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Abstract. The real-time nature and massive volume of social-media data has converted news portals and micro-blogging plat-
forms into social sensors, causing a flourishing of research on story or event detection in online user-generated content and
social-media text streams. Existing approaches to story identification broadly fall into two categories. Approaches in the first
category extract stories as cohesive substructures in a graph representing the strength of association between terms. The latter
category includes approaches that analyze the temporal evolution of individual terms and identify stories by grouping terms with
similar anomalous temporal behavior.

Both categories have their own limitations. Approaches in the first category are unable to distinguish ever-popular concepts
from stories that buzz in a time interval of interest, i.e., attract an amount of attention that deviates significantly from the typical
level observed. The second category ignores term co-associations and the wealth of information captured by them.

In this work we advance the literature on story identification by profitably combining the peculiarities of the two main state-of-
the-art approaches. We propose a novel method that characterizes abnormal association between terms in a certain time window
and leverages the graph structure induced by such anomalous associations so as to identify stories as subsets of terms that are
cohesively associated in this graph. Experiments performed on two datasets extracted from a real-world web-search query log
and a news corpus, respectively, attest the superiority of the proposed method over the two main existing story-identification
approaches.
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1. Introduction

The gargantuan growth of social media has opened
a goldmine of data about events taking place around
the world. The real-time nature and massive volume
of this data has converted news portals and micro-
blogging platforms into social sensors, which peo-
ple increasingly turn to for breaking news and direc-
tions about emerging events, often more timely and
more effectively than official communication chan-
nels. The aforementioned reasons have caused a flour-

ishing of research on event detection in social-media
text streams, and event detection has become a well-
studied task in information retrieval and data min-
ing [1,14,52,66,92].

Research in recent years has especially uncovered
the increasingly important role of leveraging social-
network data in disaster situations [21], showing its
crucial potential to enhance situational awareness dur-
ing crisis situations [4,39,38,63,87], such as natural
disasters, large-scale malfunctioning events, or terror
attacks. Automatically detecting and categorizing un-
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expected and anomalous events in a timely and ef-
ficient manner can provide valuable information to
support first responders, public-safety agents, as well
as local, national and international organizations. Re-
searchers have recently proposed several visual analyt-
ics approaches aiming at real-time microblog analysis,
providing means to identify anomalous events and to
uncover valuable information that can be spread in the
aftermath of disasters [40,51,57,5].

Due to its crucial importance for such real-world
applications, the problem of automatically identifying
stories or events' from online user-generated content
has recently attracted a great deal of attention in the
research community [8,12,26,74,80,92,98,69]. Gener-
ally speaking, the goal is to take data from online
sources, such as queries issued to a web search engine,
news articles, or posts from micro-blogging/social-
networking platforms, and automatically extract sets
of terms or entities that provide a good description of
relevant events happening in the real world.

Approaches to story identification can be classi-
fied into two categories. Approaches in the first cat-
egory identify stories by building a graph represent-
ing the strength of association between terms (or en-
tities), and then looking for sets of terms (subgraphs)
that are cohesively connected in the graph accord-
ing to a certain notion of cohesiveness [1,12,24,26,71,
73,74,92,95,98]. The degree of association between
any two terms, i.e., the weight assigned to each edge
in the co-association graph, is established by count-
ing how many times those terms co-occur in the spe-
cific dataset considered (e.g., how many web-search
queries, tweets, or posts contain both terms), or by
means of correlation measures (e.g., log-likelihood ra-
tio, correlation coefficient) computed on top of the
raw co-occurrence counting. Because the strength of
association between terms changes over time, the
co-association graph actually corresponds to a time-
evolving graph, composed of various (determinis-
tic) snapshot graphs. Each snapshot models the co-
associations observed at a specific time instant. As an
example, if a daily granularity is adopted, each snap-
shot may represent the number of times any two terms
co-occur in a query, news, tweet, or post generated
in that day. A major limitation of these approaches is
that cohesive subgraphs corresponding to stories are
extracted on the snapshot graph observed at the cur-
rent time instant, that is without considering how the

'We use “story” and “event” interchangeably through the paper.

associations between terms have evolved over time or
deviated from normality.

The second category of story-identification ap-
proaches includes methods that focus on the temporal
evolution of the occurrences of individual terms [32,
41,46,54,80,81,88,96]. Such methods assign each term
a time series, describing how anomalous (according to
a specific anomaly-detection model) its level of occur-
rence at any time instant is, when compared to the nor-
mal level of the whole time horizon. These approaches
do not exploit any co-association graph, that is, they
do not examine how terms are related to each other and
how such relations change over time. Stories are rather
identified by analyzing each term individually, and a-
posteriori grouping terms based on the similarity of
the corresponding anomaly time series. Associations
between terms constitute a paramount source of infor-
mation, which provides valuable insights for assessing
to which extent the terms in a story are correlated to
each other.

In this work we propose a novel method for identi-
fying stories from user-generated content, which over-
comes the limitations of the two main aforementioned
approaches by taking both term co-associations and
their (anomalous) temporal evolution into account.
The proposed method consists of two steps: (i) apply-
ing an anomaly model to quantify how abnormal the
association between two terms is at any time, with re-
spect to its history, and (ii) leveraging the graph struc-
ture induced by such anomalous associations to iden-
tify cohesive subsets of terms that are strongly and
anomalously associated with each other in a given time
window. Our method identifies what we call buzzing
stories, i.e., stories described by sets of terms that are
strongly associated to each other and, at the same time,
raise an exceptionally-high level of attention in the
time window considered, compared to what normally
observed. The main conceptual, technical and empiri-
cal contributions of this work are as follows:

e We advance the state of the art on story identifi-
cation by devising a novel method that addresses
the limitations of the main existing approaches.

e The first step of our method assigns, for any time
instant, an anomaly score to each pair of terms,
so as to reflect the anomaly of the association be-
tween those terms at that specific time. To this
end, we devise an anomaly-detection model for
temporal data that trades off between simplicity,
efficiency, and effectiveness .
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e The second step extracts cohesive subgraphs from
the graph induced by the anomalous term co-
associations derived in the first step. We define
a notion of temporal density to be exploited for
the identification of subgraphs that are cohesively
connected within a time window of interest.

e We formulate a combinatorial-optimization prob-
lem aimed at maximizing the proposed temporal
density notion. We theoretically characterize the
problem by proving its NP-hardness and showing
how a relaxation of it has interesting connections
with the well-established problem of finding the
inner-most core of a graph.

e Inspired by the latter connection, we design an
algorithm that approximates our original NP-hard
problem effectively and efficiently.

e We perform an extensive evaluation on two real-
world datasets, which were extracted from the
query log of a popular search engine and a news
corpus collected from a number of major Ital-
ian newspapers, respectively. Results on both
datasets confirm that the proposed method outper-
forms the two main existing story-identification
methods in detecting stories that both raise an
anomalous level of attention and match real-
world events.

The rest of the paper is organized as follows. Sec-
tion 2 formalizes the problem of story identification
from user-generated content and presents the novel
two-step approach proposed in this work. In Sec-
tions 3 and 4 we report our experimental evaluation on
search-log data and news data, respectively. Section 5
overviews the related literature, while Section 6 con-
cludes the paper.

2. Anomalous Temporal Subgraph Discovery

We are given a set of objects O, a discrete time hori-
zon T, and a function f : O x O x T — R™ that, for
every time instant in 7, assigns a positive real value to
every (unordered) pair of objects in O.

O keeps track of all objects used to describe stories.
Objects may correspond to terms or entities extracted
from a source of user-generated content, such as posts
from micro-blogging or social-networking platforms,
news articles, or web-search logs [8,92,98]. T repre-
sents the overall time horizon where the objects in O
are assumed to “interact” with each other. Specifically,
T corresponds to a finite set of time instants, where

every time instant ¢ € 7 identifies a basic unit of time
within the overall time frame, e.g., an hour, a day, or a
week. Function f quantifies the strength of association
between two objects in O at any time instant in 7. As
an example, for any two objects 01,02 € O and a time
instant t € T, f(01, 02,1) can be defined as the num-
ber of times 07 and 05 co-occur in the data snapshot
captured at time 7, as well as the log-likelihood ratio
or correlation coefficient computed on top of the raw
co-occurrence counting [12,74].

