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Data in several applications can be represented as an uncertain graph whose edges are labeled with a
probability of existence. Exact query processing on uncertain graphs is prohibitive for most applications,
as it involves evaluation over an exponential number of instantiations. Thus, typical approaches employ
Monte-Carlo sampling, which (i) draws a number of possible graphs (samples), (ii) evaluates the query on
each of them, and (iii) aggregates the individual answers to generate the final result. However, this approach
can also be extremely time consuming for large uncertain graphs commonly found in practice. To facilitate
efficiency, we study the problem of extracting a single representative instance from an uncertain graph.
Conventional processing techniques can then be applied on this representative to closely approximate the
result on the original graph.

In order to maintain data utility, the representative instance should preserve structural characteristics
of the uncertain graph. We start with representatives that capture the expected vertex degrees, as this is a
fundamental property of the graph topology. We then generalize the notion of vertex degree to the concept
of n-clique cardinality, that is, the number of cliques of size n that contain a vertex. For the first problem,
we propose two methods: Average Degree Rewiring (ADR), which is based on random edge rewiring, and
Approximate B-Matching (ABM), which applies graph matching techniques. For the second problem, we
develop a greedy approach and a game-theoretic framework. We experimentally demonstrate, with real
uncertain graphs, that indeed the representative instances can be used to answer, efficiently and accurately,
queries based on several metrics such as shortest path distance, clustering coefficient, and betweenness
centrality.
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1. INTRODUCTION

Graphs constitute an expressive data representation paradigm used to describe entities
(vertices) and their relationships (edges) in a wide range of applications. Sometimes
the existence of the relationship between two entities is uncertain due to noisy mea-
surements, inference and prediction models, or explicit manipulation. For instance,
in biological networks, vertices represent genes and proteins, while edges correspond
to interactions among them. Since these interactions are observed through noisy and
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Fig. 1. Uncertain graph G.

error-prone experiments, each edge is associated with an uncertainty value [Asthana
et al. 2004]. In large social networks, uncertainty arises for various reasons [Adar and
Re 2007]; the edge probability may denote the accuracy of a link prediction [Liben-
Nowell and Kleinberg 2003], or the influence of one person on another [Kempe et al.
2003]. Uncertainty can also be injected intentionally for obfuscating the identity of
users for privacy reasons [Boldi et al. 2012].

In all these applications the data can be modeled as an uncertain graph (also called
probabilistic graph), whose edges are labeled with a probability of existence. This prob-
ability represents the confidence that the relation corresponding to the edge holds in
reality. Given the wide spectrum of application domains, querying and mining uncer-
tain graphs has received considerable attention recently.

1.1. Query Processing in Uncertain Graphs

Let G = (V, E, p) be an uncertain graph, where function p : E → (0, 1] assigns a prob-
ability of existence to each edge. Following the literature, we consider the edge prob-
abilities independent [Potamias et al. 2010; Jin et al. 2011a, 2011b], and we assume
possible-world semantics [Abiteboul et al. 1987; Dalvi and Suciu 2007]. Specifically, the
possible-world semantics interprets G as a set {G = (V, EG)}EG⊆E of 2|E| possible deter-
ministic graphs (worlds), each defined by a subset of E. The probability of observing
any possible world G = (V, EG) � G is

Pr(G) =
∏

e∈EG

p(e)
∏

e∈E\EG

(1 − p(e)). (1)

Figure 1 illustrates an example of an uncertain graph G and the associated edge
probabilities. Since G has |E| = 9 edges, there are 29 = 512 possible worlds. The expo-
nential number of possible worlds usually renders exact query evaluation prohibitive.
Indeed, even simple queries on deterministic graphs may be expensive on uncertain
graphs. As an example, consider a reachability query which returns true if two input
vertices are reachable from each other. The corresponding reliability query in uncertain
graphs, which outputs the probability that the vertices are connected, is a #P-complete
problem [Valiant 1979].

In general, for any real-valued query q : G → R, the most natural choice in the
uncertain setting is to consider its expected value, that is, the average value in all
possible worlds, weighted by the probability of the possible worlds.

q(G) =
∑
G�G

q(G) Pr(G).

As one cannot afford to materialize 2|E| possible worlds, a common solution is to ap-
ply Monte-Carlo sampling, that is, to assess the query on a subset of random possible
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worlds. However, sampling is not always a viable option for large graphs [Jin et al.
2011b; Rubino 1998]. Although smart sampling techniques (e.g., [Li et al. 2014]) have
provably smaller variance and thus require fewer samples for good approximation, still
producing a single possible world incurs a nonnegligible cost, as it requires generating
a random number for each edge e ∈ E. Moreover, the query may be computation-
ally intensive. For instance, betweenness centrality—a measure of vertex importance
in the graph—involves all-pairs shortest path computations, which simply cannot be
performed many times (i.e., for each sample) in any graph of even moderate size.

Finally, when the output of the query is a complex structure (e.g., a data-mining task
producing a set of patterns), the application of sampling is not straightforward, as it
is not clear how to aggregate query results of different samples. In these cases, the
semantics of the analysis must be redefined for uncertain graphs and new ad-hoc algo-
rithms must be developed. However, designing new methods for data analysis problems
is not always feasible. Organizations may have already invested in infrastructure (e.g.,
graph databases, graph processing software, etc.) for deterministic graphs, which they
would wish to utilize, regardless of the uncertainty inherent in the data.

Motivated by the preceding, in this work we study the problem of producing a single
representative instance (i.e., a deterministic graph G∗) of a given uncertain graph G.
Queries can then be processed efficiently on the deterministic instance using conven-
tional graph algorithms. Clearly, any possible world could be used as a representative
of the uncertain graph: the question is which instance, among the 2|E| possible ones,
we should select.

1.2. Properties of a Good Representative Instance

In order to maintain data utility, the representative instance G∗ should preserve the
expected (underlying) structure of the uncertain graph G. In some sense, we would like
G∗ to be the average or the expected graph given the distribution over possible worlds
induced by G. As it is not clear how to define such a concept, we focus on extracting
a good representative instance that preserves fundamental properties of the graph
structure.

Modeling, understanding, and synthetically generating graphs with real-world char-
acteristics is crucial for a variety of simulation-based studies. One key insight in this
area is that one of the most pervasive and persistent characteristics of complex net-
works is their heavy-tailed degree sequence distribution, as observed on the Web and in
biological and social networks [Mihail and Vishnoi 2002; Faloutsos et al. 1999]. Follow-
ing this observation, many approaches generate synthetic graphs with a target degree
sequence: these studies have shown that such graphs exhibit several characteristics
that resemble those of real networks [Aiello et al. 2000; Tangmunarunkit et al. 2002;
Chung and Lu 2002; Chung et al. 2003].

In the theory of structural network controllability [Liu et al. 2011], one key property
is the number of driver nodes, that is, the set of nodes that can guarantee full control
over the network. Here control means the ability to guide a dynamical system from
any initial state to any desired final state in finite time, with a suitable choice of the
driver nodes. Liu et al. [2011] show that fully randomizing real-world networks (i.e.,
generating an Erdős-Rényi random graph with the same number of nodes and edges
as the original network) changes the number of driver nodes dramatically, failing to
preserve the topological characteristics of the original network. Instead, when degree-
preserving randomization is used (i.e., maintaining the degree of each node while
randomly rewiring the edges), the number of driver nodes remains almost unchanged,
indicating that network controllability is captured by the degree distribution.

Motivated by this, we study the problem of extracting, from an uncertain graph,
the representative instance that better preserves the expected degree of each ver-
tex. Going a step further, we generalize the notion of vertex degree to the concept of
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n-clique cardinality of a vertex u, that is, the number of cliques of size n that contain
u. In particular, the degree of a vertex is equivalent to its 2-clique cardinality, whereas
its triangle connectivity corresponds to its 3-clique cardinality. The notion of n-clique
is extended naturally to n > 3. Intuitively, this generalization aims at capturing the
expected structure in the neighborhood of vertices. The importance of neighborhood
connectivity in the overall structure of a deterministic graph has been highlighted in
graph triangulation [Hu et al. 2013] and complex network modeling [Mahadevan et al.
2006].

1.3. Contributions and Roadmap

For the first problem, that of extracting representative instances that capture the
expected vertex degree sequence, we propose two methods: Average Degree Rewiring
(ADR) and Approximate B-Matching (ABM). ADR involves two phases: first, it generates
an instance with the same average vertex degree as the uncertain graph; then, it
randomly rewires edges if they lead to better approximation of the vertex degrees.
ABM applies b-matching [Hougardy 2009] to obtain an initial instance which then
improves using weighted maximum bipartite matching.

For the problem of extracting the representative instance that best preserves the
expected n-clique cardinality (for n ≥ 2), we develop GREEDY and GAME. GREEDY
arranges the edges in a dynamic heap and greedily inserts the one that leads to the
best approximation of the expected n-clique cardinality. GAME applies a game theoretic
framework that models the edges of the uncertain graph as players of an exact potential
game and uses best response dynamics [Monderer and Shapley 1996] to generate the
representative.

Our extensive experimental evaluation on real datasets confirms that an instance
whose vertices have n-clique cardinality close to their expected value (even for small
values of n, e.g., n = {2, 3}) captures several structural properties of the uncertain
graph, including shortest path distance, betweenness centrality, and clustering coeffi-
cient.

Summarizing, the contributions of this article are as follows.

(1) We propose a novel framework for querying uncertain graphs, based on the extrac-
tion of representatives, which has vast potential due to the prevalence of uncertain
graphs in several modern applications, the large data volume involved, and the
high cost of uncertain graph processing.

(2) We propose ADR, ABM, GREEDY, and GAME, which efficiently generate represen-
tatives with desirable properties. Hence, they are applicable to large uncertain
graphs of millions of vertices and edges.

(3) We experimentally demonstrate that the extracted representatives are accurate
in answering a variety of common graph statistics. Moreover, query processing
through representative instances requires only a fraction of the time spent by
conventional Monte Carlo techniques.

The rest of the article is organized as follows. Section 2 provides an overview of the
related work and the necessary background. Section 3 formally defines the problems
we tackle in this work. Section 4 introduces ADR and ABM that aim at approximating
the expected vertex degrees. Section 5 discuses GREEDY and GAME that generate rep-
resentatives preserving the expected n-clique cardinality for n ≥ 2. Section 6 contains
an extensive experimental evaluation on real datasets, and Section 7 concludes.

2. BACKGROUND AND RELATED WORK

Parchas et al. [2014] contains a shorter version of this article in which we focus on
representatives based on the expected vertex degrees using ADR and ABM. This work
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extends that generalizing to the concept of n-clique cardinality and proposing GREEDY
and GAME. Moreover, all the sections and the experimental evaluation have been
revised and enhanced.

Section 2.1 overviews uncertain graphs. Section 2.2 presents research on vertex
degree distribution due to its relevance to our problem. Section 2.3 provides background
on best-response algorithms and exact potential games, as they are used by our GAME
method.

2.1. Uncertain Graphs

Uncertain relational databases have been well studied from different perspectives, such
as SQL query evaluation, mining, ranking, and top-k queries [Aggarwal and Yu 2009].
However, in many application domains, such as social, biological, and mobile networks,
graphs serve as better models than relational tables. Processing on uncertain graphs
can be classified into three main approaches: (i) queries based on shortest path dis-
tances and reliability, (ii) pattern mining and graph decomposition, and (iii) subgraph
(similarity) search.

Towards the first direction, Jin et al. [2011b] introduce the distance-constrained
reachability query, which, given two vertices s and t and a threshold d, returns the
probability that the distance from s to t is less than d. The authors propose two estima-
tors for the distance-constrained reachability query that have provably less variance
than naı̈ve Monte Carlo methods. Potamias et al. [2010] redefine traditional nearest-
neighbor queries by using statistical distance metrics (e.g., majority, median). These
metrics are computed by applying Dijkstra’s algorithm on a subset of the possible
worlds. Similarly, based on the possible world semantics, Yuan et al. [2010] return
shortest paths whose probability exceeds an input threshold. Finally, Khan et al. [2014]
study the problem of reliability search, that is, the discovery of all vertices reachable
from a set of query vertices with probability higher than a given threshold. Their so-
lution builds a novel index based on hierarchical clustering of the vertices. At query
time, the index is traversed in a bottom-up fashion and returns a set of candidate result
vertices which are then validated through Monte Carlo sampling.

