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Abstract

Core decomposition has proven to be a useful primitive for a wide range
of graph analyses. One of its most appealing features is that, unlike
other notions of dense subgraphs, it can be computed linearly in the size
of the input graph.
In this paper we provide an analogous tool for uncertain graphs, i.e.,
graphs whose edges are assigned a probability of existence. The fact
that core decomposition can be computed efficiently in deterministic
graphs does not guarantee efficiency in uncertain graphs, where even the
simplest graph operations may become computationally intensive. Here
we show that core decomposition of uncertain graphs can be carried out
efficiently as well.
We extensively evaluate our definitions and methods on a number of
real-world datasets and applications, such as influence maximization
and task-driven team formation.

Main Findings

• We study the problem of core decomposition of uncertain
graphs.

• We define the concept of (k, η)-core and the corresponding notion
of (k, η)-core decomposition.

• We devise fast (polynomial-time) algorithms to compute a ((k, η)-
core decomposition.

Introduction

Uncertain graphs

graphs whose edges are associated with a probability:

• biological networks; protein-interaction networks : vertices are
genes and/or proteins while edges are interactions.

• social networks: edge probabilities may represent the uncertainty
(or the accuracy) of link prediction or the influence of one person
on another (viral marketing).

Motivation

• Core decomposition can be performed in linear time in deterministic
graphs but this does not guarantee efficiency in uncertain graphs.

• E.g., the two-terminal-reachability problem (are any two query ver-
tices connected?)

– in deterministic graphs: a simple scan of the graph

– in uncertain graphs: computing the probability that two vertices
are connected is a #P-complete problem.

k-core decomposition

• G = (V, E) is an undirected graph.

• k-core of G is a maximal subgraph H = (C,E|C) such that
∀v ∈ C : degH(v) ≥ k .

• core index of a vertex v , denoted c(v), is the highest order of a
core that contains v .

Algorithm 1: k-core

Input: A graph G = (V, E).
Output: An n-dimensional vector c containing the core num-
ber of each v ∈ V .

1: c← ∅, d← ∅, D← [∅, . . . , ∅]
2: for all v ∈ V do
3: d[v ]← deg(v)
4: D[deg(v)]← D[deg(v)] ∪ {v}
5: end for
6: for all k = 0, 1, . . . , n do
7: while D[k ] 6= ∅ do
8: pick and remove a vertex v from D[k ]
9: c[v ]← k
10: for all u : (u, v) ∈ E, d[u] > k do
11: move u from D[d[u]] to D[d[u]− 1]
12: d[u]← d[u]− 1
13: end for
14: remove v from G
15: end while
16: end for

• Iteratively removes the smallest-degree vertex and sets the core
number of the removed vertex accordingly.

• Runs in O(n +m) time.

Problem definition

Definition: uncertain graph
• Let G = (V, E, p) be an uncertain graph, where p : E → (0, 1]
is a function that assigns a probability of existence to each edge.

• For any vertex v ∈ V , let Nv = {(u, v) ∈ E} denote the set of
all edges incident to v , and dv = |Nv | its size.

Possible-world semantics
• possible-world semantics: an uncertain graph G with m edges
as a set of 2m possible deterministic graphs (worlds), each of which
containing a subset of the edges in E.

• an uncertain graph G = (V, E, p) yields a set of possible graphs
{G = (V, EG)}EG⊆E, and the probability of observing any possible
graph G = (V, EG) ⊑ G is:

Pr(G) =
∏

e∈EG

pe
∏

e∈E\EG

(1− pe).

Probabilistic (k,η)-cores
• Given an uncertain graph G = (V, E, p), and a threshold η ∈
[0, 1], the probabilistic (k, η)-core of G is a maximal subgraph
H = (C,E|C, p) such that the probability that each vertex v ∈ C
has degree no less than k in H is greater than or equal to η, i.e.,
∀v ∈ C : Pr[degH(v) ≥ k ] ≥ η.

Theorem 1 Given an uncertain graph G and a probability thresh-
old η, the (k, η)-core decomposition of G is unique.

Examples

An uncertain graph and its (k, η)-core decomposition for η =
0.04. Vertex 1 has core number 1, vertices 2 and 7 have core
number 2, and vertices 3, 4, 5 and 6 have core number 3.

Computing probabilistic cores

Definition: η-degree
• Given an uncertain graph G = (V, E, p) and a threshold η ∈ [0, 1],
the η-degree η-deg(v) of any vertex v ∈ V is defined as

η-deg(v) = max{k ∈ [0..dv ] | Pr[deg(v) ≥ k ] ≥ η}.