We can alternatively think of the input above as
a time-evolving (or temporal) undirected weighted
graph G = (V,{E,, fi}ieT), i-€., a graph with vertex
set V. = O, and edge set that varies over time. In par-
ticular, every time instant ¢+ € 7 is assigned an edge
set E, = {{u,v} € 2V | f(u,v,t) > n}, and a func-
tion f; : E, — R™T assigning weights to edges in E; in
such a way that f;(u,v) = f(u,v,t).  is a threshold
denoting when the strength of association between two
objects can safely be assumed to be null, or, equiva-
lently, when the edge between those objects at the cor-
responding time instant ¢ can be discarded. 7 is set de-
pending on the application context. Given a temporal
graph G = (V,{E,, f;};c7) and a time instant ¢ € T,
we denote by deg(u, 1) the (weighted) degree of vertex
u at time instant ¢, i.e., deg(u, 1) = >_, ) cp, fi(u,v).
Similarly, given a subgraph of G induced by a subset
of vertices S C V, we denote by degs (u, t) the degree
of vertex u at time 7 in that subgraph, i.e., degs (u,t) =
2 (uv)ek, ves fi(u,v). For the sake of simplicity, we
slightly abuse of notation and hereinafter denote by S
both a subset of vertices of G and the corresponding
subgraph induced by S. Note also that, for ease of no-
tation, we assume the vertex set of each snapshot in
the temporal graph fixed. In practice, all singleton ver-
tices of a snapshot can actually be discarded. Thus,
the vertex set of each snapshot actually contains only
those vertices that have non-zero degree in that snap-
shot. This way, a temporal graph can easily model sit-
uations where a vertex (dis)appears over time. Indeed,
without loss of generality, one can assume that any ver-
tex u appearing for the first time at time instant ¢; is still
contained as a singleton vertex in the vertex set of the
snapshots at time ¢ € [y, ;—1]. Analogously, if a vertex
disappears from a temporal snapshot, it can be consid-
ered to still be part of the vertex set of that snapshot,
but, again, as a singleton vertex.
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In this work we study the problem of identifying
buzzing stories from user-generated content.” We as-
sume the input data to be represented by means of a
temporal graph G, as described above. Given a tempo-
ral graph G and a time window W C T, our aim is to
extract K stories or subsets of objects that exhibit an
anomalous behavior in the window W. Here “anoma-
lous” means that the strength of association between
the objects forming a story diverges substantially, in
every time instant belonging to the window W, from
the typical level observed throughout the whole hori-
zon 7.

To accomplish our goal we devise a two-step ap-
proach. The former step consists in deriving an anoma-
lous temporal graph G* from the input graph G. G* is
a graph whose structure corresponds to the structure
of G, i.e., vertex and edge set remain the same. What
changes is the scoring functions assigning weights to
edges. The original functions {f;},c7, which weigh
edges in G based on the raw association scores be-
tween the corresponding objects, are replaced with
functions {¢, },c7 that assign edge weights in G* in
terms of anomaly scores: each score ¢,(u,v) indicates
how anomalous the association between objects u and
v is at time instant # with respect to the typical associa-
tion observed during the entire time period 7. The sec-
ond step takes the anomalous temporal graph G# and a
time window W C 7T as input, and extracts subsets of
objects that are strongly associated to each other in W.
This is achieved by looking for subgraphs of G# that
are cohesive enough according to a notion of cohesive-
ness, which is defined based on the anomaly scores and
the given time window.

In the remainder of this section we discuss both
steps in detail. Sections 2.1 and 2.2 respectively de-
scribe the method to compute the anomaly scoring
functions {¢},c7, and the extraction of cohesive
anomalous subgraphs representing buzzing stories,
while Section 2.3 summarizes the overall proposed ap-
proach.

2.1. Step 1: Computing anomaly scores

The first step of our approach corresponds to a task
of anomaly detection in temporal data: assign a score
to every data point of a temporal sequence according
to a model that quantifies its level of anomaly with re-

2In this work we use the term “story” (or “event”) to denote a set
of textual units (e.g., words, n-grams, entities, posts) describing a
certain real-world event.

spect to the remaining points [33]. In our context we
have a temporal sequence for each edge in the input
graph G, and the data points in each sequence corre-
spond to the (raw) weights assigned to the correspond-
ing edge over all time instants.

In the following we describe the specific anomaly-
detection model employed in this work (other mod-
els can be used). This is a model that trades off
between simplicity, efficiency, and effectiveness, and
gives high-quality results in practice, as testified by our
evaluation in Section 3. Our approach is however para-
metric to the anomaly-detection model: any other ex-
isting model can be used.

We rely on an unsupervised approach that first as-
signs to each edge e at time ¢ a score designed to re-
flect the relative importance of its weight f; (e) with
respect to all other edges at time z. Such an importance
is measured as the (mass behind the) percentile that
the weight of e occupies within the global weight vol-
ume at time ¢. The rationale of using percentiles instead
of actual values is to have a fair measure of the rela-
tive importance of a weight value with respect to all
other weights of the same snapshot. To establish how
anomalous the importance of e at time ¢ is, with re-
spect to the past history of e, our model next compares
its percentile weight at time #; with the corresponding
percentile at a reference past instant #;,_,, for a set of
reference instants r € R. As an example, if the input
horizon T has a daily granularity, the references r € R
could be weeks/months before. The ultimate anomaly
score assigned to e at time #; is the median difference
between the percentile at time #; and any percentile at
time t;_,, r € R.

Whilst being extremely simple, our method has
proved to be effective in the experiments. Similar ap-
proaches have been widely used in the literature. For
example Steiner et al. [79] use simple spikes in the
concurrent edits to Wikipedia pages to perform detec-
tion of breaking news. A similar mechanism has been
also been applied as a core ingredient in first-story de-
tection: the traditional approach [2] to this problem de-
tects first (i.e., new) stories by comparing news articles
to the previous ones, and selecting those news articles
whose cosine similarity over tf-idf vectors to its nearest
neighbor is less than a threshold. While very simple,
this approach effectively outperforms more complex
language-model approaches, and it is still a key base-
line in recent work about first-story detection, where
the focus has been put more on improving efficiency
rather than effectiveness [42,58,64], although some
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latest efforts [89] have also advanced effectiveness us-
ing multiple-nearest neighbor clustering.

The pseudocode of our anomaly-detection model is
reported as Algorithm 1. The main steps are as follows.
We process any time instant in 7 one at a time, and, for
every t; € T, we first scan all edges e € E;, and com-
pute its corresponding normalized weight f;(e) as the
fraction of its original weight f; (e) to the total weight
volume TOT(t;) = 3, E, fi.(e) of time #; (Lines 1-
3). We then sort all edges e € E; according to non-
decreasing order of f/(e) (Line 4), and exploit this or-
dering to compute the percentile p,, (e) associated with
each edge e € E;, at time t; (Line 6). If the reference
point #;_, is a valid point in the time horizon T, i.e.,
i —r > 0, then we also compare the percentile p,(e)
of edge e at time #; with the corresponding percentile
at time #;_,, for all reference instants r € R. If the dif-
ference between the two percentiles for a reference in-
stant r is positive, then a score ¢;,(e, r) equal to such a
difference is considered. Otherwise, the score ¢, (e, r)
is set to zero. Ultimately, edge e is assigned the median
of such scores {¢,, (e, r)},cr as an anomalous score at
time ¢; (Lines 7-15).

As far as running time, the most expensive step of
Algorithm 1 is the sorting in Line 4. Hence, denoting
by n the number of vertices in the input temporal graph
G = (V{E,, fi}1e7) and by m the maximum number
of edges over all snapshots of G, i.e., n = |V| and
m = max;c7 |E;|, the time complexity of Algorithm 1
is O(|T |mlogn).

2.2. Step 2: Extracting anomalous temporal
subgraphs

The second step of our approach to discovering
buzzing stories follows the general idea that every
piece of data (e.g., a post in a social-networking plat-
form or a query issued to a search engine) related to
a specific story typically tends to involve the same set
of main objects (e.g., terms or entities). We take the
anomalous temporal graph G# defined in the previous
step, as well as a time window W C T that denotes the
time period under consideration, and we seek K sub-
graphs of G# that exhibit high density in the window
W. To recognize a story as buzzing, it needs to have
high cohesiveness among all objects therein and for all
time instants in the window W. Hence, given a sub-
graph S of GA and a time window W C 7T, in this work
the following definition of cohesiveness it is used:

6(S,W) = min min degs (u,1). (1)

Algorithm 1 AnomalyScores

N

Input: A temporal graph G = (V,{E,, fi}:e7), a set R
N7 of integers
Output: An anomalous temporal graph G*
(V, {E,, ¢t}te7')
1: forally; € 7 do
2: TOT([i) — ZpeE,i f'i (e)
3. foralle € E,, let f;(e) := f,(e)/TOT (1)
4:  sortedges e € E,, by ascending f; (e)
5:  forall e € E, following the order given by f; (e) do
6
7
8

Pi(€) = Xorer, =g Ji(€)
for all » € R do
ifi—r>0 A p,(e) > p,_,(e) then

o ¢

i (e r) < pi(e) — pi_,(e)
10: else
11: ¢ (e,r) < 0
12: end if
13: end for
14: ¢, (e) < median value among {¢,, (e, ) }rcr
15:  end for
16: end for

Analogously, The overall cohesiveness of a set of sub-
graphs S of G is measured by taking the sum of the
cohesiveness of each subgraph in S:

AS.W) =) 5(S.w). 2)

Ses

The double-min function in Equation (1) allows for
capturing the requirements: high cohesiveness among
all objects and for all time instants. The minimum
over vertices helps mitigate the so-called free-rider
effect (vertices attached to a strong group by weak
links [16,78]), thus preventing stories from contain-
ing undesired outlying objects. At the same time, min-
imizing over all time instants in W captures the fact
that a buzzing story should exhibit high strength of as-
sociation during the entire period spanned by W. Ac-
cording to [8] a story with too many objects is hard
to be processed by a human being. Then, we require
that each story/subgraph be limited in size. Each out-
put subgraph S is required to have size no more than
an input integer N, with N in the order of a few tens.

Problem statement. Motivated by the above discus-
sion, we now state the problem we aim to solve.