In the second line of research, Zou et al. investigate mining frequent subgraphs [Zou
et al. 2010b] and top-k maximal cliques [Zou et al. 2010a] in uncertain graphs. Moustafa
et al. [2014] propose efficient algorithms for subgraph pattern matching for graphs,
where in addition to edges, vertices are also uncertain. Jin et al. [2011a] aim at find-
ing subgraphs that are connected with high probability, whereas Bonchi et al. [2014]
decompose the uncertain graph in probabilistic k-cores, that is, maximal subgraphs,
whose vertices have degree greater than k with high probability. Kollios et al. [2013]
define clustering using a modified graph edit distance, whereas Liu et al. [2012] find
reliable clusters, that is, clusters that have a good chance of staying connected among
the different instantiations (possible worlds).

In the third direction of research, Yuan et al. [2011] propose a feature-based frame-
work for subgraph search, while Yuan et al. [2012] study subgraph similarity. In a
rather different type of research, Boldi et al. [2012] intentionally inject uncertainty in
a social graph in order to obfuscate the identity of its users. Finally, Li et al. [2014]
improve the naı̈ve Monte Carlo by performing a smarter sampling that has provably
smaller variance and requires fewer samples for good approximation.

2.2. Degree Sequences and Distributions

A sequence of nonnegative integers d = {d1, d2, . . . , dn}, with d1 ≥ d2 ≥ · · · ≥ dn, is called
graphic if it is the degree sequence of some simple graph G. In such a case, we say that
G realizes the sequence d. Erdös and Gallai [1960] describe the necessary and suffi-
cient conditions for a sequence to be graphic. Graphical realization is fundamental for
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simulation of network properties [Del Genio et al. 2010]. For instance, in epidemiology
of sexually transmitted diseases [Liljeros et al. 2001], anonymous surveys collect only
the number of sexual partners of individuals, rather than their identity. The construc-
tion of the implied contact graph is crucial for the simulation of spread scenarios. In
order to capture the observed data, a common approach is to generate graphs that re-
alize a predicted degree sequence of the complex network [Hakimi 1962; Lovász 1970].
However, some structural characteristics (e.g., density, connectivity, etc.) depend heav-
ily on the vertex processing order in Hakimi [1962]. Thus, several techniques use the
output of Hakimi [1962] as a seed and take additional steps to randomize the graph
[Blitzstein and Diaconis 2011] or induce specific characteristics, such as connectivity.
These techniques perform local search by swapping edges in order to reach desired
properties. We follow a similar approach in the proposed ADR algorithm.

Another related line of research aims at the more general degree distributions. Ac-
cording to Mihail and Vishnoi [2002], the degree distribution of a graph is the most
frequently used topology characteristic. For instance, observations on the Internet’s
degree distribution has had a huge impact on network topology research [Faloutsos
et al. 1999]. Mahadevan et al. [2006] model complex networks by reproducing degree
distributions extracted from observed data. They generalize their approach to joint
degree distributions called dK-series, that is, probability distributions of vertex pairs,
triplets, etc. For instance, the 2K-series refers to the probability distribution of pairs
of vertices, that is, the probability that a vertex with degree k is connected to a vertex
with degree k′. In their experimental evaluation, they perform several queries on both
the original and the simulated graph, concluding that their method with d = 3 (i.e.,
triplets of vertices) generates models that approximate very well the original graphs
in all metrics. Inspired by their work, we focus on similar distributions in uncertain
graphs and evaluate our methods on similar metrics.

The popular Chung-Lu model [Chung and Lu 2002] predicts the average distance of
random graphs constructed with a given expected degree sequence in order to justify
facts such as the small-world phenomenon [Kleinberg 2006]. Specifically, assuming a
weight wu for each vertex u, any edge (u, v) exists with probability ρ = wuwv∑

i wi
. On the

other hand, in our uncertain graph model, edge probabilities are given explicitly as
an input to the problem instead of being related to vertex weights. The Chung-Lu
model has been generalized beyond degree sequence to output graphs conforming with
spectral properties or connectivity [Leskovec et al. 2010].

Similar in spirit to graph generation models is the literature on subgraph sampling,
whose goal is to generate a subgraph of an input deterministic graph that preserves
well the structural properties while containing considerably fewer nodes [Leskovec
and Faloutsos 2006; Hübler et al. 2008]. This line of research differs from our work, as
(i) we focus on uncertain graphs, thus we aim at preserving the structural properties
in expectation, and (ii) our goal is to extract a representative deterministic graph
having the same number of nodes. In our experiments, we use forest fire [Leskovec
and Faloutsos 2006], a subgraph sampling approach, in order to reduce the size of real
graphs for computationally intensive queries.

2.3. Background in Game Theory

Players of a strategic game compete on common resources. The objective of each player
is to minimize its own cost, defined by a cost function. After an initialization step, which
assigns a strategy to each player, the game proceeds in rounds. At every round, each
player chooses a strategy that minimizes its cost given the other players’ strategies.
However, as a player’s strategy affects the cost of others, each change may cause other
players to alter their strategy as well. This process is called best-response dynamics
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[Monderer and Shapley 1996]. Players do not consider the effect their strategy has on
the future of the game, which results in the dynamical rule often called myopic best
response.

Formally, a strategic game is a triplet <E, {Se}(e∈E), {Ce : S}(e∈E) → R>, where E is
the set of players, Se is the set of possible strategies of player e ∈ E, and Ce(S) is the
cost function that e wishes to minimize, considering the strategies S = ×(e∈E)Se of all
other players. Due to the interdependence of the players’ decisions, many games never
terminate; the decision of a player e may trigger a change in strategy of e′, which in
turn might force e to reconsider, and so on. If a strategic game terminates, we say
that it has a pure Nash equilibrium, that is, there exists a specific choice of strategies
se ∈ Se,∀e ∈ E such that no player has incentive to change strategy.

Potential games constitute a special class of strategic games in which the incentive
of all players to change their strategy can be expressed using a single global function
� : ×(e∈E)Se → R called the potential function. Let S̄e denote the strategies of all players
other than e, that is, S̄e = {s1, . . . , se−1, se+1, . . . , s|E|}. A potential game is called exact
when the change of a player’s cost due to his strategy update is reflected exactly in the
potential function, that is,

Ce(s′
e, S̄e) − Ce(se, S̄e) = �(s′

e, S̄e) − �(se, S̄e).

The theory of best-response dynamics on exact potential games ensures that they
always converge to a Nash equilibrium, independently of the initialization step
[Monderer and Shapley 1996]. The proposed GAME algorithm constitutes an exact
potential game.

3. PROBLEM DEFINITION

Let G = (V, E, p) be an undirected uncertain graph, where V is a set of vertices,
E ⊆ V ×V is a set of edges, and p : E → (0, 1] is a function that assigns a probability of
existence to each edge. For the sake of brevity, we denote the probability p(e) of any edge
e ∈ E with pe. We assume independent edge probabilities and possible world semantics,
that is, G is interpreted as a set {G = (V, EG)}EG⊆E of 2|E| possible deterministic graphs
(worlds), each defined by a subset of E.

Since most query processing tasks are very expensive for large uncertain graphs, we
propose the extraction of a deterministic representative instance G∗ � G that captures
the underlying properties of G. Then, queries on the uncertain G can be efficiently pro-
cessed using deterministic algorithms on G∗. Consider for example a nearest-neighbor
query. State-of-the-art approaches to this query type perform Dijkstra expansions on
multiple samples [Potamias et al. 2010]. Depending on the definition of the distance
measure, expansion for some samples can be avoided or terminated early when it can-
not improve the current result. Nevertheless, the method has usually very high cost due
to the large number of samples it requires. On the other hand, the same query in our
framework can be processed efficiently by applying any deterministic nearest-neighbor
algorithm on the representative G∗. As shown in our experimental evaluation, the rep-
resentatives extracted by our algorithms indeed capture well the relevant properties
of G: in this case, shortest path distances. Thus, the query on G∗ is expected to return
a good approximation of the nearest-neighbor set.

Section 3.1 discusses desired properties of a representative instance. Section 3.2 in-
troduces the problem of generating representatives based on the expected degree of
vertices. Section 3.3 generalizes to instances that preserve the neighborhood connec-
tivity of vertices. Table I contains the most common symbols throughout this article.
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Table I. List of Frequent Symbols

Symbol Definition
G uncertain graph
G instance (possible graph) of G
n target clique size

G∗ a representative instance of G
E∗ set of edges in G∗

γn(u, G) n-clique cardinality of vertex u in G
disn(u, G) n-discrepancy of u in G, i.e., γn(u, G) − [γn(u,G)]
deg(u, G) degree of vertex u in G, i.e., γ2(u, G)

�n(G) overall discrepancy of an instance G of G
Qm(e, E∗) set of m-cliques that contain both endpoints u and v of edge e = (u, v) in E∗

P sum of probabilities
∑

e∈E pe

3.1. Representative Instance

The representative instance G∗ should conform well with the structural properties of
G in expectation. A direct extraction of the “expected graph” from all possible worlds
yielded by G is not easily achievable, as the definition of expected graph is intrinsically
ill-posed. Indeed, the notion of expected value of any probability distribution needs
(i) an ordering among the points/objects of the domain of the distribution, and (ii) a
way of averaging (aggregating) among such objects. In our context, the domain objects
are graphs; hence it is not clear how to carry over either (i) or (ii). Instead, we pro-
pose a criterion that aims at preserving the expected structure of individual vertices.
Specifically, we use the notion of n-clique cardinality, defined as follows.

Definition 3.1. The n-clique cardinality γn(u, G) of a vertex u in a deterministic
graph G is the number of cliques of size n that contain u in G.

Definition 3.2. The expected n-clique cardinality [γn(u,G)] of a vertex u in an uncer-
tain graph G is the expected number of cliques of size n that contain u in G.

When the graph is implied, we write for convenience γn(u) and [γn(u)], respectively. The
following lemma derives the expected n-clique cardinality of a vertex u in G.

LEMMA 3.3. Given an uncertain graph G = (V, E, p), an integer n ≥ 2 and a vertex
u ∈ V , the expected n-clique cardinality of u is

[γn(u)] =
∑

c∈Qn(u)

∏
e=(ui ,uj ),

i< j

pe (2)

where Qn(u) is the set containing all cliques of size n that involve vertex u in G.

PROOF. Let an uncertain graph G = (V, E, p) and a vertex u ∈ V . Due to the inde-
pendence of edge probabilities, a set of n vertices {v1, v2, . . . , vn} forms a clique c with
probability pc = ∏

i< j p(vi, v j) . In the entire vertex set V , there are q = ( |V |−1
n−1 ) different

possible n-cliques that include u. Let Qn(u) = {c1, c2, . . . , cq} be the ordered set of all
possible n-cliques. Using an indicator variable Xi,

Xi =
{

1, if ci forms an n-clique;
0, otherwise.
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Fig. 2. Uncertain graph and its most probable instance.

The total number of n-cliques that contain u is X = ∑q
i=1 Xi. The expected value of X

is thus

E[X] = E

[ q∑
i=1

Xi

]
=

q∑
i=1

E[Xi] =
∑

c∈Qn(u)

(1 · pc − 0 · (1 − pc)) =
∑

c∈Qn(u)

∏
e=(ui ,uj ),

i< j

pe.

The 2-clique cardinality of a vertex corresponds to its expected degree. For n = 3, the
expected 3-clique cardinality of a vertex u is the sum of probabilities of the triangles
containing u. The rectangles (resp. ellipses) of Figure 2(a) contain the expected 2-
clique (resp. 3-clique) cardinality of each vertex, computed by Lemma 3.3. For instance,
[γ2(u2)] = p(u1,u2) + p(u2,u4) + p(u2,u5) = 0.8 + 0.4 + 0.8 = 2. Accordingly, [γ3(u2)] equals the
sum of the probabilities of the triangles {u1, u2, u4}, {u1, u2, u5}, {u2, u4, u5} that contain
u2, that is, [γ3(u2)] = 0.8 · 0.8 · 0.49 + 0.8 · 0.4 · 0.9 + 0.8 · 0.9 · 0.4 = 0.89.

Definition 3.4. The n-discrepancy disn(u, G) of a vertex u in an instance G � G is the
difference of u’s n-clique cardinality in G to its expected n-clique cardinality, that is,
disn(u, G) = γn(u, G) − [γn(u,G)]. If the graph instance is implied, we equivalently write
disn(u).