Let also η-degH(v) be the η-degree of v in a subgraph H.

• The η-degree gives an idea of the degree of a vertex given a specific
threshold η.

• Idea: exploit η-degree to adapt the k-cores algorithm to uncertain
graphs.

Algorithm 2: (k, η)-core

Input: An uncertain graph G = (V, E, p), a threshold η ∈
[0, 1].

Output: An n-dimensional vector c containing the η-core
number of each v ∈ V .

1: compute η-deg(v) for all v ∈ V
2: c← ∅, d← ∅, D← [∅, . . . , ∅]
3: for all v ∈ V do
4: d[v ]← η-deg(v)
5: D[η-deg(v)]← D[η-deg(v)] ∪ {v}
6: end for
7: for all k = 0, 1, . . . , n do
8: while D[k ] 6= ∅ do
9: pick and remove a vertex v from D[k ]
10: c[v ]← k
11: for all u : (u, v) ∈ E, d[u] > k do
12: recompute η-deg(u)
13: move u from D[d[u]] to D[η-deg(u)]
14: d[u]← η-deg(u)
15: end for
16: remove v from G
17: end while
18: end for
• The computation of the individual Pr[deg(v) = i ] values for all
i ∈ [0..k−1] (Pr[deg(v)≥k ]) can be accomplished in polynomial
time (precisely in O(kdv) time) adapting [1].

• Problem: Numerical instability due to both products and sums of
p̃e values that can be either very large or very small.

• Solution: dynamic-programming method (same time complexity)
for efficiently updating η-degrees when an edge is removed.

• Overall time complexity: O(m∆) (∆ is the maximum η-degree
over all vertices).

Applications

Influence maximization
• Find a set of vertices S, with |S| = s , that maximizes the expected
spread, i.e., the expected number of vertices that would be infected
by a viral propagation started in S, under a certain probabilistic
propagation model.

• In the independent cascade model finding a set S of s vertices that
maximizes the expected spread σ(S) is NP-hard.

Example for the independent cascade model.

• Submodularity of σ(S) allows the Greedy algorithm that itera-
tively adds to S the vertex bringing the largest marginal gain in the
objective function to achieve (1− 1e) approximation guarantee.

• Simple idea: reduce the input graph G by keeping only the inner-
most (k, η)-shells and run the (optimized version of the) Greedy
algorithm on such a reduced graph. .

• Experiment: A small directed graph from Twitter (|V | =
21 882, |E| = 372 005), and a set of propagations of URLs in the
social graph, that we use as past evidence to learn the influence
probabilities

• Redfuced graph has 2 064 vertices and 86 142 edges.

• Expected spread achieved by the proposed (k ,η)-cores-based
method vs. some baselines with varying the output set size |S|.

|S| = 10 |S| = 20 |S| = 30
(k ,η)-cores 9 570 9 606 9 610

out-degree 9 014 9 016 9 130
η-degree 9 019 9 089 9 125
exp-degree 9 012 9 093 9 123
k-cores 9 134 9 192 9 223

• (k, η)-cores runtime: 4-5 hours;

• baseline runtime: > 1 week.

Task-driven team formation
• Given a collaboration graph G = (V, E, τ), where vertices are
individuals and edges are associated with a probabilistic topic model
τ , representing (a distribution on) the topics exhibited by past
collaborations.

• Given a collaboration graph G = (V, E, τ) and a query 〈T,Q〉, let
GT be the uncertain graph derived from G and T . Given a threshold
η ∈ [0, 1], we want to find a connected subgraph H = (VH, EH)
of GT induced by a set of vertices VH such that

VH = argmax
Q⊆S⊆V

min
u∈S
η-deg(u).

• Algorithm:

1. Given a collaboration graph G = (V, E, τ) and a task-driven
team-formation query 〈T,Q〉, derive the uncertain graph GT =
(V, E, pT ).

2. Compute the (k ,η)-core decomposition C of GT ;

3. Visit the cores in C starting from the smallest-sized one (i.e.,
the inner-most core), until finding C∗Q;

4. Return the connected component of C∗Q containing Q as the
solution.

• Example: DBLP bibliographic database: vertices are authors and
an edge connects two authors if they have co-authored at least
once.

• The resulting graph has |V | = 1089 442 and |E| = 4144 697.

T = {gene, express}, T = {xml, tree}, T = {auction,model},
Q = {H.V.Jagadish} Q = {H.V.Jagadish, S.Muthukr ishnan} Q = {S.Muthukr ishnan}
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