Problem 1. (ANOMALOUS TEMPORAL SUBGRAPH
DISCOVERY (ATSD)) Given an anomalous temporal
graph G* = (V,{E. ¢ }ie1), a time window W C
T, and two integers K,N > 1, find a set §* =
{S1,...Sk} of disjoint subgraphs of G* such that (i)



6 Bonchi et al. / Discovering Buzzing Stories in Anomalous Temporal Graphs

Vi € [1.K] : |Si] < N, and (ii) A(S*, W) is maxi-
mized. U

Theorem 1. The ATSD problem is NP-hard.

Proof. We prove NP-hardness by reducing from the
well-known CLIQUE (decision) problem: given a graph
G = (V,E) and an integer k, decide if G contains a
clique of size k. We reduce CLIQUE to a special case
of ATSD where [T| =1, K = 1,andVt € T,e € E, :
¢:(e) = 1. This special case of ATSD corresponds to
having a simple unweighted input graph (i.e., instead
of a temporal graph) and asking for one output sub-
graph. The corresponding decision version is: given a
(simple, unweighted) graph G’ = (V, E) and two inte-
gers N, M, decide if a subgraph with size no more than
N and min degree at least M exists in G.

Given an instance I = (G, k) of CLIQUE, we con-
struct in polynomial time an instance I’ = (G', N, M)
of (the special version of) ATSD by setting G’ = G,
N =k, M = k—1. We show that / is a YES-instance for
CLIQUE if and only if I’ is a YES-instance for ATSD.
Indeed, if G contains a clique of size k, this corre-
sponds to a subgraph with k = N vertices and mini-
mum degree k — 1 = M. Therefore, this would make
the corresponding ATSD instance I’ be a YES-instance
as well. On the other hand, if G’ contains a subgraph of
size N = k and minimum degree M = k — 1, it means
that this subgraph is a clique of size k. [

The DenseTemporal algorithm. As Problem 1 is
NP-hard, we devise a fast heuristic that yields accu-
rate solutions in practice, as confirmed by our exper-
iments in Section 3. To properly design the proposed
heuristic, we first introduce a simplified version of the
ATSD problem, termed UNBOUNDED-ATSD (U-ATSD ),
where only one subgraph is required as output (K = 1)
and the size of the output subgraph is left unbounded
(N = o0). We show that a polynomial-time (exact) al-
gorithm exists for the U-ATSD problem, and use such
an algorithm as a basis for the proposed heuristic.

Problem 2. (UNBOUNDED ANOMALOUS TEMPORAL
SUBGRAPH DISCOVERY (U-ATSD )) Given an anoma-
lous temporal graph G* = (V,{E,, ¢ }1e7) and a time
window W C T, find a subgraph S* of G* that maxi-
mizes 6(S*,W). O

This simplified version of the ATSD problem resem-
bles the problem of finding the inner-most core in a
graph (and the notion of core decomposition) [75],
which we briefly recall below.

Algorithm 2 U-ATS

Input: An anomalous temporal graph G* =
(V,{E:, ¢ }re7), a time window W.
Output: A subset of vertices (subgraph) S* C V.

e+ 0, Q<0

2: forallu € Vdo

3 p(u) < minew deg(u,t)
4:  insert u in Q with priority score p(u)
5: end for

6: k<0

7: while Q # 0 do

8:  u < highest-priority vertex in Q

9:  p(u) < priority score of u in Q

10:  if p(u) > k then

11: k< p(u)

12:  endif

13: cfu] + k

14: {update priority queue}
15: forallte W,ve Q| (u,v) € E, do
16: deg(v,t) < deg(v,t) — ¢i(u,v)

17:  end for

18: forallt € W,ve Q| (u,v) € E, do

19: p(v) < priority score of vin Q

20: P’ (v) + min,cw deg(v,1)

21: update order of v in Q based on the new priority
score p (v) GGf p'(v) # p(v))

22:  end for

23:  remove u from G4
24: end while
25: S* < {ueV|cu =k}

The k-core (or core of order k) of a graph G is de-
fined as the maximal subgraph in which every vertex
is connected to at least k other vertices within that sub-
graph. The set of all cores, for all k € [1..k*], forms
the core decomposition of G. The linear time algorithm
proposed by Batagelj and ZaverSnik [13] iteratively re-
moves the smallest-degree vertex from the graph and
sets the core number of the removed vertex accord-
ingly.

The U-ATSD problem resembles the problem of ex-
tracting the inner-most core of a graph, but it comes
with two additional challenges: (i) our input is a tem-
poral graph composed of multiple snapshots, and (if)
the maximization of the min degree should be ensured
for all snapshots corresponding to the instants in the
given time window. Despite being more complicated
than inner-most-core extraction, the U-ATSD problem
can still be solved in polynomial time.

The algorithm to solve the U-ATSD problem is in-
spired by the one by Batagelj and ZaverSnik, where the
vertex to be removed at each step is the one with min-
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Algorithm 3 DenseTemporal

Algorithm 4 Buzz

Input: An anomalous temporal graph G* =
(V. {E:, 1 }re7), a time window W,
1: two integers K, N > 1.
Output: AsetS* = {S;}X, of K disjoint subgraphs of G*,
with |S| < N, VS € §*.

2: 8* 0

3: while |S*| < K do

4: S < U-ATS (G, W) {Algorithm 2}
5. if |S| > N then

6: run the min-degree-vertex removal phase of Algo-

rithm 2 on S until it becomes empty and generate a set
of subgraphs § = {31,...,§|5‘}, with§; = §
7: S « argmaxe(;s|_y+1.is)) O(Sis W)
8: endif
9 remove the subgraph induced by § from G*
10 S*+ S*U{s}
11: end while

imum weighted degree in the whole time window W,
i.e., a vertex u minimizing min,cw degg (u,t), where
G’ is the anomalous temporal graph at the current iter-
ation. Once a vertex has been removed, the degree of
all its neighbors in all the snapshots of the time win-
dow needs to be updated and the new vertex with min-
imum degree needs to be identified. To do this effi-
ciently, one can employ a priority queue Q where the
basic operations of insertion, deletion, and update are
performed in time logarithmic in the size of the queue.
The pseudocode of the U-ATS algorithm is reported as
Algorithm 2.

The time complexity of Algorithm 2 is O(|W|mlogn)
(n = |V|,m = max,c7 |E;|). Indeed, each vertex in the
graph and its corresponding neighbors in each snap-
shot are visited only once. This means that, the over-
all number of operations after all vertices have been
processed is O(|W|m). This cost should be multiplied
by a logarithmic factor due to the maintenance of the
priority queue.

Finally, in the next theorem we formally show the
soundness of the algorithm.

Theorem 2. Algorithm 2 returns a solution to Prob-
lem 2.

Proof. A vertex property function on a graph G =
(V,E) is a function g : V x 2V — R. A vertex prop-
erty function g is said monotone if for all C1,Cs C
V : C; C Cyitholds that Vv € V : g(v,Cy) <
g(v,C2) [13]. Let GA = (V,{E., ¢, },c7) be an anoma-
lous temporal graph and let W be a time window. For
any vertex u € V and subgraph S C V, let g be defined

Input: A temporal graph G = (V,{E;, fi }:eT), a time win-
dow W,asetR C NT of integers, two integers K, N > 1.
Output: A set S* of K subsets of vertices of G.
1: generate an anomalous temporal graph G* by running
Algorithm 1 on input (G, R)
2: get S* by running Algorithm 3 on input (G*, W, K, N)

as g(u,S) := min,cw degs (u,t). The vertex property
function g defined this way corresponds to the property
at the basis of the inner-most core to be output by the
U-ATSD problem (Equation (1)). It is easy to see that
this property function is monotone, as the weights on
the edges of G* are non-negative, hence the min degree
(over all instants in W) in a subgraph S is no less than
the corresponding min degree in a supergraph of S.
The proof is completed by the Batagelj and ZaverSnik
result [13]: for a monotone vertex property function g,
the algorithm that repeatedly removes a vertex with the

smallest g value correctly determines cores based on g.
O

The U-ATS algorithm provides a solid basis for solv-
ing the general ATSD problem. The method we pro-
pose is indeed an extension of U-ATS where we ask for
two additional requirements: (i) the output subgraph(s)
should be bounded in size, and (if) multiple subgraphs
need to be output. The first requirement is met by keep-
ing iterating the min-degree-vertex removal phase of
the U-ATS algorithm until we are left with an empty
graph. This procedure generates a set of subgraphs.
The subgraph with highest density § among the ones
with size at most N is output. As far as outputting mul-
tiple subgraphs, we adopt an intuitive strategy where,
once the first subgraph has been found, it is removed
from the graph, and the next subgraph is identified by
running the algorithm on the remaining graph, until K
subgraphs have been extracted. All steps of the pro-
posed algorithm are in Algorithm 3. The time com-
plexity of the algorithm is K times the time complexity
of U-ATS, that is O(K|W|mlogn).

2.3. The overall Buzz approach

The overall approach we propose to identify buzzing
stories is summarized in Algorithm 4. The algorithm
consists in sequentially running the aforementioned
Step 1 and Step 2, and its overall time complexity is
O((|T] + K|W|) x mlogn), with n being the number
of vertices in the input graph and m = max;c7 |E;|.
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Step 1 can be performed offline and then be updated in-
crementally for every new time instant. At query time,
we only need to perform Step 2, which leads to an on-
line time complexity of only O((K|W|) x mlogn).

3. Evaluation on search-log data

In this section we describe the empirical evaluation
we conducted on a dataset extracted from a real-world
web-search log.