Definition 3.5. Given an uncertain graph G = (V, E, p) and an integer n ≥ 2, the
discrepancy �n(G) of a possible graph G � G is defined as

�n(G) =
∑
u∈V

|disn(u)|. (3)

A straightforward way to generate a representative of an uncertain graph is to
consider the instance with the highest probability [Potamias et al. 2010]. According
to Equation (1), this most probable (MP) instance corresponds to the graph containing
all the edges e that have probability pe ≥ 0.5. Since MP does not conform with any
structural property of G, it is expected to be a poor representative. For instance, if the
probability of all edges is below 0.5, then MP contains no edges. Figure 2(b) illustrates
the MP representative of the uncertain graph of Figure 2(a), where the rectangles and
ellipses next to each vertex u correspond to dis2(u) and dis3(u), respectively. Given the
high importance of the individual vertex degrees, in the following we distinguish the
special case where n = 2 in Definition 3.5.

3.2. Vertex Degree

From Lemma 3.3, the expected degree of a vertex u is [deg(u)] = ∑
e=(u,v) pe, and its

2-discrepancy is dis2(u, G) = γ2(u, G) − [γ2(u,G)] = deg(u, G) − [deg(u,G)]. Similarly, the
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overall discrepancy �2 is �2(G) = ∑
u∈V |dis2(u)|. The first problem we tackle in this

work is the following.

Problem 1 (2-Representative Instance). Given an uncertain graph G = (V, E, p), find
a possible graph G∗

2 � G such that

G∗
2 = arg min

G�G
�2(G).

Intuitively, Problem 1 aims at finding an instance such that the degree of each
vertex is as close as possible to its expected value. Characterizing the complexity class
of Problem 1 is nontrivial and represents an interesting open question. Our conjecture
is that the problem is hard or at least not solvable exactly in reasonable time for large
graphs. To this purpose, note that Problem 1 can alternatively be formulated as an
integer linear programming problem. Each edge e ∈ E is assigned a binary variable
xe = {0, 1}, where xe = 1 if and only if e is included in the result set. Then, the
discrepancy of a vertex u in G can be expressed as dis2(u) = ∑

e=(u,v)∈E(xe − pe). Thus,
Problem 1 becomes

min |A(x − p)|
x = {0, 1}|E|,

(4)

where p = (0, 1]|E| is the vector containing the edge probabilities of the input uncertain
graph G and A = {0, 1}|V |×|E| is the incidence matrix of G. The formulation in Equa-
tion (4) corresponds to a special case of the closest vector problem, which is known to
be NP-hard [Micciancio 2001]. Moreover, as discussed in Section 4.3, when all expected
degrees are integers, Problem 1 can be solved by b-matching algorithms, among which
the fastest runs in O(|E|3/2) time [Micali and Vazirani 1980]. For the general case of
real degrees, a brute-force approach would generate all 2|E| possible worlds and select
the one minimizing the objective function of Problem 1. Given that our main goal is
to provide solutions that are scalable enough to deal with the large size of real-world
graphs, we directly aim at approximate but efficient algorithms.

3.3. Neighborhood Connectivity

For some graph metrics (e.g., clustering coefficient), the connectivity among the neigh-
bors of a vertex u is important. To capture such scenarios, we further explore larger
values of n-clique cardinality, in which case the targeted problem is as follows.

Problem 2 (n-Representative Instance). Given an uncertain graph G = (V, E, p) and
two integers 2 ≤ l ≤ n , find a possible graph G∗

l,n � G such that

G∗
l,n = arg min

G�G

n∑
m=l

�m(G).

Problem 2 aims at extracting an instance that preserves the m-clique connectivity
of the vertices for values of m within a given range [l, n]. If l = n, to simplify notation,
we denote G∗

n,n as G∗
n. Problem 1 is a special case of Problem 2, where l = n = 2. Since

Problem 2 constitutes a generalization of Problem 1, it is also expected to be NP-hard.
Our framework is generic and can be directly applied to extracting representatives G∗

l,n
with arbitrary values of n. However, we focus on values of n up to 3 for the following
reasons: (i) The complexity of finding n-cliques of a vertex with degree d is O(dn−1)
[Nešetřil and Poljak 1985]. Thus, although Lemma 3.3 still applies for n > 3, its com-
putation is prohibitive for realistic graphs. (ii) Recall from Section 2.2, in the context of
deterministic graphs, Mahadevan et al. [2006] model complex networks by reproducing
joint degree distributions called dK-series, that is, probability distributions of vertex
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Fig. 3. Representative instances.

Table II. Representatives and the Corresponding
Discrepancies

representative �2 �3 �2 + �3

MP 1.88 5.83 7.71
G∗

2 1.40 5.83 7.23
G∗

3 2.28 1.59 3.87
G∗

2,3 1.72 2.11 3.83

pairs, triplets, etc. Their experimental evaluation concludes that d = 3 (i.e., triplets of
vertices, corresponding to n = 3 in our framework) generates models that approximate
very well the original graphs in all evaluated metrics.

Figure 3 shows the optimal representatives for different values of m in the range
[2, 3]. Specifically, Figure 3(a) illustrates the representative G∗

2 that minimizes �2;
Figure 3(b) the representative G∗

3 that minimizes �3; and Figure 3(c) the representative
G∗

2,3 that minimizes �2 + �3, that is, the objective of Problem 2 for l = 2 and n = 3.
The rectangles and ellipses next to each vertex u correspond to dis2(u) and dis3(u),
respectively. Observe that G∗

3 and G∗
2,3 preserve the triangle connectivity of the vertices,

as shown by the shaded regions. For instance, vertex u5 participates in two triangles of
both representatives since its expected 3-clique cardinality is 1.57. On the other hand,
the representatives MP (Figure 2(b)) and G∗

2 (Figure 3(a)) do not contain any triangle.
Table II summarizes the overall discrepancies (i.e., �2, �3, and �2 + �3) of the

various representatives (i.e., MP; G∗
2, G∗

3; and G∗
2,3 ). The values in bold correspond to

the minima of each column. Although G∗
2,3 is slightly worse than G∗

2 and G∗
3 in terms of

�2 and �3, respectively, it yields better �2 +�3. Intuitively, G∗
2,3 combines the desirable

properties of G∗
2 and G∗

3, that is, it has similar edges to G∗
2 and similar triangles to G∗

3.
Because of this, as shown in our experiments, G∗

2,3 has balanced performance on all
evaluated metrics. On the other hand, representatives that minimize �3 underperform
for metrics unrelated to neighborhood connectivity, for example, shortest path distance.

Representative instances vastly accelerate query processing on uncertain graphs
because (i) they eliminate the overhead of generating a large number of samples,
and (ii) the query is executed once (on the representative) instead of numerous times
(for each sample). Sections 4 and 5 propose algorithms that generate representative
instances using the objective functions of Problems 1 and 2, respectively.

4. ALGORITHMS FOR MINIMIZING VERTEX DEGREE DISCREPANCY

The following methods aim explicitly at minimizing the vertex degree discrepancy.
Section 4.1 discusses a benchmark approach PS. Sections 4.2 and 4.3 present ADR and
ABM, respectively.
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Fig. 4. PS example.

4.1. Benchmark Solution

Probability Sorting (PS) first sorts the edges of the graph in nonincreasing order of
their probabilities. Then, at each iteration, the algorithm considers an edge e = (u, v)
of the sorted list and includes it to the result set, if |dis2(u) + 1| + |dis2(v) + 1| <
|dis2(u)| + |dis2(v)|, that is, the addition of e decreases the total discrepancy. The com-
plexity of the algorithm is O(|E| · log |V |) because it is dominated by the sorting step.
Algorithm 1 presents the pseudocode of PS. Intuitively, each edge (u, v) affects only
the degrees of vertices u, v. Thus, if the condition in line 4 is satisfied, the value of
Equation (3) decreases, leading to a better solution. Due to the initial sorting, the most
probable edges are considered first. Such edges have large contribution to the expected
degrees of the incident vertices, and at the same time, they lead to a highly probable
representative.

ALGORITHM 1: PS
Input: uncertain graph G = (V, E, p)
Output: representative G∗ = (V, E∗)

1: E∗ ← ∅
2: sort E in nonincreasing order of their probabilities
3: for each e = (u, v) ∈ E do
4: if |dis2(u) + 1| + |dis2(v) + 1| < |dis2(u)| + |dis2(v)| then
5: E∗ ← E∗ ∪ {e}

Figure 4 illustrates the execution of PS on the uncertain graph of Figure 2(a). At
the first iteration, PS picks the edge (u3, u5) with the highest probability and adds it
to the result set E∗, containing the edges of the representative G∗. Figure 4(a) shows
E∗ after the first iteration, where the number next to vertex u denotes dis2(u). At the
second iteration, PS considers edge (u4, u5). The inclusion of (u4, u5) in E∗, decreases
the total discrepancy of u4 and u5 from 2.49 + 2.15 = 4.64 to 1.49 + 1.15 = 2.64
(see Figure 4(b); edges of E∗ are in bold). The procedure continues until all edges
have been examined, at which point PS returns the representative of Figure 4(c) with
�2(G∗) = 0.41 + 0 + 0.65 + 0.51 + 0.15 = 1.72. Note that for the same example, the
representative produced by MP (Figure 2(b)) yields overall discrepancy �2(G) = 1.88.

4.2. Average Degree Rewiring (ADR)

Average Degree Rewiring (ADR) involves two phases: (1) it creates an instance G1 =
(V, E1) of the uncertain graph that preserves the average vertex degree, and (2) it
iteratively improves G1 by rewiring, that is, replacing edges in E1 so that the total
discrepancy is reduced. The following lemma describes the efficient computation of the
expected average degree for an uncertain graph.
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LEMMA 4.1. The expected average degree [deg(G)] of an uncertain graph G = (V, E, p),
is [deg(G)] = 2

|V |P, where P is the sum of all the edge probabilities in G.

PROOF. By definition, the average degree deg(G) of a deterministic graph G is equal
to deg(G) = 1

|V |
∑

u∈V degu. Due to the linearity of expectation, the expected average
degree is

[deg(G)] =
[

1
|V | ·

∑
u∈V

degu

]
= 1

|V | ·
∑
u∈V

[degu] = 2
|V | ·

∑
e∈E

pe = 2
|V | · P

Given Lemma 4.1, a representative that preserves [deg(G)] should contain P edges.
Initially, ADR rounds P to the closest integer �P� and sorts the edges in descending
order of their probabilities. Consequently, it iterates through the sorted list and samples
each edge e with probability pe until it has included �P� edges. Algorithm 2 illustrates
the pseudocode of ADR, where lines 1–7 correspond to Phase 1.

ALGORITHM 2: Average Degree Rewiring (ADR)
Input: uncertain graph G = (V, E, p), steps
Output: representative G∗ = (V, E∗)

// Phase 1
1: E1 ← ∅, i ← 0
2: P ← ∑

e∈E pe
3: sort E in nonincreasing order of their probabilities
4: while |E1| < �P� do
5: e ← E.next(); r ← random number ∈ [0, 1]
6: if r ≤ pe then
7: E1 ← E1 ∪ e

// Phase 2
8: dis2(u) = deg(u) − [deg2(u)],∀u ∈ V
9: for i = 1..#rounds do

10: for each u ∈ V do
11: pick a random edge e1 = (u, v) from Ei
12: pick a random edge e2 = (x, y) from E\Ei
13: d1 ← |dis2(u) − 1| + |dis2(v) − 1| − (|dis2(u)| + |dis2(v)|)
14: d2 ← |dis2(x) + 1| + |dis2(y) + 1| − (|dis2(x)| + |dis2(y)|)
15: if d1 + d2 < 0 then
16: Ei+1 ← (Ei − {e1}) ∪ {e2}
17: update dis2 for {u, v, x, y}
18: E∗ ← Ei

Phase 2 starts with E1. At each iteration / round i, let the current set of edges be Ei.
For each vertex u ∈ V , ADR randomly picks two edges e1 = (u, v) ∈ Ei and e2 = (x, y) ∈
E\Ei (lines 11–12) and computes d1 ← |dis2(u) − 1| + |dis2(v) − 1| − (|dis2(u)| + |dis2(v)|)
and d2 ← |dis2(x)+1|+|dis2(y)+1|−(|dis2(x)|+|dis2(y)|). Specifically, d1 is the difference
of the absolute discrepancies of u and v, caused by the removal of e1. Accordingly, d2 is
the difference of the absolute discrepancies of x and y caused by the addition of edge
e2. ADR replaces e1 with e2 if d1 + d2 < 0, that is, the swapping of edges decreases
the overall discrepancy. Since the total number of edges remains �P�, the expected
average degree of G is preserved throughout the process. The procedure terminates
after a user-defined number of rounds. The value of #rounds depends on the desired
trade-off between quality and efficiency. Sorting the edges has cost O(|E| · log |V |).
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Fig. 5. ADR example.

