(u).
k-core decomposition graphs. veseV
| | e Algorithm:
e G=(V.E)is _an undwe;ted graph. Algorithm - (k, n)—core 1. Given a collaboration graph G = (V, E,T) and a task-driven
o k-core of G is a maximal subgraph H = (C, E[C) such that team-formation query (T, Q), derive the uncertain graph G/ =
Vv € C: degy(v) > k. Input: An uncertain graph G = (V, E, p), a threshold n € (V, E,pT)_
o core index of a vertex v, denoted c(v), is the highest order of a 0. 1]. | | . 2. Compute the (k,n)-core decomposition C of G ;
core that contains v. Output: An n-dimensional vector ¢ containing the n-core 3. Visit the cores in C starting from the smallest-sized one (i.e.,
number of each v € V. the inner-most core), until finding Cp,
Algorithm 1 k-core - compute n-deg(v) for all v € V 4. Return the connected component of Cf, containing Q as the
c+ 0, d<0, D« [0,..., 0] solution.

Input: A graph G = (V, E). - for all v € V do
Output: An n-dimensional vector ¢ containing the core num- d[v] <- n-deg(v)
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" e Example: DBLP bibliographic database: vertices are authors and
ber of each v € V. 5. D[n-deg(v)] < D[n-deg(v)] U{v}
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an edge connects two authors If they have co-authored at least

once.
e« 0, d«0, D0, ..., 0] - end for |
> for all v € V do forall k=0,1,..., n do o The resulting graph has |V| = 1089442 and |E| = 4144 697.
3: d[V] <— deg(V) While D[k] # @ do T:_{gﬁne,exprgsz}, o T:{xgvl, tAr/lee}h, . T_: {aL/(jti%n,km'ozle/},
4 D[deg(v)] + D[deg(v)]U{v} pick and remove a vertex v from DI[k] D ey Clovan Seaon e S i)
_ Kathleen A. Stringer, Venkateshwar G. Keshamouni, S. Muthukrishnan, Uri Nadav, Noam Nisan, Jon Feldman,
5: end for 10: C[V] Am k Jing Gao, Terry E. Weymouth, Vasudeva Mahavisno, Panagiotis G. Ipeirotis, Vahab S. Mirrokni, Gagan Aggarwal,
Charles F. Burant, Christopher W. Beecher, Lauri Pietarinen Tanmoy Chakraborty, Aranyak Mehta
6 for a" k — O’ 1 _____ n do 11: for a" u . (U, V) - E, d[U] > k dO Maureen A. Sartor, Alla Karnovsky, Rork Kuick, H. V. Jagadish, Evdokia Nikolova, S. Muthukrishnan,
. : 12: recompute n-deg(u MV agadish, Carto Lasdanna. Tim Hull - > Nick Koudas e orin Constantin, Yishay Mansour
& Whlle D[k] # @ do p ?7 g Barbara R. Mirel, V. Glenn Tarcea
8 pick and remove a vertex v from D[] 13; move u from D[d[u]] to D[n-deg(u)]
: clv] < k 14: d[u] < n-deg(u)
10: for all v : (U, V) - E, d[U] > k do 15: end for Acknowledgments
11: move u from D[d[u]] to D[d[u] — 1] 16: remove v from G
1o d[u] < d[u] — 1 17 end while
13: end for 18: end for . _
" remove v from G e The computation of the individual Pr[deg(v) = /] values for all  This work was supported by the CENIT program, project CEN-
= end while I € 0..k—1] (Pr[deg(v) > k]) can be accomplished in polynomial 20101037
& end for time (precisely in O(kd, ) time) adapting [1]. e Yana Volkovich acknowledges financial support though the Tor-
e Problem: Numerical instability due to both products and sums of res Queyedo Program from the Spanish I\/Il|n|stry of Science and
o |teratively removes the smallest-degree vertex and sets the core Pe values that can be either very large or very small. Innovation, co-funded by the European Social Fund.

number of the removed vertex accordingly. e Solution: dynamic-programming method (same time complexity)

e Runsin O(n+ m) time. for efficiently updating m-degrees when an edge is removed.

e Overall tim mplexity: O(mA) (A is th . ’ [1] Xiang H. Chen, Arthur P. Dempster, and Jun S. Liu. Weighted fi-
verat time complexity: > the Maximum 7-degree nite population sampling to maximize entropy. Biometrika, 81:457-469,

YQ I IOO, - over all vertices). 1004,
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