Dataset. We employed a query log of a popular com-
mercial web-search engine.> Web-search queries have
traditionally been used in the story-identification liter-
ature [55,98]. Indeed, relevant real-world events raise
interest/concern in people, who naturally turn to search
engines to gather information. This renders online
searches a valuable source to seek buzzing stories.
We analyzed an anonymized sample of that query log,
spanning about 18 months from 2013-2014. From this
dataset, which we dub Q;,,, we derived a temporal
graph G and an anomalous temporal graph G*. We
point out that the proposed method is general enough
to be applied to any other type of user-generated con-
tent, such as data from microblogs/social networks. We
defer the use of other datasets to future work.

Building the G graph. The Q;,, dataset spans a time
horizon T of 558 days, and contains hundreds of bil-
lions of queries, with tens of millions of distinct terms.
To filter out noise, we pre-processed Qp,, retaining,
for every day ¢t € 7T, only the queries with at least 50
occurrences. We derived from Qy,, a temporal graph
G = (V{E,, fi}te1), consisting of daily snapshots.
The snapshot (E;, f;) of each day t+ € T was ex-
tracted from the set Q, of all queries submitted at day #,
with the respective number of occurrences. From each
query g € O, we extracted all distinct pairs of non-
stop-word terms, and built the edge set E; as the set of
term pairs co-occurring in at least one query ¢ € Q.
Each edge (u,v) was assigned a raw weight f;(u,v)
equal to the sum of the occurrences of all originating
queries from Q, where u and v are both present.

Building the anomalous G4 graph. We built the
anomalous temporal graph G4 from the raw temporal
graph G by running the algorithm AnomalyScores (see
Section 2.1) with R = {7}, i.e., using a single refer-
ence time instant set to one week before. The choice

3Yahoo Web Search
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Fig. 1. Search-log evaluation: CDF for edge weights of G.
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Fig. 2. Search-log evaluation: CDF for edge weights of G*.

of R (as well as the length of the time window) obvi-
ously impact the type of events that we detect. Local
and small-scaled events might require smaller slots and
finer granularity. However, in line with related work
[80,81], we are interested in world-wide stories with a
lasting impact on social-media users. All graphs were
built with a Hadoop implementation of the above pro-
cess, exploiting a cluster of 500 nodes. Table 1 reports
statistics on G* and G.

Graph characterization. We highlight here some in-
teresting characteristics of the temporal graph G and
the anomalous temporal graph G*. Figures 1-2 show
the cumulative distribution (CDF) of edge weights of
graphs G and G*, respectively. For graph G, we observe
that most edge weights falls between 50 (the minimum
number of daily co-occurrences, due to the chosen
threshold), and 1500. The average maximum score
across all snapshots is 3 803 170, whereas the average
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Table 1
Search-log evaluation: statistics of the temporal graphs.
Vertices Edges
g g g g
Mean 6933237 1554728 129771466 9849487
SD 0 628347 0 5402513

mean is 399.85. In the case of G*, edge weights appear
to be more evenly distributed in the interval [0, 1].

A second difference between G and G# regards the
size of the snapshots. For both graphs Table 1 reports
the mean value and standard deviation for the number
of vertices and edges across all snapshots. Note that the
number of vertices and edges do not vary in the snap-
shots of G. Replacing the raw weights with anomaly
scores (to derive G4 from G) causes remarkable reduc-
tions in size: 22% of the vertices and 7% of the edges
of G are retained. This is a nice side effect due to the
adoption of an anomaly model, which automatically
filters our those associations that are not worth consid-
ering for the task of detecting buzzing stories.

Competitors. We compared our Buzz method to the
two main approaches discussed in the Introduction.
The first approach builds a graph modeling the asso-
ciation between domain objects and looks for cohe-
sive subgraphs in it, without considering deviations
(anomalies) from the normal level observed over the
entire time horizon [12,26,74,92,98]. In our context
this corresponds to running Algorithm 3 on the origi-
nal graph G, and using a time-window size |W| = 1,
whose unique instant corresponds to the day where
stories are identified. We refer to this method as RGB
(raw-graph baseline).

The second approach applies an anomaly model to
characterize abnormal associations between domain
objects. It ignores object associations (i.e., it exploits
no co-association graph), and identifies stories by a-
posteriori grouping objects with similar anomalous be-
havior. Specifically, as a representative of this cate-
gory, we considered SAX* [80].

Testbed. We considered the temporal graph G and the
anomalous temporal graph G# extracted from Olog, as
described above. We evaluated the proposed Buzz and
the SAX* and RGB competitors on a test set of 50 days,
which were sampled uniformly at random from the
whole horizon 7~ of 558 days spanned by G and G4.
For each selected date, we ran Buzz on G4, RGB on G,
and SAX* on the corresponding time series of occur-
rences of individual terms.We varied window size W

(starting in the given date), maximum size N of each
output subgraph, and maximum number K of output
subgraphs as follows:

- W] €{1,2,3,4,5};
- N € {10,15,20,25,30};
- K € {10,15,20,25,30}.

Testing 5 values for each parameter led to a total of 125
different configurations to be given as input to Buzz
and RGB. In the case of SAX*, instead, the only pa-
rameter that is defined is the window size |W|. Indeed,
this algorithm allows for specifying neither the num-
ber N of stories nor the story size K. To ensure a fair
comparison between Buzz and RGB vs. SAX*, for a
given value of N and K, we thus retained the SAX* sto-
ries with size no more than N, and, if SAX* had output
more than K stories, we sampled a random subset of
size K. For the sake of robustness, the sampling proce-
dure was repeated 10 times and performance indicators
were obtained by averaging across the 10 samples.

3.1. Anecdotal evidence

In Tables 2—4 we show some examples of buzzing
stories extracted by the proposed Buzz, and the RGB
and SAX* baselines, respectively. Table 2 shows that
Buzz tends to extract real-world events on different
topics — sport, politics, or show business — that be-
came buzzing in those test days. A number of sto-
ries are about sport: Cristiano Ronaldo winner of the
2014 Baloon d’Or (Example #1); the open ceremony
of Sochi 2014 Olympic Winter Games (Example #3);
the gold medal of Yulia Lipnitskaya, a fifteen-year old
Russian prodigy in figure skating (Example #4); the
perfect 10.0 scored by the gymnast Lloimincia Hall for
her routine against Alabama, whose performance went
viral (> 850K views online) in April 2014 (Exam-
ple #11). Another bunch of stories (Examples #5—#8)
deal with natural disasters or catastrophic events: the
protests in Ukraine, the Costa Concordia cruise disas-
ter, two tornadoes that bore down two towns in north-
east Nebraska, and the disappearance of Malaysia Air-
lines Flight 370. Example #9 is focused on the primary
victory of congressman Charlie Rangel of New York,
after facing one of the most serious challenges of his
career, while Example #10 concerns a presumed sight-
ing of a deer-like UFO over the city of Kowloon in
China. Varying the window size |W| seems to impact
the type of event detected. For instance, Example #12
testifies that a larger |W/| (5 in this case) allows for cap-
turing particular aspects of very popular events, like
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Search-log evaluation: examples of stories detected by the

proposed Buzz method.

# Date |[W| N  Story
1 2014-01-13 1 10 | cristiano dor wins ronaldo fifa ballon
2 2014-01-28 2 25 | mexico templar treasure knights
3 2014-02-07 3 10 | sochi russian nbc opening watch ceremony
4 2014-02-09 3 10 | day figure russia julia skating medal ceremony
5 2014-02-19 2 25 | protests live ukrainian police kiev
6 2014-02-27 2 30 | captains costa wreck concordia
7 2014-06-16 3 25 | nebraska failure llc tornado monday big
8 2014-03-12 3 15 | crash malaysian plane flight mh370 missing
9 2014-06-25 1 25 | charlie rangel primary election
10 2014-04-06 2 20 | ufo deer nasa people kowloon sightings china
11 2014-04-10 2 25 | gymnast lloimincia legs hall girls alabama
12 2014-03-03 5 10 | acceptance jared speech leto novak oscars goldie
13 2014-01-13 1 30 | gracie ashley progeria parents scott berns
14 2014-01-13 2 30 | scott progeria death berns
15 2014-01-13 3 10 | search papa baby progeria death berns
16  2014-01-13 4 10 | pictures progeria death berns

Search-log evaluation:

Table 3
examples of stories detected by the RGB competing method.