Each round incurs constant cost for each vertex u ∈ V . Thus, the complexity of ADR is
O(|E| · log |V | + #rounds · |V |).

We illustrate the application of ADR on the uncertain graph of Figure 2(a). Ini-
tially, ADR computes P = 5.94 and approximates it to the closest integer �P� = 6.
Then, it picks the six most probable edges of the graph and forms the set E1 =
{(u1, u2), (u1, u4), (u1, u5), (u2, u4), (u3, u5), (u4, u5)}. Figure 5(a) depicts the edges of E1
with bold lines and shows the resulting vertex degree discrepancies next to each
vertex. The value of the total discrepancy at this stage is �2 = 1.72. Next, ADR
starts the second phase. Assume that at round 1, the algorithm randomly con-
siders the replacement of e1 = (u1, u4) ∈ E1 with e2 = (u1, u3) ∈ E \ E1. Since
d1 = 0.41 + 0.49 − (0.41 + 0.51) = −0.02, d2 = 0.41 + 0.35 − (0.41 + 0.65) = −0.3,
and d1 + d2 = −0.32 < 0, the edges are swapped (Figure 5(b)). Intuitively, the swap-
ping reduces the overall discrepancy by |d1 + d2|. The discrepancy of the new instance
E2 = {(u1, u2), (u1, u3), (u1, u5), (u2, u4), (u3, u5), (u4, u5)} is �′

2 = �2 − |d1 + d2| = 1.4.
Note that according to Table II, the instance of Figure 5(b) is an optimal solution of
Problem 1, that is, it minimizes �2.

4.3. Approximate B-Matching (ABM)

This section presents ABM, which stands for Approximate B-Matching. We first present
the motivation behind ABM and then provide the algorithmic framework.

Motivation. Let an undirected graph G = (V, E) and a set of capacity constraints
b(u): V → N. A subgraph g = (V, Eg) of G is a b-matching of G if the degree of each
vertex u ∈ V in g is at most b(u). The term b-matching is used interchangeably to
denote the subgraph g, or its edge set Eg, depending on the context. If b(u) = 1 for
all vertices of G, then b-matching reduces to the well-known matching problem in
graph theory. A b-matching is maximal if the addition of any edge violates at least
one capacity constraint. A maximum b-matching is the maximal b-matching with the
largest number of edges.

Figure 6(a) shows an example graph where the capacity constraint b(ui) is shown
next to ui. Figure 6(b) illustrates a b-matched graph of Figure 6(a), where the matched
edge (u3, u7) is shown in bold. Since there is no violation of any capacity constraint,
it is a valid b-matching. Figure 6(c) depicts a maximal b-matching: adding any other
edge (e.g., (u2, u7)) would violate the capacity constraint of at least one vertex (e.g., u7).
Finally, Figure 6(d) illustrates a maximum b-matching.

Numerous exact and approximate solutions have been proposed for finding a max-
imum b-matching (see [Hougardy 2009] for a survey). If the capacity constraints are
bounded by a constant, the fastest exact algorithm is O(|E|3/2) [Micali and Vazirani
1980]. A greedy 1/2-approximation technique [Hougardy 2009] solves the problem in
O(|E|). Several methods aim at weighted versions of the problem [Mestre 2006].
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Fig. 6. B-matching example.

We next investigate the relationship of Problem 1 to b-matching, starting with the
special case where all the expected degrees of G are integers, that is, [deg(u,G)] ∈
Z,∀u ∈ V . As we shall prove shortly, the optimal instance for Problem 1 (i.e., the
one that minimizes the overall discrepancy �2), is given by a maximum b-matching
computed on the uncertain graph G with capacity constraints [deg(u,G)] for each vertex
u ∈ V .

LEMMA 4.2. Assume that [deg(u,G)] ∈ Z,∀u ∈ V . Then, there is at least one optimal
instance G∗

2 for which deg(u, G∗
2) ≤ [deg(u,G)], for all u ∈ V .

PROOF. Assume an optimal solution G∗
2 = (V, E∗) that contains illegal vertices, that

is, vertices u ∈ V with deg(u, G∗
2) > [deg(u,G)]. E∗ cannot contain an edge (u, v) between

two illegal vertices u and v; otherwise, G∗
2 is not optimal (i.e., the exclusion of edge

(u, v) would decrease the overall discrepancy �2). Thus, an illegal vertex u can only
be adjacent to legal vertices, that is, vertices x ∈ V for which deg(x, G∗

2) ≤ [deg(x,G)].
Assume an edge e = (u, x) ∈ E∗, where u is illegal and x is legal. We first prove that
if we remove edge e from E∗, then the remaining graph G′ = (V, E∗ − {e}) is also an
optimal instance.

Specifically, dis2(u, G∗
2) > 0, whereas dis2(x, G∗

2) ≤ 0, and dis2(u, G′) = dis2(u, G∗
2)−1 ≥

0, whereas dis2(x, G′) = dis2(x, G∗) − 1 < 0. The overall discrepancy of G∗
2 is

�2(G∗
2) = |dis2(u, G∗

2)| + |dis2(x, G∗
2)| +

∑
v �={u,x}∈V

|dis2(v, G∗
2)|

= dis2(u, G∗
2) − dis2(x, G∗

2) +
∑

v �={u,x}∈V

|dis2(v, G∗
2)|.

Similarly, the discrepancy of G′ is

�2(G′) = |dis2(u, G′)| + |dis2(x, G′)| +
∑

v �={u,x}∈V

|dis2(v, G′)|

= (dis2(u, G∗
2) − 1) + (1 − dis2(x, G∗

2)) +
∑

v �={u,x}∈V

|dis2(v, G′)|.

Since graphs G∗
2 and G′ only differ by the edge (u, x),

∑
v �={u,x}∈V |dis2(v, G∗

2)| =∑
v �={u,x}∈V |dis2(v, G′)|, and thus �2(G∗

2) = �2(G′). By applying this argument to all
the illegal vertices of G∗

2, we construct an optimal instance that contains only legal
vertices.

THEOREM 4.3. Let G = (V, E, p) be an uncertain graph, where [degu] ∈ Z,∀u ∈ V . An
optimal solution of Problem 1 on input G is given by solving a maximum b-matching on
graph G using [deg(u,G)] as capacity constraint of vertex u.

PROOF. Using the previous lemma, there is always an optimal solution G∗
2 = (V, E∗)

that ensures that deg(u, G∗
2) ≤ [deg(u,G)], for all u ∈ V . Thus, we can remove the
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Fig. 7. ABM phase 1.

absolute values from the definition of �2:

�2(G∗
2) =

∑
u∈V

∣∣deg(u, G∗
2) − [deg(u,G)]

∣∣
=

∑
u∈V

(
[deg(u,G)] − deg(u, G∗

2)
) =

∑
u∈V

[deg(u,G)] −
∑
u∈V

deg(u, G∗
2).

Since the expected degrees [deg(u,G)] are fixed, this is equivalent to maximizing∑
u∈V deg(u, G∗

2), which in turn leads to the maximization of |E∗|. Therefore, G∗
2 is a

maximum b-matching on G with capacity constraints [deg(u,G)].

Algorithm. According to Theorem 4.3, a maximum b-matching on graph G leads
to the optimal solution if all expected degrees are integers. However, since actual
uncertain graphs have real valued expected degrees, the b-matching technique of the
previous section cannot be applied directly. Instead, ABM involves two phases. Phase 1
rounds the expected vertex degrees to the closest integers, and computes a maximal
b-matching using the rounded values as capacity constraints. Phase 2 partitions the
vertices according to their discrepancy. Then, it extracts additional edges that improve
the total discrepancy �2 by performing a bipartite matching. We use approximation
techniques for the two phases (i.e., b-matching and bipartite matching) for efficiency
reasons.

Algorithm 3 contains the pseudocode of ABM. Phase 1 (lines 3–7) corresponds to a
greedy approximate maximum b-matching [Hougardy 2009] that considers all edges
in random order. For each edge e = (u, v), if the capacity constraints of both vertices u
and v are not violated, then e is inserted into the result set Em, and the degrees of u
and v are incremented. After all edges have been considered, Em contains a maximal
b-matching of G, whose cardinality is at least half of that of the maximum [Hougardy
2009]. Figure 7(b) shows the vertex degrees after rounding on the uncertain graph of
Figure 7(a). ABM considers in turn edges (u2, u3), (u7, u8), which are added to Em. After
that, no other edge can be included in Em because it would cause a capacity violation.
Figure 7(c) includes the vertex discrepancies after the termination of Phase 1 with
respect to their original (i.e., before rounding) degree.

Based on their discrepancies, Phase 2 partitions the vertices into three groups: A,
B, and C. A contains vertices with discrepancy dis2(u) ≤ −0.5; B the vertices for which
−0.5 < dis2(u) < 0; and C vertices with dis2(u) ≥ 0. The partitioning is complete (i.e.,
A ∪ B ∪ C = V ), and there is no overlap (i.e., A∩ B ∩ C = ∅). In our running example,
the groups are A = {u2, u3}, B = {u1, u4, u5, u6, u7, u9}, and C = {u8}.

Intuitively, A contains vertices whose absolute discrepancy will decrease by the addi-
tion of an edge. B contains vertices whose absolute discrepancy will increase (after the
addition of an edge) by less than 1. C contains vertices that have already reached or
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ALGORITHM 3: Approximate B-Matching (ABM)
Input: uncertain graph G = (V, E, p)
Output: representative G∗ = (V, E∗).

1: calculate the expected degree [deg(i,G)] for all vertices in V .
2: Em ← 0, deg(u) ← 0

// Phase 1
3: let bi = round([degi]) to the closest integer
4: for each e = (u, v) ∈ E do
5: if deg(u) < bu AND deg(v) < bv then
6: Em ← Em ∪ {e}
7: deg(u) ← deg(u) + 1; deg(v) ← deg(v) + 1

// Phase 2
8: A ← ∅, B ← ∅, C ← ∅
9: for each u ∈ V do

10: let dis2(u) = deg2(u) − [deg2(u,G)]
11: if dis2(u) ≤ −0.5 then A ← A ∪ {u}
12: else if −0.5 < dis2(u) < 0 then B ← B ∪ {u}
13: else C ← C ∪ {u}
14: E′ ← E \ Em
15: for each edge e = (u, v) ∈ E′ do
16: weight= |dis2(u)| + 2|dis2(v)| − |1 + dis2(u)| − 1
17: if (u ∈ A) AND (v ∈ B) AND (weight> 0) then w(e) ← weight
18: else discard e
19: Let G′ = ((A ∪ B), E′, W ), where W : w(e) → R

20: EBP = bipartite(G′)
21: E∗ = Em ∪ EBP

exceeded their expected degree1; thus, a new adjacent edge will increase their discrep-
ancy by 1. Edges between vertices of A (e.g., (u2, u3)) have been added to the result set
Em during Phase 1. The following lemmas discuss the potential for including additional
edges, depending on the group of their incident vertices.

LEMMA 4.4. Let an edge (u, v), where u, v ∈ B. Including edge (u, v) in the result set
cannot improve the overall discrepancy �2.

PROOF. Since both vertices belong to the set B, it holds that −0.5 < dis2(i) < 0 for
i = {u, v}. Thus, their total discrepancy is d1 = |dis2(u)| + |dis2(v)| < 1. The addition of
edge (u, v) will change the discrepancies to dis′

2(u) = dis2(u)+1 > 0.5, and dis′
2(v) > 0.5.

Thus, the total discrepancy becomes d2 = |dis′
2(u)| + |dis′

2(v)| > 1. Since d1 < d2, edge
(u, v) increases �2.

LEMMA 4.5. Let an edge (u, v), where u ∈ C. Including edge (u, v) in the result cannot
improve the overall discrepancy �2.

PROOF. Since u has exceeded its expected degree, adding edge (u, v) will increase
dis2(u) by exactly 1. On the other hand, the absolute discrepancy of v can increase or
decrease by at most 1. Thus, �2 can only increase (if v ∈ B or v ∈ C) or remain the
same (if v ∈ A).

These lemmas state that the inclusion in the result of an edge that connects (i) two
vertices in B or (ii) a vertex in C with any vertex cannot improve �2. Therefore, after
Phase 1, the only possible additions are edges that connect vertices in A with vertices in
B. Let such an edge e = (a, b) with a ∈ A and b ∈ B: if the addition of e in the result set

1Such vertices are possible because b-matching is performed on the rounded degrees.
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decreases the absolute discrepancy of a more than it increases the absolute discrepancy
of b, then it improves �2. The following lemma quantifies this improvement.

LEMMA 4.6. Let e = (a, b), where a ∈ A and b ∈ B. Including edge e in the result set
changes the overall discrepancy �2 by g(e) = |dis2(a)| + 2|dis2(b)| − |dis2(a) + 1| − 1.

PROOF. The total discrepancy of vertices a and b before (a, b) is, d1 = |dis2(a)| +
|dis2(b)|. After adding the edge, it becomes d2 = |dis2(a) + 1| + (1 − |dis2(b)|). We define
the gain g(e) of e as the difference between the two discrepancies, that is, g(e) = d1−d2 =
(|dis2(a)|+|dis2(b)|)−(|dis2(a)+1|+(1−|dis2(b)|)) = |dis2(a)|+2|dis2(b)|−|dis2(a)+1|−1.
If g(e) is positive, edge e decreases �2; otherwise, it increases it. If dis2(a) ≤ −1, then
|dis2(a) + 1| = |dis2(a)| − 1, and the gain becomes g(e) = 2|dis2(b)|, that is, g(e) depends
only on |dis2(b)|.

An edge e can improve the overall discrepancy only if g(e) > 0. Lines 15–18 of
Algorithm 3 consider each edge e in E′ = E − Em connecting vertices in A and B. If
g(e) > 0, e is inserted in a graph G′ = (A∪ B, E′, W), where W : E′ → R, with w(e) = g(e).
Figure 8(a) shows the graph G′, including the vertex discrepancies and edge weights,
which correspond to their gains. The next question is how to efficiently select the subset
of edges in E′ that minimizes �2. Towards this, subroutine bipartite(G′) performs an
approximate maximum weight bipartite matching on graph G′ with a twist: a vertex
of A may be matched with multiple vertices of B if it has high absolute discrepancy.

Algorithm 4 illustrates bipartite, which utilizes a max-heap H to arrange the edges
e ∈ E′ based on their weights/gains g(e). Initially, all edges of E′ are inserted in H.
At each iteration, the top of the heap e = (a, b) is added to the result. The inclusion
of (a, b) increases the discrepancies of a and b. Specifically, the new discrepancy of b
becomes positive; thus, according to Lemma 4.5, edges adjacent to b cannot reduce �2
and are removed from H. Then, bipartite updates the discrepancy of a; let dis2(a) be the
new value. If dis2(a) ≤ −1, from Lemma 4.6, the gain g(e′) of every edge e′ = (a, x) ∈ H
does not change since it depends only on |dis2(x)|. If −1 < dis2(a) < −0.5, then g(e′)
decreases since |dis2(a)| has been decreased. bipartite computes the new gain g(e′) using
Lemma 4.6 (line 10), and triggers a decrease-key(e′) operation to relocate e′ in H (line
11). If g(e′) becomes negative, the edge is removed. Finally, if dis2(a) > −0.5, vertex
a cannot further improve �2 as it does not belong to group A anymore; thus, it is

ALGORITHM 4: Bipartite
Input: bipartite graph G′ = (A∪ B, E′, W )
Output: set of edges EBP ⊆ E′ with high gain for �2

1: EBP ← ∅
2: Insert all edges e ∈ E′ in a max-heap H, based on their gains g(e)
3: while H is not empty do
4: e = (a, b) ← H.extract-max()
5: EBP ← EBP ∪ {e}
6: discard all edges in H incident to b
7: dis2(a) ← dis2(a) + 1 // The discrepancy of a increases by one
8: if −1 < dis2(a) < −0.5 then
9: for each edge e′ = (a, x) ∈ H do

10: g(e′) ← |dis2(a)| + 2|dis2(x)| − |dis2(a) + 1| − 1
11: if g(e′) > 0 then H.decrease-key(e′)
12: else H.remove(e′)
13: else if dis2(a) > −0.5 then
14: for each edge e′ = (a, x) ∈ H do H.remove(e′)
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Fig. 8. ABM phase 2.

discarded and all adjacent edges (a, x) are expunged from H. The function terminates
when H becomes empty.

Continuing the example of Figure 8(a), bipartite first picks the heaviest edge (u2, u5)
and adds it to the result. Then, it updates the discrepancy of u2 to dis2(u2) = −1.6+1 =
−0.6; since −1 < dis2(u2) < −0.5, the gains of edges adjacent to u2, (i.e., (u2, u1), (u2, u7)
and (u2, u9)) must be updated as well. Edges (u2, u1) and (u2, u7) yield a negative gain
and are discarded. Figure 8(b) shows the bipartite graph after the first iteration. The
next edge (u3, u7) extracted from H is included in the result, updating the discrepancy
of vertex u3 to dis2(u3) = −0.9 + 1 = 0.1. Since dis2(u3) > 0, all edges adjacent to u3 are
expunged from H. Finally, bipartite extracts the last edge (u2, u9) of H, adds it to the
result, and terminates. Figure 8(c) shows the final output of ABM which combines the
edges added during the two phases. The discrepancy of the extracted graph is 3.2.
The total cost of ABM includes the linear-time processing of edges in Phase 1 and the
heap operations of Phase 2 on E′. Each edge of E′ can be processed at most |B| times.
Therefore, the complexity of ABM is O(|E| + |B| · |E′| · log |E′|), where |E′| ≤ |E|.
5. ALGORITHMS FOR MINIMIZING NEIGHBORHOOD CONNECTIVITY DISCREPANCY

Recall that ADR and ABM aim explicitly at capturing the expected degree of the vertices.
Specifically, ADR requires an instance that preserves the average n-clique cardinality
as a seed. This is an easy task for n = 2, as each edge affects exactly two vertices, that
is, its endpoints. For n > 2, each edge potentially affects all other vertices of the graph,
hence ADR cannot be applied. Accordingly, ABM exploits some properties of b-matching
which are specific to vertex degrees. On the other hand, GREEDY and GAME generate
representative instances minimizing the objective function

∑n
m=l �m of Problem 2 for

larger values of n and/or l. Section 5.1 introduces basic procedures that are used by
both GREEDY and GAME frameworks, which are presented in Sections 5.2 and 5.3,
respectively.

5.1. Basic Procedures

Let E∗ be the set of edges in the current representative G∗ stored in the form of
adjacency lists. Given an edge e = (u, v) and an integer m ≥ 2, Qm(e, E∗) denotes the
set of m-cliques that contain both endpoints u and v in E∗. Lm(e) is the set of vertices
that belong to at least one clique of Qm(e, E∗), that is, Lm(e) = ⋃

c∈Qm(e,E∗) c. The union
of all these sets L(e) = ⋃n

m=l Lm contains the affected vertices of edge e. The following
lemma derives the cardinality of Qm(e, E∗).

LEMMA 5.1. Given an edge e = (u, v), the number of m-cliques that contain both
endpoints u and v is |Qm(e, E∗)| = O( |V |m−2

(m−2)! ).
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PROOF. In the worst case G∗ is a complete graph of |V | vertices. In order to generate
all m-cliques that contain u and v we have to choose m− 2 vertices out of the |V | − 2
vertices in V \ {u, v}. Thus,

|Qm(e, E∗)| =
(|V | − 2

m− 2

)
= (|V | − 2) · (|V | − 3) · · · (|V | − m)

(m− 2) · (m− 3) · · · 1
= O

( |V |m−2

(m− 2)!

)
.

Algorithm 5 presents a recursive subroutine which outputs Qm(e, E∗). The base of the
recursion is m = 2, where the result Q2(e, E∗) contains a single clique {u, v}. For m > 2,
each clique c of size m− 1 is extended by the addition of a vertex w that is a common
neighbor of all vertices in c, that is, w ∈ ⋂

i∈c adj(i). The computation is performed by
intersecting the adjacency lists of all elements in c. For instance, if m = 3, for each
element w in adj(v) ∩ adj(u), a clique {u, v, w} is added to the set Q3(e, E).

ALGORITHM 5: Qm

Input: edge e = (u, v), set of edges E∗

Output: set Qm(e, E∗) of cliques of size m in E∗ that contain both endpoints of e
1: if m = 2 then
2: Q2(e, E∗) ← {{u, v}}
3: else
4: Qm(e, E∗) ← ∅
5: for each clique c ∈ Qm−1(e, E∗) do
6: W ← ⋂

i∈c adj(i)
7: for each vertex w ∈ W do
8: Qm(e, E∗) ← Qm(e, E∗) ∪ {c ∪ {w}}

To analyze Algorithm 5, we focus on the last step: assuming that we have computed
the set Qn−1, we wish to generate Qn. According to Lemma 5.1, |Qn−1(e, E∗)| = O( |V |n−3

(n−3)! ).
For each clique c ∈ Qn−1, line 6 finds the set W of vertices that appear in the adjacency
lists of all n− 1 nodes of c. This intersection can be performed in linear time to the size
of the lists using an array of size |V | that counts the number of occurrences of each
vertex in the lists (the intersection consists of vertices, whose counter equals n − 1).
Since, there are n − 1 lists, each with size less than |V |, the cost per clique is upper
bounded by (n − 1) · |V |. Repeating the process for all cliques in Qn−1 yields cost:

O
(

(n − 1) · |V | · |V |n−3

(n − 3)!

)
= O

((
1

(n − 4)!
+ 2

(n − 3)!

)
· |V |n−2

)
= O(|V |n−2).

By applying the same reasoning, we derive the complexity of each step; for example,
generating cliques of size n− 1 from Qn−2 costs O(|V |n−3). Thus, the total complexity of
Algorithm 5 is described by a geometric series which is dominated by the largest term,
that is, O(|V |n−2).

The inclusion or removal of an edge e alters the n-clique cardinalities of affected
vertices and the gains of their incident edges, that is, the benefit of adding those edges
in E∗. Algorithm 6 illustrates the function update-vertices(e, E∗) that outputs the set
L(e) of vertices affected by e. In addition, for each vertex w ∈ L(e) and each m ∈ [l, n],
it updates the m-clique cardinality γm(w) and counts the occurrences km(w) of w in
Qm(e, E∗). Line 3 checks whether e belongs to E∗ and sets the value of f lag accordingly.
Specifically, f lag is set to 1(−1) if e is inserted to (removed from) E∗. Then, for each
clique cardinality m, lines 4–10 compute the set of cliques Qm(e, E∗) that contain both
u and v in E∗ by calling Algorithm 5. The m-clique cardinality γm of each node of every
clique in Qm(e, E∗) is incremented (decremented) depending on the value of f lag. When
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Fig. 9. Example for m = 4.

the algorithm terminates, the value of km(w) equals the absolute difference between
the new and previous value of γm(w).

ALGORITHM 6: Update-Vertices
Input: edge e = (u, v), set of edges E∗

Output: set L(e) of affected vertices
1: L(e) ← ∅
2: km(w) ← 0,∀w ∈ V and m ∈ [l, n]
3: if e ∈ E∗ then f lag = −1 else f lag = 1
4: for m ← l..n do
5: Qm(e, E∗) // Algorithm 5
6: for each clique c ∈ Qm(e, E∗) do
7: for each node w ∈ c do
8: γm(w) ← γm(w) + f lag
9: L(e) ← L(e) ∪ {w}

10: km(w) ← km(w) + 1

The complexity of update-vertices is analyzed as follows. For each value of m, the set
of cliques Qm(e, E∗) is computed in O(|V |m−2) time. According to Lemma 5.1, the loop
of line 6 needs to be executed O( |V |m−2

(m−2)! ) times, while the inner loop of line 7 needs to
be executed m times, as each clique has m vertices. Thus, the time complexity of lines
6–10 is O(|V |m−2). The overall complexity of Algorithm 6 is O(|V |n−2), dominated by
the greatest value of m = n.