# Date N  Story
1 2014-01-13 10 | earthquake rico puerto
2 2014-01-28 20 | grammys 2014 monica lewinsky
3 2014-02-07 30 | sochi ceremony opening olympics
4 2014-02-09 30 | count medal sochi olympics skating figure young girl
5 2014-02-19 20 | lansbury angela
6 2014-02-27 20 | costa concordia
7 2014-06-16 30 | happy fathers day pictures funny lebron james
8 2014-03-12 30 | mh370 flight malaysia airlines
9 2014-06-25 10 | bieber justin selena gomez grande ariana
10 2014-04-06 20 | ufo sightings
11 2014-04-10 20 | Isu gymnast
12 2014-03-03 30 | leto jared

Jared Leto’s impressive acceptance speech at the 2014
Oscars ceremony. Similarly, Examples #13—#16 show
a natural tendency of our Buzz method to capture dif-
ferent aspects of the same key event. All of these four
examples are about the death of teenager Sam Bern,
which was caused by progeria disease, but varying the
size of the time-window leads to different additional
terms corresponding to different facets of the story. Ta-

bles 3 and 4 show that RGB and SAX* are to some ex-
tent able to detect events that are similar in spirit to
the ones detected by our Buzz. However, both competi-
tors exhibit a critical weakness: RGB has a tendency
to extract ever-popular topics, such as full names of
celebrities or searches for funny pictures, while SAX*

often combines (erroneously) multiple events in a sin-
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Table 4
Search-log evaluation: examples of stories detected by the SAX* competing method.
# Date Story
1 2014-01-13 | community diet equipment helen
Iynch rosie started cadillac created torres trading uss automated beckinsale blanchett bodies cate
2 2014-01-28 | coronado faris forex greta hawaii kaling kate katrina knights miller pete required review reviews
robot robots seeger sienna software templar
3 2014-02-07 | delivery divorce seymour thompson wife buy forum
bras easter engagement jean laser petite posters rod davis death dia earn ellen evelyn gifts jackie
4 2014-02-09 linda making meryl michael money nike palm prison robinson skater skaters skating slips speed
tanya thrones tools types valentines walking 1990 anderson beatles bmw charlie colored concert
crawford
verde component configures detail fuck god quotations expedition gravity johnny mao michelle
5 2014-02-19 | minibb mvnforum plymouth scout seuss ukraine ukrainian vbulletin app artwork blackberry
brazzers civic classroom
buffalo gordon jacket katy perry sale stevens survivor tebow travis warship wilson alyssa ammo
6  2014-02-27 | ammunition barrymore blog blogs bulk bullock cheap concordia costa drew fmj hudson journal
leah mara mask oscar plane remini russian sandra singles
2014-06-16 | pamela playing tornado johnny original
2014-03-12 | young holiday university sites cookies crime flight mh370 rob scene
9 2014-06-25 | stock store dicaprio fanny leonardo aaron collins
10 2014-04-06 | jessica station watch chocolate east
11 2014-04-10 | victorian obama single
internet riley search stars adobe beth Iara nudity brad brazil carpet cate channing concept de-
generes dressed ellen farmiga garner goldie gomez hawn jared jennette job johansson kardashian
12 2014-03-03 . . ; . . .
kendrick kim kinney lawrence leto liza loss lupita margot matthew mccurdy minnelli museum
norman novak nyong olivia oscar oscars pitt portia robbie roberts rossi

gle one, likely due to the fact that SAX* does not admit ) Table 5 ) )
any bound on the size of the output stories. Search-log evaluation: search frequency of the buzzing stories.
Method Measure Mean Max.
3.2. Evaluation: Anomalous nature of the stories RGB NumDays 390.7 558
Mean Freq 56550 368 000

Buzzing stories should possess two main character- NumDays 0.169 383

istics: (i) they should be anomalous enough, (ii) they SAX* Mean Freq 1.184 756.5

shpuld match. real events that took place in Fhe ~t1me NumDays 3.609 558

window considered. The goal of our evaluation is to Buzz Mean Freq 2135 91040

assess how good each set of terms (subgraph) S output
by any considered method is with respect to these two
different aspects. In the following we focus on the first
aspect, while the second aspect will be discussed in
the next subsection. Particularly, for the first aspect we
checked that the story does not match a concept that
is regularly searched by the web crowd (rarity of the
event). To this end, we involved two metrics: (i) search
frequency in Qy,,, (ii) inter-day similarity.

soundly seek matches in Qy,,, we processed queries
and stories by removing stop words and non-alphanumeric
characters, performing stemming [70], and sorting the
stemmed terms lexicographically. For each story, we
computed the number of distinct days it occurs in at
least one query of that day, and the average frequency
over its daily occurrences. For each method, we then

Search frequency. For each output story we checked
how much and how regularly it was searched within
QOrog in the time horizon 7. The rationale is that
an anomalous story should not be too frequent. To

computed avg and max of these counts over all buzzing
stories and reported them in Table 5. A striking dif-
ference exists among RGB on one side, and SAX* and
Buzz on the other side. RGB finds stories correspond-
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ing to over-popular searches: half of the RGB’s stories
appear in the log almost every day (552 days over a
total of 558), and with high frequency (max story fre-
quencies above 13M). Indeed, by manual inspection
we verified that many of these correspond to celebri-
ties or navigational queries. SAX* and Buzz are com-
parable to each other and behave very differently from
RGB: they extract sets of terms that occur seldom, i.e.,
the average number of distinct days they appear in the
log is 0.2 and 3.6, respectively. In conclusion, employ-
ing an anomaly-detection model, which is a common
trait for SAX* and Buzz but not for RGB, appears to be
critical to avoid the pitfall of retrieving over-popular
topics, and instead identify buzzing stories.

Ever-present searches and popular stories capture
people’s ordinary habits, preferences, and everyday ac-
tivities. They fall within a different area of interest,
which Pink et al. [68] have recently put under the con-
cept of mundane data. Mundane data is that emerging
from the ordinary, usually un-noticed and below the
surface routines, contingencies, and accomplishments
of our everyday life. Pink et al. argue that studying
mundane data is important for a plethora of reasons,
including the fact that the mundane is a domain of cre-
ativity and improvisation, and an inseparable and un-
deniable part of our life; as such, it represents a critical
source of information to advance social sciences and to
assist designers and policy markers who create digital
interventions in everyday life contexts, like energy de-
mand reduction [67] or promoting health [82] through
the presentation of data about their everyday practices
and bodies to consumers.

By reflecting ordinary and routinary aspects of life,
popular stories capture a different angle of the digi-
tal world, than the one that discovering buzzing stories
investigates. Being explicit designed to identify unex-
pected and anomalous events, our work rather con-
nects with those research efforts that focus on big cri-
sis data [21], i.e., they deal with what is novel, spectac-
ular, disruptive or revolutionary. Our algorithm could
be a useful contribution to the efforts aimed to exploit
social-media data for improving the handling of emer-
gencies and crisis situations, which may unfortunately
arise in a variety of domains (e.g., natural disasters,
city malfunctioning events, terror attacks).

Whilst the popular, ordinary, mundane must not nec-
essarily be conceptualized as opposed to the spec-
tacular or extraordinary, it is clearly a different an-
gle/dimension, although with possible relations.

Inter-day similarity. As a second metric, we exam-
ined how each method tends to extract the same sto-

Table 6

Search-log evaluation: average Jaccard coefficient between
sets of stories extracted in different days.
|W| RGB SAX* Buzz
0.0468 0.0000 0.0001
0.1145 0.0000  0.0000
0.1808 0.0000 0.0000
0.2141  0.0000  0.0000
0.2306  0.0000  0.0000

N AW N -

Table 7
Search-log evaluation: editorial assessment.

Method #Events YES Events NO Events
# % # %

ALL 464 272 586 192 414
SAX* 144 60 44.4 80 55.6
RGB 160 87 54.5 73 456
Buzz 160 121 75.6 39 242

ries for different dates. The desideratum is that this
does not happen, as an anomalous story should not be
too frequent. We tested this by considering all possible
pairs of (not necessarily consecutive) days in our test
set of 50 dates, and, for each pair of days, we com-
puted the Jaccard similarity (counting the bag of words
of each story as a distinct item) between the sets of sto-
ries of each parameter configuration. Results (averaged
over all comparisons for a configuration and over all
configurations) are presented in Table 6. Once again,
RGB behaves very differently from the two other meth-
ods. For Buzz and SAX* the average Jaccard similar-
ity is always (almost) zero: this is consistent with the
fact that anomalous stories should not appear repeat-
edly over time. On the other hand, similarity among
RGB’s stories is much higher, which further testifies its
non-anomalous nature.

3.3. Evaluation: Correspondence with real-world
events

The second part of our evaluation was devoted to as-
sessing whether the detected stories match real-world
events, which we did by conducting (i) an editorial
study with human assessors, and (ii) an automated
quantitative evaluation.

Editorial assessment. We recruited three human judges
and asked them to provide a YES/NO answer to the
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Table 8

Search-log evaluation: correspondence with real-world events.

RGB SAX* Buzz % Variation
Parameter avg cosine  avg cosine avg cosine Buzz vs. SAX*
1 0.343 0.101 0.062 —39.1 %
2 0.370 0.107 0.128 19.8 %
|[W| 3 0.305 0.071 0.109 533 %
4 0.281 0.030 0.077 156.6 %
5 0.199 0.010 0.058 475.7 %
10 0.299 0.064 0.120 86.9 %
15 0.297 0.064 0.092 43.7 %
N 20 0.300 0.064 0.077 20.9 %
25 0.301 0.064 0.074 15.8 %
30 0.301 0.064 0.071 11.8 %
10 0.303 0.075 0.101 34.8 %
15 0.301 0.068 0.094 37.1 %
K 20 0.300 0.063 0.087 36.9 %
25 0.298 0.059 0.080 36.3 %
30 0.297 0.055 0.073 34.1 %

question: “Does the story match a real event?” We en-
couraged editors to query their preferred search en-
gine with the terms and dates of a story, and explore
the corresponding results. Given that the labeling was
complex and time consuming, the assessment was con-
ducted on a sample of our test set. Specifically, we
randomly picked 16 < Date, |W|, N > configurations
and fixed K = 10. This led to a total of 464 candidate
stories, 160 of which were extracted by Buzz, 160 by
RGB, and 144 by SAX*. SAX* returned less stories as it
does not allow for specifying the number of output sto-
ries, and it found less than 10 events for some configu-
rations. For each candidate event, editors were shown
the words of the story and the dates in the time win-
dow. The stories returned by different methods were
randomly mixed. Each judge was asked to assess all
464 candidate events in our sample. Hence, the edito-
rial evaluation provided us with 3 labels for each story.
Each story was assigned the label that was chosen by
at least two editors.

Table 7 summarizes the results, which show that
our Buzz evidently outperforms its competitors. We
measured the agreement among editors with the well-
established Fleiss’ Kappa measure. Our task was quite
complex and subjective, thus we expected the inter-
annotator agreement to be relatively low. Nevertheless,
we obtained a Fleiss’ Kappa value of 0.254, which is

customarily interpreted as a “fair” level of agreement
and thus demonstrates the appropriateness of the study.

Quantitative evaluation. We adopted an automated
version of the methodology in [80]: for any buzzing
story, we issued a web-search query composed of the
terms of the story, we retrieved the top result pages,
and evaluated their quality in terms of relatedness to
the event. Again, the intuition is that if one queries a
search engine on a real event, the top results should be
recognized as related to the issued query.

For each detected story we formulated a query with
the terms of the story, plus all dates in [r—1, 14 |W|—1],
where t is the input date and W is the specified time
window. For each query, we collected the top ten re-
sult pages from the public API of a popular commer-
cial search engine. We represented each result as a
bag of words, aggregating title, snippet, and the last
part of the url corresponding to the page name. For
each buzzing story we computed the cosine similar-
ity between its TF/IDF vector and the TF/IDF vector
of each result page, and averaged over the ten results.
This way, a higher cosine similarity is an indicator of
higher pertinence of the web-search results to the de-
tected story, and, as such, higher correspondence to a
real event.

Performance comparison. Table 8 shows the out-
come of this experiment. Results for a parameter value



14 Bonchi et al. / Discovering Buzzing Stories in Anomalous Temporal Graphs

were obtained by averaging over all other parame-
ters. The highest similarity is achieved by RGB. How-
ever, based on the evaluation of the anomalous nature
of the stories, it is apparent that this mainly depends
on the inability of RGB in quantifying the anomaly
of a story, and not on a real superiority in detecting
buzzing stories. Indeed, RGB mostly extracts term sets
matching very popular searches, such as gossip around
celebrities, which constantly raise attention over time,
and thus cannot be considered as buzzing. Also, these
popular queries are typically short (e.g., just celebrity
name), hence it is much easier to find search results
matching all terms in the story and achieve a higher
similarity. As a result, the only meaningful comparison
for this assessment is the one between Buzz and SAX*.

Table 8 shows that Buzz clearly outperforms SAX*.
The only case in which we observe a loss is for win-
dow size |W| = 1, which basically means asking for
a story that is anomalous during one day only. This is
not a serious issue but rather a limit case in our setting,
where we target stories raising an anomalous interest
over a generally longer period. For |W| > 1, Buzz al-
ways wins over SAX*. The average gain of Buzz de-
creases as the maximum story size N increases. This
is expected: if a story has more terms, it is less likely
that a good match with a snippet is found. Conversely,
the gain increases with the number K of stories. This
is likely due to the fact that SAX* is often unable to
retrieve the number of stories requested. The average
running times of the online processing are 1.3 s for
Buzz, 1.5 s for SAX*, and 5.9 s for RGB.

4. Evaluation on news data

This section present the evaluation that we con-
ducted on a large corpus of news data. We start by de-
tailing all the phases of the dataset-construction pro-
cess (Sections 4.1): news collection, preprocessing,
news annotation/information-extraction, temporal-graph
building. Then, we report some statistics on the con-
structed dataset (Section 4.2). Finally, we present the
testbed built to evaluate our Buzz algorithm and its
competitors, as well as the results of the evaluation
(Sections 4.3-4.4).

4.1. Dataset construction

News collection and preprocessing. We collected
news from the RSS feeds of a list of major Ital-

ian online newspapers, which we report in Table
9. We considered a time horizon spanning roughly
three months, precisely from December 12th, 2016,
to March 7th, 2017. News were collected by ex-
ploiting the news-crawling, RSS-feed-processing, and
data-cleaning functionalities embedded in the Hermes
tool [19]. In particular, as a main data-cleaning opera-
tion, we exploited the capability of Hermes to extract
the pure textual content of the news, by identifying and
removing non-textual content and/or irrelevant con-
tent, such as metadata or markups. All the news result-
ing from the pre-processing phase constitute the set of
news we ultimately used as input for the construction
of our collection. We hereinafter denote such a set by
D. Figure 3 depicts the number of news collected in
the various dates of the considered period. The overall
number of news is 88 092.

News annotation/information extraction. The next
step of our dataset-construction process consisted in
extracting from each news in D useful information that
can be exploited to build the ultimate temporal graphs.

In particular, we resorted to an entity-based repre-
sentation of news items, which was derived by extract-
ing entities from news. This corresponds to solving a
classic NLP task, termed Entity Recognition and Dis-
ambiguation (ERD), whose goal is to identify entity
mentions in a text (entity recognition) and link them to
a proper entity of a given knowledge base (entity dis-
ambiguation) [77]. To build the collection, we solved
the ERD task by resorting to the well-known wikifica-
tion approach, which was first proposed by Mihalcea et
al. [60], and then has had a huge success in the NLP
community [28,36,45]. The wikification ERD method
employs Wikipedia as a knowledge base: each article
in Wikipedia is considered as an entity, and the anchor
text of all hyperlinks pointing to that article constitute
the possible mentions for that entity. All entities are
organized in a (directed) graph structure given by the
underlying Wikipedia hyperlink graph, where vertices
correspond to entities and an arc from entity e; to en-
tity eo exists if e; contains an hyperlink to e, in its
body. In the wikification process the entity-recognition
subtask is easily performed by generating all n-grams
occurring in the input text and looking them up in a ta-
ble that maps Wikipedia anchor-texts to their possible
candidate entities.* For the entity-disambiguation sub-
task we employ the popular voting approach of Ferrag-
ina et al. [28], dubbed Tagme. For each news in D we

4We generate up to 5-grams.
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Table 9

News evaluation: newspapers used to build the dataset.

ilsole24ore.com
tg24.sky.1it

viaggiaresicuri.it
ingv.it

agi.it ladige.it
ilmessaggero.it corriere.it
esteri.it
protezionecivile.gov.it
ilgiornale.it repubblica.it

tgcom24 .mediaset.it

milanofinanza.it

ilfattoquotidiano.it

it.reuters.com
interno.gov.it
ansa.it
lastampa.it
gazzettadiparma.it
rai.it

ilmattino.it

lagazzettadelmezzogiorno.it

define its entity-based representation as the set of all
its extracted Wikipedia entities that do not match any
stop word. Moreover, based on a careful analysis of
the distribution of the frequency of an entity within the
news collection D, we also discard all entities whose
frequency is larger than 3 600. The set of all entities
belonging to the entity-representation of a news in D
forms the entity vocabulary V,.

Building the temporal graphs. The entity-based rep-
resentations of the news in D, along with the entity vo-
cabulary V,, were exploited to derive a temporal graph
with daily granularity. Each news in D was assigned a
timestamp corresponding to the time it has been pub-
lished. We considered the whole time period spanned
by the timestamps of all news in D, and defined our
time horizon T by splitting such a period in fixed in-
tervals of 1 day.

The temporal graph G was defined as follows. The
vertex set of G corresponds to the entity vocabulary
V.. For each time instant (day) ¢t € 7, the correspond-
ing edge set E, is defined based on all co-occurences
of any two entities in a news whose timestamp be-
longs to the interval [t;,%41). Formally, for any two
entities u,v € V,, we count all news whose times-
tamp lies within [#;,7,1) where u and v co-occur. Let
¢;(u,v) denote such a count. We draw an edge (u,v)
(and add it to E,) between all pairs of entities u, v such
that ¢,(u, v) > n, where 7 is a threshold defining when
the association between two entities is recognized as
strong enough.’> The weight of an edge (u, v) is set as
wi(u,v) = ¢, (u,v).

The anomalous temporal graph G4 was built from
the raw temporal graph G by running the algorithm
AnomalyScores (see Section 2.1) with R = {7, 10, 14},

SIn our evaluation we set = 2.

2000
1750
1500
1250
1000

750

frequency

500

250

Fig. 3. News evaluation: number of news for each date of the
selected time period.

Table 10
News evaluation: statistics of the temporal graphs.
#time instants 86
avg #news 1024
#non-singleton vertices 1822
#edges | 16570
min degree 1

avg degree 15.57
median degree 11.27
193.24

max degree

i.e., using three reference time instants set to one week,
ten days, and two weeks before.

4.2. Dataset characterization

Table 10 reports aggregated statistics on the tem-
poral graphs we generated: number of time instants,
average number of news per time instant, number of
(non-singleton) vertices, number of edges, and mini-
mum/average/median/maximum degree of a vertex.

Also, Figure 4 shows the distribution of number of
(non-singleton) vertices and number of edges across
all the instants in the temporal graph.
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Fig. 4. News evaluation: distribution of number of vertices and edges of the temporal graph.