As an example of update-vertices, consider the addition of edge e = (u1, u5) in the
representative graph of Figure 9(a). If m = 3, the 3-clique cardinality γ3 of vertices
u2, u3, and u4 that appear in both adj(u1) and adj(u5) increases by one, while γ3(u1)
and γ3(u5) increase by three due to the creation of triangles {u1, u5, u2}, {u1, u5, u3},
{u1, u5, u4}. In general, γm(u) and γm(v) are updated |Qm(e, E∗)| times, since u and v
belong to all cliques in Qm(e, E∗). Observe that, while for m = 3 a vertex w ∈ Q3(e, E∗) \
{u, v} is updated exactly once, that is, k3(w) = 1, for m > 3, its m-clique cardinality
may increase by km(w) > 1. For instance, if m = 4, the addition of edge e = (u1, u5)
yields two 4-cliques Q4(e, E∗) = {{u1, u2, u4, u5}, {u1, u3, u4, u5}}, as shown in Figure 9(b).
Figure 9(c) illustrates γ4(u) of all vertices before and after the insertion, as well as their
difference k4(u).

Given an edge e = (u, v) and the current set E∗, compute-gain returns the gain g(e)
of adding (removing) e to (from) E∗. The gain is given by the following formula:

g(e) =
n∑

m=l

∑
w∈Lm(e)

(|dism(w)| − |dism(w) + f lag · km(w)|), (5)
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Fig. 10. Structures utilized by GREEDY.

where, Lm(e) is the set of vertices in the same m-clique as {u, v}; km(w) is the difference
in the m-clique cardinality γm(w) incurred by e, and f lag is +1 or −1 for insertion
or deletion, respectively. Intuitively, the gain corresponds to the sum of discrepancy
differences of the affected vertices caused by the addition / removal of e. The pseudocode
for compute-gain is similar to Algorithm 6 and therefore omitted. The time complexity
is also identical (O(|V |n−2)), since gain computation involves the generation of Qn.

5.2. Greedy Framework

GREEDY extends the concept of PS to Problem 2 using a max heap to dynamically
rearrange the edges according to their gain for the current representative G∗ (instead
of the fixed order, based on probabilities, used by PS). Specifically, the key in the heap
H is the gain computed by Equation (5); if two edges have the same gain, then the one
with the higher probability precedes the other. At the beginning, all edges are added to
H. Note that if m > 2, the initial gains of all edges are 0 because the inclusion of any
edge in E∗ = ∅ cannot create any m-clique. In this case, the edges are inserted in H
based on their probabilities. If m = 2, all gains are positive and most of them equal 2,
except for edges that are incident to at least a vertex with expected degree less than 1.

At each iteration, the top of the heap e (i.e., the edge with the maximum gain)
is extracted, and if it has nonnegative gain2, it is added to E∗. Then, the gains of the
affected edges are updated and the heap entries are rearranged. The process terminates
when the next extracted edge has negative gain or the heap is empty. The challenge
lies in (i) efficiently updating the edges whose gain is affected by the inclusion of e and
(ii) maintaining the heap property of the max-heap.

Figure 10(a) contains the data structures that facilitate the execution of GREEDY.
The max-heap H is implemented as an array of initially |E| elements such that the
children of an element i are located at positions 2 · i and 2 · i +1. Each element contains
an edge e = (u, v) and its corresponding gain g(e). An array of pointers M keeps track
of the location of edges in H. Every time an update occurs to an edge e in H, increase-
key(e) or decrease-key(e) relocate e to ensure that H maintains the heap property.
Accordingly, M changes the relevant pointer to the new location of e. For example,
assume that in Figure 10(b) an update reduces the gain of e1 to a value smaller than
that of its child e2. Then, decrease-key(e1) is triggered and e1 swaps places with e2. M
records the update by swapping the pointers of e1 and e2.

Algorithm 7 illustrates the pseudocode of GREEDY. Lines 1–3 initialize the data
structures and set γm(u) = 0 for all u ∈ V and m ∈ [l, n]. For every edge e, lines 4–6
first compute e’s gain g(e) by invoking compute-gain and then insert e in H according to
g(e). At each iteration in lines 7–14, the edge e at the top of the heap and its gain g(e)
are retrieved. If g(e) ≥ 0, the addition of e to the result improves the overall discrep-
ancy. Consequently, Algorithm 6 returns the affected vertices L(e) and computes their

2Edges with gain 0 are also accepted because if l > 2, initially every edge has gain 0.
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m-clique cardinality. Given L(e), update-heap is invoked in order to update structures
H and M. Algorithm 7 terminates when either all edges have been included or the
extracted edge has negative gain, that is, its inclusion to the result worsens

∑n
m=l �m.

ALGORITHM 7: GREEDY
Input: the set of vertices V , set of edges E, clique cardinality range [l, n]
Output: representative G∗ = (V, E∗)

1: E∗ ← ∅
2: H ← empty max-heap of size |E|
3: γm(v) ← 0 ∀v ∈ V and m ∈ [l, n]
4: for each edge e = (u, v) ∈ E do
5: g(e) ←compute-gain (e, E∗)
6: H.insert(e) using g(e) as the key. Break ties using edge probability pe.
7: repeat
8: e ← H.extract-max()
9: g(e) ← H.get-key(e)

10: if g(e) ≥ 0 then
11: E∗ ← E∗ ∪ {e}
12: L(e) ← update-vertices(e, E∗) // Algorithm 6
13: update-heap(e,L(e), E∗)
14: until g(e) < 0 OR H.isEmpty()

Algorithm 8 shows the pseudocode of update-heap that rearranges the elements of H
after the insertion of e to E∗. For each affected vertex w ∈ L(e), update-heap retrieves all
incident edges e′ = (w, x) that have not been added to the result yet, that is, e′ ∈ E\ E∗.
For each such edge, the new gain g′(e′) is computed and then compared to its previous
value g(e′). The index M facilitates the efficient retrieval of g(e′). Depending on g′(e′),
the corresponding heap operation relocates ei within H: a decrease triggers decrease-
key(e′), while a gain increase triggers increase-key(e′).

The complexity of update-heap is dominated by compute-gain, which is O(|V |n−2), as
opposed to O(log |E|) for the heap operations. In the worst case, the number of affected
edges is |E|, incurring cost O(|E| · |V |n−2) per call of Algorithm 8. Since all edges may
be extracted from the heap, invoking update-heap, the overall complexity of GREEDY
is O(|E|2 · |V |n−2).

Figure 11 demonstrates an example of GREEDY for l = 2 and n = 3, based on the
uncertain graph of Figure 2(a), where the expected m-clique cardinalities of the vertices
have been replaced by the corresponding 2-(rectangles) and 3-(ellipses) discrepancies.
Each subfigure contains the current representative G∗ (with bold lines) and the contents
of H. Initially, all edges have gain 2 as the gain is nonzero only for clique cardinality
m = 2, and ties are resolved by edge probabilities. Figure 11(a) illustrates G∗ and H
after the three first iterations. At the fourth iteration, the head of H, edge e = (u4, u5)
with gain g(e) = 2 is extracted. Since the gain is nonnegative, e is added to the result
set. Then, update-vertices sets γ2(u4) = 1 and γ2(u5) = 3 and returns the set of affected
vertices L(e) = {u4, u5}. Next, update-heap computes the gains of edges in H incident to
vertices in L(e), that is, (u1, u4), (u2, u4), (u3, u4), and (u2, u5). For example, compute-gain
calculates g′(u1, u4) as follows. Initially, g′(u1, u4) = 0. Then, for m = 2, the only 2-clique
containing u1 and u4 is {u1, u4}, thus g′(u1, u4) = 1 + 0.18 = 1.18. For m = 3, the only 3-
clique that contains u1 and u4 is {u1, u4, u5}. Thus g′(u1, u4) = 1.18−0.2+1+0.14 = 2.12.

Figure 11(b) shows the snapshot after the fourth iteration. Note that the elements of
the heap have been rearranged to maintain the heap property after the gain updates.
For instance, edge (u1, u4), which was at the bottom of the heap before the inclusion of
(u4, u5), is now at the top with gain g(u1, u4) = 2.1. The iterative process continues for
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Fig. 11. GREEDY example (representative G∗ and heap H) for l = 2 and n = 3.

ALGORITHM 8: Update-Heap
Input: edge e = (u, v), affected vertices L(e), set of edges E∗

Output: updates H after insertion of e
1: for each edge e′ = (w, x) ∈ E \ E∗ incident to at least one vertex w ∈ L(e) do
2: g(e′) ← H.get-key(e′)
3: g′(e′) ← compute-gain (e′, E∗)
4: if g′(e′) < g(e′) then H.decrease-key(e′)
5: else H.increase-key(e′)

two more rounds to include edges (u1, u4) and (u2, u4). Then, the algorithm terminates
as the edge (u2, u5) extracted from the top of H has negative gain g = −0.3. Figure 11(c)
contains the result of GREEDY and the contents of H. The resulting representative has
suboptimal discrepancy �2 + �3 = 5.0 (recall from Figure 3 that the optimal instance
has overall discrepancy �2 + �3 = 3.83).

5.3. Game Theoretic Framework (GAME)

In GREEDY, once an edge is added to the representative, it will not be subsequently
removed. GAME allows for corrections during runtime by enabling the removal of edges
from E∗. In our game, the players are the edges of the uncertain graph, which decide
whether to participate in the representative. The decision / strategy se of each edge e
is binary (1 corresponds to participation) and minimizes its own cost function Ce(S),
given the strategy vector of all players S = (se : e ∈ E). For Problem 2, this cost function
is

Ce(S) =
n∑

m=l

⎛
⎝ ∑

w∈Lm(e)

|dism(w)|
⎞
⎠ . (6)

Intuitively, e participates in the representative if it improves the sum of the discrep-
ancies of its affected vertices, or equivalently, using the terminology of the previous
section, if e has a nonnegative gain given the other edges in E∗. Conversely, e is re-
moved from the representative if its elimination also yields a non-negative gain.

Algorithm 9 describes the application of best-response dynamics [Monderer and
Shapley 1996] in our context. Initially, a seed representative G∗ is created by assigning
a random strategy se = {0, 1} to every edge e. L denotes the set of affected vertices
and is initialized to the entire vertex set V . Then, the algorithm proceeds in rounds.
In every round (lines 5–13), for each edge e incident to a vertex in L, compute-gain
returns the gain of e (as derived by Equation (5)) and the set L(e) of vertices affected
by e. If e /∈ E∗ and e has a nonnegative gain, then e switches strategy from 0 to 1 and
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is included to E∗. On the other hand, if e ∈ E∗ and its removal yields nonnegative gain,
then it switches strategy from 1 to 0. In both cases, the vertices of L(e) are added to
the set Lnew. Only edges incident to vertices in Lnew will be considered during the next
round, as the gain of the rest remains unchanged.

ALGORITHM 9: Game-Theoretic Framework (GAME)
Input: uncertain graph G = (V, E, p), clique cardinality range [l, n]
Output: representative G∗ = (V, E∗)

1: create an initial representative G∗ = (V, E∗) by assigning a seed strategy to each edge
2: Lnew ← V
3: repeat
4: L ← Lnew; Lnew ← ∅
5: for each edge e incident to a vertex in L do
6: g(e) ← compute-gain (e, E∗)
7: if e /∈ E∗ and g(e) ≥ 0 then
8: E∗ ← E∗ ∪ {e} // add edge to G∗

9: Lnew ← Lnew ∪ L(e)
10: if e ∈ E∗ and g(e) ≥ 0 then
11: E∗ ← E∗ \ {e} // remove e from G∗

12: Lnew ← Lnew ∪ L(e)
13: until Termination

Figure 12 contains an example of GAME for l = 2, n = 3, based on the uncertain
graph of Figure 2(a). Next to each vertex, we denote its 2- and 3-discrepancy with a
rectangle and ellipse, respectively. Figure 12(a) illustrates the initial representative
of the GAME framework. Bold (resp. thin) lines indicate that edges participate (resp.
do not to participate) in the seed graph; accordingly, the initial strategy vector is
S = (0, 1, 1, 1, 1, 0, 1, 0, 0) for the corresponding edges e1, e2, . . . , e9. Assume that at
round 1, edge e1 = {u1, u2}, which is not currently in E∗, is considered first. The set
L(e1) consists of u1, u2 and u5. Specifically, the vertices whose 2- and 3-discrepancies are
affected by e1 are L2(e1) = {u1, u2} and L3(e1) = {u1, u2, u5} (observe that the inclusion
of e1 in E∗ would create a new triangle with u5).