4.3. Testbed

We considered the temporal graph G and the anoma-
lous temporal graph G* extracted from the news cor-
pus, as described above. We evaluated the proposed
Buzz and the SAX* and RGB competitors on a test set
of 24 days, which were sampled uniformly at random
from the whole horizon 7 of 86 days spanned by G and
GA. For each selected date, we ran Buzz on G4, RGB
on G, and SAX* on the corresponding time series of
occurrences of individual entities. We varied window
size |W/| (starting in the given date), maximum size N
of each output subgraph, and maximum number K of
output subgraphs as follows:

- |W] €{1,2,3,4,5};
- N € {5,10,15};
- K €{10,15,20}.

This led to a total of 45 different configurations to be
given as input to Buzz and RGB. In the case of SAX*,
instead, the only parameter that is defined is the win-
dow size |W|. Indeed, this algorithm allows for speci-
fying neither the number N of stories nor the story size
K. As in previous evaluation, for a given value of N
and K, we retained the SAX* stories with size no more
than N, and, if SAX* had output more than K stories,
we sampled a random subset of size K. For the sake
of robustness, the sampling procedure was repeated 10
times and performance indicators were obtained by av-
eraging across the 10 samples.

4.4. Evaluation: Correspondence with real-world
events

The overwhelming majority of methods that have
been designed and developed to detect events in social-
media and news data streams adopt the definition of
an event introduced by research on Topic Detection

and Tracking (TDT), i.e., a real-world occurrence that
takes place in a certain geographical location and over
a certain time period.

Evaluating whether and to what extent a method
is able to detect real-world events is a difficult prob-
lem [91], due to the complex and subjective nature of
the task, and to the lack of public annotated datasets
and standard evaluation measures. Most of existing ap-
proaches [1,3,10,14,48,84,90,91,97] analyze very lim-
ited datasets, and either perform a manual evaluation
of the events output by their method, or compare to a
ground-truth list of events.

In our first experiment on search-log data (see pre-
vious section) we chose the first option, and we faced
all the well-known difficulties that are typically en-
countered in editorial evaluation: the task was com-
plex, subjective, and time consuming. For such reasons
we decide to follow the second idea in this second ex-
periment, and to build a ground truth of events that we
can use to automatize the assessment of performance
of Buzz and the competitors.

As said before, finding a ground truth is also a non-
trivial issue. Very few corpora are publicly available
[3,59] and, to the best of our knowledge, none is avail-
able spanning the very recent time interval covered
by our dataset. Thus we built a ground truth on our
own. In the recent literature, such a list of reference
events has been built in various ways, for example, us-
ing hashtags [1], or fastest growing threads in a stream
of twitter messages [14], or the top headlines provided
by newspapers and news services [90,91]. We followed
the last idea, which seems to be the most general and
proper one given the nature of our input sources (news-
papers, news portals, and social-media sites).

Various major international newspapers and news
agencies provide API services that allow to retrieve
the top news for a given date, and to refine the search
by specifying query terms for a topic of interest, or
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Table 11

News evaluation: results of the comparison to a ground truth of real-
world events.

Precision Recall F-measure time (ms)
Parameter RGB SAX* Buzz RGB SAX* Buzz RGB SAX* Buzz RGB SAX* Buzz
[W| 1 0.194 0.146 0.086 | 0.077 0.028 0.053 | 0.091 0.045 0.062 [1531 2233 1758
2 0.194 0.119 0.156 | 0.077 0.032 0.086 | 0.091 0.045 0.099 [1531 2374 3806
3 0.194 0.111 0.284 | 0.077 0.058 0.110 | 0.091 0.050 0.130 {1531 2456 6030
4 0.194 0.043 0.282 | 0.077 0.028 0.101 | 0.091 0.023 0.119 [1531 2623 8353
5 0.194 0.013 0.319 | 0.077 0.009 0.096 | 0.091 0.008 0.114 {1531 2690 9956
5 0.194 0.146 0319 | 0.037 0.058 0.061 | 0.060 0.050 0.097 [1555 2455 6619
N 10 0.160 0.146 0.236 | 0.059 0.058 0.089 | 0.080 0.050 0.120 [1552 2455 6308
15 0.136  0.146  0.188 | 0.077 0.058 0.110 | 0.091 0.050 0.130 [1486 2455 6094
10 0.122  0.088 0.210 | 0.055 0.028 0.091 | 0.066 0.033 0.104 {1020 1637 4227
K 15 0.160 0.117 0.268 | 0.067 0.052 0.099 | 0.079 0.047 0.115 [1531 2455 6340
20 0.194 0.146 0319 | 0.077 0.058 0.110 | 0.091 0.050 0.130 {2041 3273 8454

additional filters such as geographical location. As
our dataset consists of Italian articles and information
items, we picked, as a well-known, and yet external
(i.e., not included in our list of input sources) source,
the Italian version of euronews . com.

We automatically queried it . euronews . com for
each date included in our dataset, and parsed the result
extracting the suggested headlines. The result obtained
by querying a specific date typically contained head-
lines published in the required date, and, in some cases,
a few headlines referring to other dates close to the one
of interest. Thus, we merged the lists of headlines ob-
tained from all the queries, obtaining a reference list of
524 headlines covering the whole time frame spanned
by out dataset. The average number of headlines per
date in the ground truth is 5 and the maximum is 15.

Given the entity-based representation adopted to
build our temporal graph, the events automatically ex-
tracted by Buzz and the competitors consist of a date,
a temporal window and a set of entities (contained
in the subgraph extracted by an algorithm). Thus, to
make our results comparable with the ground truth, we
also needed to build an entity-based representation of
the news contained in the reference list obtained from
it.euronews.com. We built such entity represen-
tations by employing the same NLP tool that we used
to construct the news dataset, i.e., Hermes [19]. In par-
ticular, here we exploited the Hermes’ crawling func-
tionality to retrieve all the headlines, as well as its en-
tity recognition and disambiguation module to tag such
headlines with relevant Wikipedia entities mentioned
in their content.

Results. We compared the results returned by Buzz,
SAX*, and RGB, for all the parameter configurations
listed before, to the events contained in the ground
truth for the 24 selected test dates. Following the ap-
proach suggested by [3,65] we performed automatic
comparison with the ground truth. To decide if a de-
tected event covers a reference event, we compared
the corresponding sets of entities by means of standard
information-retrieval measures: precision, recall, and
F-measure.

Table 11 reports the results of this evaluation. Re-
sults shown in correspondence of a certain parame-
ter and criterion refer to the best results achieved on
that criterion by varying all other parameters within
the ranges specified above. Results clearly attest the
superiority of the proposed Buzz method with respect
to both the competitors. In fact, apart from the case
|W| = 1, which, as discussed in more detail in the eval-
uation on search-log data, is not really meaningful for
our method, Buzz achieved values of precision, recall
and F-measure evidently higher than both the compet-
ing methods, up to double values in most cases.

In the same table we also report the (average) run-
ning times of the three competing methods. All meth-
ods were able to identify stories in a few seconds, with
SAX* being the most efficient method.

Finally, in Table 12 we show the count of how many
times a given parameter configuration led to the best
result for each one of the selected methods. The table
shows that K = 20 is always the best choice. As far as
the window size, |W| = 3 seems to be a good choice on
average. Parameter N has instead the largest variabil-
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Table 12

News evaluation: summary of best parameter configurations:
for each method and parameter configuration, number of events
for which that configuration led to the best result.

method parameters #events
|W|=1, N=15, K=20 64
|W|=3, N=15, K=20 50
|W|=2, N=15, K=20 48
|W|=4, N=15, K=20 37
|W|=5, N=15, K=20 37
|W|=2, N=5, K=20 36
|W|=5, N=5, K=20 36
Buzz |W|=3, N=10, K=20 35

|W|=3, N=5, K=20 34
|W|=4, N=10, K=20 | 34
|W|=4, N=5, K=20 26

|W|=5,N=10,K=20 | 26
|W|=2, N=10, K=20 | 24

|W|=1, N=5, K=20 19
|W|=1, N=10, K=20 18
|W|=1, N=15,K=20 | 341
RGB |W|=1, N=5, K=20 123

|W|=1, N=10, K=20 | 60
|W|=1, N=15,K=20 | 379
SAX* |W|=1, N=5, K=20 93
|W|=1, N=10, k=20 | 52

ity. This parameter is quite sensitive to the type of the
specific event to be detected. However, a good general
choice is to set it equal to 10.