If e1 retains its strategy, then its cost according to Equation (6) is Ce1 (S) =∑
w∈L2(e1) |dis2(w)| + ∑

w∈L3(e1) |dis3(w)| = (0.59 + 1) + (0.40 + 0.89 + 0.57) = 3.45. On
the other hand, if e1 decides to participate, that is, the strategy vector changes to
S′ = (1, 1, 1, 1, 1, 0, 1, 0, 0), then its cost becomes Ce1 (S

′) = (0.41 + 0) + (0.60 + 0.11 +
0.43) = 1.55. Since Ce1 (S

′) < Ce1 (S) (i.e., g(e1) > 0), e1 switches strategy, yielding the
representative and discrepancies of Figure 12(b). The vertices u1, u2, u5 of L(e1) are
added to Lnew because their discrepancies have been updated, influencing the gains
of their incident edges. The procedure continues for the remaining edges, possibly
for several rounds. As we will discuss shortly, it always reaches a Nash equilibrium,
where no edge can further improve its cost function. Figure 12(c) illustrates such an
equilibrium with strategy vector SNE = (1, 1, 1, 1, 1, 0, 0, 0, 1) and overall discrepancy
�2 + �3 = 3.83. Although, in this case, the solution is the optimal representative, in
general, an equilibrium only corresponds to a local minimum.

Let #rounds be the number of rounds performed by GAME. In the worst case, at
every round, |E| edges change their strategy, invoking compute-gain, which has cost
O(|V |n−2). Thus, the overall complexity of GAME is O(#rounds · |E| · |V |n−2). Similar
to ADR, #rounds can be used to adjust the trade-off between solution quality and
efficiency. However, unlike ADR, where this parameter is necessary as the algorithm
may never terminate, as shown in the following lemma, GAME always converges to a
pure Nash equilibrium, eliminating the need for explicitly providing #rounds.
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Fig. 12. GAME example for l = 2 and n = 3.

LEMMA 5.2. GAME constitutes an exact potential game with potential function
�l,n(G) = ∑n

m=l �m(G).

PROOF. Let Se be the strategy vector of all edges excluding e, that is, Se =
(s1, . . . , se−1, se+1, . . . , s|E|). Without loss of generality, assume that edge e changes its
strategy from se = 0 to s′

e = 1, that is, e decides to participate in the representative.
Accordingly, let G∗ and G′ be the two representative instances, before and after the
inclusion of e. The overall gain in the objective function �l,n(G∗) = ∑n

m=l �m(G∗) due to
the addition of edge e is given by Equation (5). Specifically,

�l,n(G∗) − �l,n(G′) = g(e) =
n∑

m=l

∑
w∈Lm(e)

(|dism(w)| − |dism(w) + km(w)|).
The corresponding change in the individual cost function of e is

Ce(se, Se) − Ce(s′
e, Se) =

n∑
m=l

⎛
⎝ ∑

w∈Lm(e)

|dism(w)|
⎞
⎠ −

n∑
m=l

⎛
⎝ ∑

w∈Lm(e)

|dism(w) + km(i)|
⎞
⎠

= �l,n(G∗) − �l,n(G′).

Intuitively, Lemma 5.2 proves that the gain in cost induced by the individual decision
of any edge equals the gain in the overall discrepancy. The equality �l,n(G∗)−�l,n(G′) =
Ce(se, Se) − Ce(s′

e, Se) holds independently of the choice of parameters l and n. Due to
this property, GAME constitutes an exact potential game, guaranteeing that Algorithm 9
always terminates, reaching a Nash equilibrium [Monderer and Shapley 1996].

6. EXPERIMENTS

In this section, we assess the quality and efficiency of the proposed techniques. The
evaluated methods are PS (Probability Sorting), ADR (Average Degree Rewiring), ABM
(Approximate B-Matching), GRl,n (the greedy approach), and GMl,n (the game theoretic
framework), where 2 ≤ l ≤ n ≤ 3. When l = n, we use the notation GRn and GMn,
respectively. For the heuristic methods, ADR and GAME, we allow a sufficient number
of rounds so that they both converge. MP (the Most Probable instance) is excluded
from our evaluation because, as shown in Parchas et al. [2014], it has consistently poor
performance in all evaluation metrics.

Section 6.1 describes the datasets used in the experiments. Section 6.2 presents
the results on structural measures, that is, metrics for which the expected value (i.e.,
the ground truth) can be computed analytically. Section 6.3 focuses on query metrics
for which the ground truth is obtained through Monte Carlo simulations. Finally,
Section 6.4 compares the running times of the algorithms.
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Table III. Characteristics of Real Datasets

vertices edges edge probabilities exp. degrees exp. triangles
dataset (|V |) (|E|) |E|/|V | (mean): (mean): (mean):

Flickr 78,322 10,171,509 129.89 0.09 22.93 164.50
Twitter 26,362 663,766 25.17 0.15 7.71 4.98
DBLP 9,442 144,887 15.34 0.29 9.04 18.77

BioMine 1,008,201 6,742,939 6.68 0.27 3.59 2.44

6.1. Datasets

We use four uncertain, undirected graphs that capture different real-world scenarios
and data characteristics (e.g., size, density, edge probability). The details of the datasets
are summarized in Table III.

Flickr [Potamias et al. 2010] (www.flickr.com) is a social network, where the prob-
ability of an edge between two users is computed assuming homophily, that is, the
principle that similar interests indicate social ties [McPherson et al. 2001]. Homophily
is measured by the Jaccard coefficient [Tan et al. 2005] of the interest groups of the
two users. This is the densest dataset in our evaluation, as a vertex has on average the
largest number of neighbors (i.e., about 130). The expected average degree (triangles)
per node is 22.93 (164.50).

Twitter [Bonchi et al. 2014] (twitter.com) is a network extracted from the popular
online microblogging service and used in Bonchi et al. [2014] in the context of influence
maximization. Edge probabilities are learned from the log of past URL propagations
and correspond to the influence that any two users exert on each other. Compared to
the other datasets, Twitter has medium density with expected average degree 7.71 and
4.98 triangles per node.

DBLP [Potamias et al. 2010; Jin et al. 2011b] (www.informatik.uni-trier.de/∼ley/
db/) is a database of scientific publications and their authors. Two authors are con-
nected if they have coauthored a publication. The probability of an edge is derived from
an exponential function to the number of collaborations and indicates the likelihood
that the authors will collaborate again in the future. Similar to Twitter, DBLP has
medium density; the difference is that each node has a smaller number of adjacent
edges with, however, higher probabilities.

BioMine [Sevon et al. 2006] (biomine.org) is a snapshot of the database of the BioMine
project containing biological interactions. The probability of any edge corresponds to the
confidence that the interaction actually exists. Particularly, this confidence is quantified
by the genomic-context method which measures interaction based on how much proteins
are encoded by genes that share similar selection pressures [von Mering et al. 2003].
BioMine is the sparsest dataset with expected average degree 3.39 and 2.44 triangles
per node.

Figure 13 illustrates the number of edges in the representatives PS, ABM, ADR, GR2,
GR3, GR2,3, GM2, GM3, and GM2,3. The highest edge cardinality occurs in BioMine;
although the uncertain graph of Flickr has more edges (10M as opposed to 6.7M), the
mean edge probability is larger in BioMine (0.09 versus 0.27). Observe that for the
same dataset, representatives focusing explicitly on �3 are much denser than the rest.
For instance, in Twitter, GR3 and GM3 have about 300K edges, whereas all the other
representatives have about 100K. The implication is that by trying to minimize �3,
GR3 and GM3 may fail to capture �2.
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Fig. 13. Number of edges per representative.

6.2. Structural Measures

We assess the accuracy of the methods on the following measures.

—dis2(u) discrepancy corresponds to the absolute error between the degree γ2(u) of node
u in the representative and its expected degree [γ2(u)] in the uncertain graph (i.e.,
dis2(u) = γ2(u) − [γ2(u)]). The minimization of the sum �2 of discrepancies over all
nodes is the objective of Problem 1.

—dis3(u) discrepancy corresponds to the triangle discrepancy, that is, the absolute
error between the triangles γ3(u) of u and its expected triangles [γ3(u)] (i.e., dis3(u) =
γ3(u) − [γ3(u)]). The minimization of the sum �3 over all nodes is the objective of
Problem 2 for l = 3 and n = 3.

—dis2(u) + dis3(u) discrepancy is the sum of degree and triangle discrepancies. The
minimization of the sum �2 +�3 over all nodes is the objective of Problem 2 for l = 2
and n = 3.

—2-stars discrepancy [Akers et al. 1994] is the difference of the number of 2-star
patterns S2(u) of u to its expected value [S2(u)]. For each vertex u, the 2-star measure
corresponds to the number of open triplets {u, v, w}, where (u, v) and (u, w) are edges
of the representative, but (v,w) is not.

The expected degrees and triangles (i.e., [γ2(u)] and [γ3(u)]) are calculated by applying
Lemma 3.3 for each vertex u ∈ V . The number S2(u) of 2-stars is closely related to the
preceding two metrics. In particular, S2(u) of a vertex u is the difference of all possible
pairs of edges incident to u, minus the number of closed triangles containing u, that is,

S2(u) = γ2(u) · (γ2(u) − 1)
2

− γ3(u).

Thus, the expected value [S2(u)] is

[S2(u)] =
[
γ2(u) · (γ2(u) − 1)

2

]
− [γ3(u)] = 1

2
· ([γ 2

2 (u)] − [γ2(u)]) − [γ3(u)]

= 1
2

· (VAR(γ2(u)) + [γ2(u)]2 − [γ2(u)]) − [γ3(u)],
(7)

where VAR(γ2(u)) is the variance of the random variable γ2(u) derived from the
probability distribution of degree values 〈Pr(γ2(u)) = 0, . . . , Pr(γ2(u) = ku)〉 (where
ku = |{(u, v) ∈ E}|). Each Pr(γ2(u)) = k is computed by the dynamic-programming
method of Bonchi et al. [2014].

We plot our experimental results using boxplots (left y-axis) and the mean abso-
lute error (MAE) (disks projected on the right y-axis). Specifically, for each vertex
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Fig. 14. Vertex degree discrepancy (�2) (real graphs).

u ∈ V and a metric q, we first compute u’s expected value over q, that is, [q(u)] and
the corresponding value in the representative G∗, that is, qG∗ (u). MAE is defined as∑

u∈V |qG∗ (u) − [q(u)]|/|V |. Each boxplot represents the error distribution of the vertex
set V : the vertical line includes 95% of the vertices, the rectangle contains 50% of the
vertices, and the horizontal line corresponds to the median error. The methods are
grouped in three categories depicted by different patterns. The first category consists
of methods PS, ABM, and ADR that aim explicitly at Problem 1. The second (third)
contains variants of the greedy (game theoretic) approach.

Figure 14 illustrates the boxplots and MAE of |dis2(u)| distribution. For instance, in
Flickr for the representative produced by PS, 95% of the vertices have absolute vertex
degree discrepancy less than 1, 50% of the vertices in the range [0.23, 0.76], and the
median discrepancy is 0.49. The mean absolute error is 0.56. PS is clearly outperformed
by ADR and ABM, whose median discrepancy is below 0.4, in all datasets. The other
two methods that focus on 2-discrepancy, GR2 and GM2, are slightly better than ADR
and ABM. On the other hand, GR3 and GM3, which aim at minimizing the triangle
discrepancy, fail (their MAE and parts of their boxplots are so high that they are
excluded for readability of the plots). This is due to their large number of edges, as
discussed in the context of Figure 13. Although GM2,3 does not explicitly target vertex
discrepancy, it captures it rather well. This can also be explained by its edge cardinality,
which is similar to that of representatives focusing on �2.

MAE is the ratio of �2 over |V | and corresponds to average degree discrepancy per
vertex. In Flickr, where the expected average vertex degree is 22.93, most methods
are very accurate. For instance, ADR, ABM, GR2, and GM2 yield an average degree
discrepancy per node below 0.3. On the other hand, in BioMine, where the expected
average degree is only 3.59, the relative error (the ratio of MAE over the expected
average degree) of all methods is higher but still acceptable (observe that the values of
MAE are similar in all datasets). In general, the proposed methods are most beneficial
in dense graphs; if the uncertain graph is very sparse (i.e., small |E|/|V | ratio, low edge
probabilities), a single representative may fail to capture its properties.
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Fig. 15. Triangle discrepancy (�3) (real graphs).

Figure 15 illustrates the boxplots and MAE of |dis3| distribution. GM3 and GM2,3
exhibit the best performance. Specifically, in the densest dataset (Flickr), their average
�3 is more than two orders of magnitude lower than PS and GR2 and more than one
order of magnitude lower than ADR, ABM, GR3, and GR2,3. Although GR3 focuses on
triangle discrepancy, it only yields very good results for BioMine; in the rest of the
datasets, it is outperformed by ADR and ABM. Observe that in those datasets, the
vertical line representing 95% of the vertices extends above those of ADR and ABM.
This suggests that although GR3 is able to capture most of the vertices well, its overall
error is negatively affected by outliers. It is noteworthy that unlike GR2 that fails in
this metric, GM2 manages to preserve relatively well �3.

Figure 16 contains the boxplots and MAE of the discrepancy |dis2| + |dis3|. Overall,
Figure 16 aggregates the results of Figures 14 and 15, that is, a method that yields
high error in |dis2| or |dis3| is also likely to under-perform in |dis2| + |dis3|. GM2,3 is the
best representative, followed by GM2, ADR, ABM, and GR2,3 whose relative performance
depends on the dataset. On the other hand, PS, GR2 and GR3, GM3 fail in some datasets
due to their inability to preserve |dis3| or |dis2|, respectively.

Figure 17 illustrates the performance of the methods in 2-star discrepancy. According
to Equation (7), the expected S2(u) depends more on its vertex than triangle cardinality
because of the [γ2(u)]2 factor. Thus, the relative performance of the algorithms is similar
to that in Figure 14, with GM2, GM2,3, ABM, and ADR having the highest accuracy. GR2
yields large error due to its failure on �3. Summarizing the results on structural
measures, GM2,3, and to a lesser degree GM2, achieve the best quality overall. ABM and
ADR have balanced performance under all settings, whereas the rest of the algorithms
may fail in some datasets for a measure beyond their intended objective function.

6.3. Query Metrics

We evaluate the accuracy of our methods in the following graph-related queries.

—Clustering coefficient is a measure of how close neighbors of a vertex are to forming
a clique. Specifically, it is the ratio of the number of edges between the neighbors of
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Fig. 16. Combined discrepancy (�2 + �3) (real graphs).

Fig. 17. 2-stars discrepancy (real graphs).

a vertex to the maximum number of such links. It is an important metric for search
strategies [Fraigniaud 2007] and social networks [Kossinets and Watts 2006].

—Betweenness centrality is a measure of the node’s importance in the graph: it cor-
responds to the ratio of shortest paths that pass through the node over all pairs
of shortest paths. It has been used widely to assess link value of ecological graphs
[Gonzalez et al. 2010] and router utilization of communication networks [Tizghadam
and Leon-Garcia 2010].

—Shortest-path distance is the percentage of pairs at a certain distance, over all pairs
of reachable vertices. This metric is crucial for spatial queries [Potamias et al. 2010],
routing protocols, and, in general, any task involving shortest-path computations.
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Fig. 18. Clustering coefficient distribution (real graphs).

Since there do not exist closed formulae for the query metrics, the ground truth is
approximated by Monte Carlo sampling. Specifically, we create a number of random
instances of the input uncertain graph, and we compute the expected value of each
metric using the average of the sampled graphs. We use 1,000 samples since it has
been shown [Potamias et al. 2010; Jin et al. 2011b] that this usually suffices to achieve
accuracy convergence. Similarly to the previous section, we plot our experimental
results using boxplots (left y-axis), and the mean absolute error (MAE) (disks projected
on the right y-axis), starting with the clustering coefficient in Figure 18. In general,
the ranking of the algorithms in terms of accuracy is analogous to that for �3 (see
Figure 15), because the clustering coefficient of a vertex u is highly correlated to the
number of triangles containing u. GM2,3 has the lowest MAE in all datasets except
BioMine. GM2, GM3, GR3, GR2,3, ABM, and ADR yield acceptable results, but GR2 and
PS lead to large error.

Betweenness centrality and shortest-path distance are very expensive because they
involve all-pairs shortest-path computations. Their evaluation over 1,000 samples of
large graphs is prohibitive. To overcome this problem, given an uncertain graph, we
use forest fire [Leskovec and Faloutsos 2006] to create a subgraph that has similar
properties and perform the evaluation on the reduced graph. The number of vertices
and edges in the reduced graphs are (i) Flickr, 5,000 and 655,275; (ii) Twitter 10,000
and 353,399; (iii) DBLP, 5,000 and 76,884; and (iv) BioMine, 5,000 and 69,367. Note
that the method used to create reduced graphs is orthogonal to our work; we expect the
proposed techniques to have similar performance with other size-reduction methods.

Figure 19 shows the betweenness centrality boxplots and MAE. The representatives
of ADR, ABM, GM2, and GM2,3 capture very well this metric in all datasets; GM2,3 is
best in DBLP, whereas there are not considerable differences in the other datasets.
PS performs well for DBLP, acceptably for BioMine, and poorly for Flickr and Twiter.
Similar to previous diagrams, GREEDY methods are usually outperformed by the cor-
responding GAME approaches with the same objective function.
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Fig. 19. Betweenness centrality (reduced graphs).

Fig. 20. MAE for average shortest-path distance (reduced graphs).

Figure 20 plots the mean absolute error for the average shortest-path distance be-
tween every pair of vertices. Clearly, in all datasets, approaches that aim at minimizing
only �3, that is, GR3 and GM3, provide the worst results. Due to the high density of
their representatives (see Figure 13), they seriously underestimate the distance. PS
and GR2 also exhibit poor performance. The rest of the methods yield similar accuracy.

Figure 21 illustrates the shortest-path distance error distribution, that is, the MAE
versus the distance of the two end nodes. To keep the diagrams readable, we only
include the benchmark PS and a single method of each category, namely, ABM, GR3,
and GM2,3. The relative performance of the methods is consistent with Figure 20.
Note that MAE decreases as the distance increases. This occurs because there are
numerous alternative paths between pairs of vertices that have long distances. Even
if the actual shortest path is not maintained in the representative, another one, with
similar distance, is likely to exist.

The summary of the query metrics agrees with that of the structural measures.
GM2,3 provides the highest accuracy for most metrics and datasets, followed by GM2.
Although ABM and ADR rarely achieve the best results, they do not fail either. On
the other hand, the GREEDY approaches are unpredictable. Regarding the objective

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 20, Publication date: October 2015.



20:34 P. Parchas et al.

Fig. 21. Shortest-path distance average error (reduced graphs).

functions, minimization of �3 should be applied only for metrics, such as the clustering
coefficient, that are highly correlated to the number of triangles. For most other metrics,
minimization of �2 + �3 is likely to yield the best results.

6.4. Efficiency Experiments

All methods are implemented in C++ and executed in a single core of an Intel Xeon
E5-2660 with 2.20GHz CPU and 96GB RAM. Figure 22 illustrates the running times
in logarithmic scale. ABM is the fastest algorithm, generating its representative in
less than 10 seconds for all datasets. PS, ADR, GM2 are also very efficient, and their
running time never exceeds 100 seconds. At the other extreme, GR3 requires several
hours to terminate for BioMine. In general, GREEDY approaches are the slowest, which
is expected given their high complexity. The objective function also affects the cost, with
methods aiming at �3, that is, GR3 and GM3, being the most expensive, followed by
those that minimize �2 + �3.

For ease of comparison, the last three sets of columns in Figure 22 contain the
running times of the three query metrics on a single sample/representative. Specifically,
CC corresponds to the clustering coefficient, BC to betweenness centrality, and SP to
shortest-path distance. Even the most efficient query CC on a single sample requires
roughly the same time as the generation of a representative by PS, ADR, and GM2,
and is more expensive than ABM. BC and SP are much slower due to the all-pair
shortest-path computations. In Monte Carlo approaches, all queries must be executed
on each individual sample (in our experiments 1,000 times). In addition, these samples
have a nonnegligible generation cost, which is not considered in the diagram. Thus, the
overhead of the proposed techniques is very small compared to that of query processing.

Figure 23 illustrates the average �2 versus time in log-log scale for the methods that
aim at minimizing �2. We can classify the algorithms in three categories based on their
speed of convergence. (i) ABM and GM2 converge very fast to good-quality solutions in
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Fig. 22. Running times (real graphs).

Fig. 23. Convergence time (real graphs).

all datasets. (ii) ADR and PS need more time to create a good representative, although
their execution times are comparable to that of GM2. (iii) In addition to being the least
efficient, GR2 is also the slowest to converge.

Since, as discussed in the previous sections, GM2 and GM2,3 produce (in general) the
best representatives, the last experiment focuses on their performance. Specifically,
in each diagram of Figure 24, the x-axis corresponds to the round number, the left
y-axis shows the discrepancy (�2 or �2 + �3), and the right y-axis plots the number
of edges that changed strategy during the round. For instance, in Figure 24(a), GM2 in
Flickr terminates after six rounds; the last round is omitted because the discrepancy
remains the same and no edge switches strategy. The initial �2 discrepancy of the seed
graph is 2.453 and drops to 0.294 after the first round. The number of strategy changes
decreases exponentially, which causes the execution time of each round to diminish
accordingly. Figure 24(b) shows the corresponding diagram for �2 + �3 in Twitter.
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Fig. 24. Performance of GAME (real graphs).

Although �2 + �3 is not the objective function of GM2, the convergence behavior is
similar to that of Figure 24(a).

Figures 24(c) and 24(d) repeat the same experiments for GM2,3 in DBLP and BioMine,
respectively. The results are analogous to GM2 except that more rounds are required for
termination, especially for BioMine. This is because, as shown in Figure 13, BioMine
yields the representative with the largest number of edges. In all cases, the number of
rounds is at most 20, whereas the discrepancy always converges within the first few
rounds. Accordingly, for large graphs and time-critical applications, a small number
of rounds of GAME can produce representatives of high quality without necessarily
reaching a Nash equilibrium.

7. CONCLUSION

In this article, we propose extracting representative instances of uncertain graphs.
Expensive tasks can then be processed by applying deterministic algorithms on these
instances. We focus on two problems: the first aims at minimizing the vertex degree
discrepancy between the representative and the uncertain graph, while the second
minimizes n-clique discrepancies. For Problem 1, we present ADR, a heuristic tech-
nique, and ABM that utilizes matching algorithms. For Problem 2, we develop methods
based on the greedy and game-theoretic frameworks. In order to assess the quality of
representatives, we perform extensive experiments on real datasets. Our results con-
firm that indeed the proposed methods approximate well various structural measures
and query metrics. Given the cost savings of our techniques with respect to Monte
Carlo sampling, we expect them to have a significant impact on query processing for
uncertain graphs.

In the future we intend to investigate additional properties that may be of interest
for specialized tasks, for example, graph pattern mining, graph clustering, etc. It will
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also be interesting to generate and combine multiple representatives for better approx-
imation. We also aim at extending our methods to alternative uncertain settings such
as time-dependent or streaming graphs, attributed graphs, etc., where the extraction
of representatives is even more challenging. Finally, an interesting direction is the in-
corporation of subgraph sampling in the process of representative extraction. The idea
is to generalize the problem definitions so that in addition to preserving the structural
properties of the uncertain graph, the representatives also reduce the number of nodes
to further facilitate efficiency.
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Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. 2008. Metropolis algo-
rithms for representative subgraph sampling. In Proceedings of the IEEE International Conference on
Data Mining (ICDM’08). 283–292. DOI:http://dx.doi.org/10.1109/ICDM.2008.124

Ruoming Jin, Lin Liu, and Charu C. Aggarwal. 2011a. Discovering highly reliable subgraphs in uncertain
graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’11). 992–1000. DOI:http://dx.doi.org/10.1145/2020408.2020569

Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang. 2011b. Distance-constraint reachability computation
in uncertain graphs. Proc. VLDB Endow. 4, 9 (June 2011), 551–562. DOI:http://dx.doi.org/10.14778/
2002938.2002941
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