5. Related Work

Story identification. Detecting emerging events/stories
from user-generated content has received considerable
attention in the last years [37]. Existing approaches fall
into two main categories. The first one includes graph-
based approaches [1,12,24,26,71,73,74,92,18,95,98],
while the second one comprises methods that re-
tain objects with anomalous behavior in a specific
time window, without relying on any co-association
graph [32,41,46,54,80,81,88,96]. In this work we pro-
pose a novel approach that combines ideas from the
two existing categories and extract cohesive subgraphs
(stories) in an anomalous co-association graph.
Among the graph-based approaches, it is worth
mentioning the method by Bansal et al. [12], which

extracts relevant keywords from a set of blog posts
and build a graph representing the co-association
among those keywords. Stories are ultimately iden-
tified by extracting clusters of keywords that are co-
hesively connected in the graph. Chen et al. [24] de-
vise a method targeted to heterogeneous networks,
i.e., networks composed of objects of multiple types.
The method is based on maximizing a nonparamet-
ric scan statistic over connected subgraphs of the
underlying heterogeneous network, so as to iden-
tify events as network clusters optimizing such a
statistic. Das Sarma et al. [26] identify stories as a
set of highly-correlated entities in a graph depict-
ing the dynamic relationships between pairs of enti-
ties deriving from a stream of user-generated content.
Rayana and Akoglu [71] devise an ensemble approach
that systematically selects the results to assemble in
a fully unsupervised fashion. Rozenshtein et al. [73]
focus on activity networks, and define an event as a
subset of nodes in the network that are close to each
other and have high activity levels. Activity level is
measured in two alternative ways: either as the sum
of distances among all pairs of the event nodes, or
in terms of a tree-based minimum-distance compact-
ness measure. Sarkas et al. [74] tackle the event-
detection problem by looking for the strongest asso-
ciations between entities mentioned in a document
collection, where the strength of association between
entities is again measured in terms of cohesiveness
within a properly-defined entity co-association graph.
Weng and Lee [92] propose an approach that ana-
lyzes a Twitter stream, and builds signals for indi-
vidual words by applying wavelet analysis on the
frequency-based raw signals of the words. It then fil-
ters trivial words out by looking at their signal auto-
correlations. The remaining words are ultimately clus-
tered to form events with a modularity-based graph-
partitioning technique. Xiao et al. [95] identify events
by extracting topically- and temporally-coherent sub-
graphs in a properly-defined interaction meta-graph.
The notion of temporal coherence is defined based on
the assumption that a real-world event is discussed fre-
quently in a relatively short time span. Topical coher-
ence instead follows the intuition that events corre-
spond to trees capturing the information flow over the
interaction meta-graph. Zhao et al. [98] detect events
from click-through data, i.e., log data of web-search
engines. This data is first segmented into a sequence of
bipartite graphs based on the user-defined time granu-
larity. Next, the sequence of bipartite graphs is trans-
formed into a dual graph, where each node is a query-
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page pair that is used to represent events. Ultimately,
the problem of event detection is formulated as the
problem of clustering such a dual graph.

Non-graph-based story-identification methods are
based on the identification of sets of terms/entities
exhibiting anomalous temporal evolution in isolation,
and a-posteriori grouping them in accordance with
their temporal profile. Stilo and Velardi [80,81] as-
sign each term a time series, describing how anoma-
lous (according to a specific anomaly-detection model)
its level of occurrence at any time instant is, when
compared to the normal level of the whole time hori-
zon. Events are defined as clusters of terms exhibit-
ing a similar temporal trend in their time series. Gun-
nemann et al. [32] employ a statistical model for de-
tecting events by spotting significant frequency devi-
ations of the words’ frequency over time. The statis-
tical process is complemented with an optimization
algorithm to extract only non-redundant events. Ku-
mar et al. [46] investigate the problem of event detec-
tion in the context of real-time Twitter streams, and de-
vise a method that employs single-pass clustering and
distance compression. Liang et al. [54] propose an it-
erative spatial-temporal mining algorithm employing a
signal-processing approach. Spatial-temporal term oc-
currences are viewed as signals, which are cleaned
up by applying noise filters that are specifically tar-
geted to improve the quality of an event-extraction
task from these signals. The iterative-mining algo-
rithm clusters terms and generates new filters based
on the results of clustering in an alternating fashion.
Vosoughi and Roy [88] devise a semi-automatic ap-
proach to story identification in Twitter. The method is
based on the intuition that tweets related to a story con-
tain assertions of that story. The proposed method is a
two-step one: a proper assertion-detection step is fol-
lowed by a hierarchical-clustering process that groups
tweets into stories. Zhang et al. [96] detect local events
from geo-tagged tweet streams. The Zhang et al.’s
method employs a measure that captures the geo-topic
correlations among tweets, and identifies pivots in the
query window based on such a measure. These pivots
form a list of candidate events, which are ultimately
screened by summarizing continuous tweet streams
and comparing the pivots against historical activities.

An orthogonal problem to story identification is how
to efficiently maintain stories by incremental updat-
ing [8]. Existing incremental strategies do not work for
the novel method we propose. Studying how buzzing
stories can be efficiently maintained is a non-trivial
problem that we defer to future work.

Finally, effort in this area has also been devoted to
related (but different) problems, such as event evo-
lution tracking, i.e., monitoring the evolution pattern
of events [47,55], entity evolution discovery, i.e., dis-
covering evolutions of entities from a stream of tex-
tual documents [69], topic/meme tracking, i.e., moni-
toring the evolution of specific topics or short, distinc-
tive phrases [30,50], story-context identification, i.e.,
building story contexts based on the correlation with
other stories [48,97], story-link detection, i.e., given
two stories, determine if they are related to each other
(e.g., talk about the same topic) [62,76], event-timeline
generation. i.e., creating a coherent timeline for an
event of interest [6,29], trend analysis, i.e., perform-
ing analysis of what is trending at a given point in
time [43,83].

Anomaly detection in temporal data. Anomaly de-
tection (also known as outlier detection) in temporal
data is the problem of identifying objects whose be-
havior throughout a certain temporal horizon signifi-
cantly deviates from the behavior of other objects. Two
main variants of the problem exist: (i) anomaly de-
tection in a set of temporal sequences, i.e., detecting
sequences in a given set that exhibit anomalous be-
havior with respect to other sequences in that set, and
(if) anomaly detection in a single temporal sequence,
i.e., detecting outlying points/subsequences within the
same temporal sequence. Several approaches have
been proposed in the literature, including unsupervised
discriminative approaches [72], unsupervised paramet-
ric approaches [22], or supervised approaches [53] for
the former variant of the problem, and prediction mod-
els [35], profile similarity-based approaches [93], or
deviant-detection approaches [61] for the latter vari-
ant. For a comprehensive survey on the topic please
refer to [33]. Another problem that is worth mention-
ing here is the problem of change detection in dy-
namic networks, whose goal is to discover significant
changes in the structure of a network that evolves over
time [15,20,56]. This problem can be seen as a special
type of anomaly detection in temporal data.

In this work we resort to anomaly detection in a
single temporal sequence to devise the first step of
the proposed approach to identifying buzzing stories.
Particularly, we interpret the weights assigned to an
edge of the input temporal graph as a temporal se-
quence, and we quantify the anomaly level of each
point (weight value) in the sequence based on some
anomaly-detection model. In our approach we use a
model that trades off between simplicity and effective-
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ness (see Section 2.1). Our proposal is however orthog-
onal to this body of research as any other more sophis-
ticated anomaly model can be employed.

Dense-subgraph discovery. Extracting dense sub-
structures from a large graph is a well-established
problem. Generally speaking, such a problem requires
to find a subgraph (or a number of subgraphs [11,25,
85,86]) of a given input graph that optimizes some no-
tion of density. Many definitions of dense subgraph
have been proposed, such as cliques, quasi-cliques, k-
cores, n-clans, k-plexes, n-clubs [49].

A well-established density notion is the average de-
gree. Due to its popularity, the corresponding problem
of finding a subgraph that maximizes the average de-
gree has been commonly referred to as the densest-
subgraph problem. The densest subgraph can be iden-
tified in polynomial time [31], and approximated
within a factor of % in linear time [23]. More difficult
(i.e., NP-hard) variants of the densest-subgraph prob-
lem include the densest-k-subgraph problem, which
asks for a densest subgraph of k vertices [9], as well
as the densest-at-least-k-subgraph problem and the
densest-at-most-k-subgraph problem, which asks for a
densest subgraph of size respectively no less and no
more than k [7,44].

Another well-known notion of dense subgraph is the
k-core, defined as the maximal subgraph where all ver-
tices have degree at least k [75]. The notion of k-core
(and the related core decomposition) has been widely
used, e.g., to quantify the global position of a vertex in
a complex network [75], or as a heuristic to maximum-
clique finding [27], or as a proxy for betweenness cen-
trality [34].

In this work we use dense-subgraph discovery as a
tool for the second step of our approach to identify-
ing buzzing stories. Particularly, we define a density
measure suitable for temporal graphs and devise al-
gorithms to extract dense subgraphs according to this
density definition. Density notions for temporal graphs
have also been introduced in [17,94]. However, those
notions are not suitable for our context. Indeed, the no-
tion by Bogdanov et al. [17] works only for graphs
having binary edge weights (within {—1,1}), while
Wu et al. [94] define a notion of core decomposition
for temporal graphs, which does not admit any time
window of interest as input, as required by our task.

6. Conclusions

The problem of automatically identifying buzzing
events from user-generated content has raised a lot of
interest in the last few years. Existing approaches fall
into two main categories: approaches that extract sto-
ries as cohesive substructures in a graph represent-
ing the strength of association between terms (or enti-
ties), and approaches that study the behavior of terms
over time and identify stories by a-posteriori grouping
terms exhibiting similar anomalous temporal trends.

In this work we advance the literature on story iden-
tification from user-generated content by proposing a
novel two-step method which profitably combine the
peculiarities of the two main existing approaches, thus
also overcoming their limitations. We conduct an ex-
tensive experimentation on two datasets respectively
extracted from a real-world web-search log, and from
a news corpus. Results attest the superiority of our ap-
proach over existing methods.

In the future we plan to investigate how buzzing sto-
ries can be updated incrementally. We will also focus
on other anomaly-detection models in the first step,
different notions of cohesiveness in the second step,
and how to extract overlapping subgraphs, to allow ob-
jects to appear simultaneously in different stories. Fi-
nally, we would like to investigate the connections be-
tween the problem of identifying buzzing stories and
concept drift.
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