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Advancing Receivable Financing
via a Network-based Approach

Ilaria Bordino, Francesco Gullo, and Giacomo Legnaro

Abstract—Receivable financing is the process whereby cash is advanced to firms against receivables their customers have yet to pay:
a receivable can be sold to a funder, which immediately gives the firm cash in return for a small percentage of the receivable amount
as a fee. Receivable financing has been traditionally handled in a centralized way, where every request is processed by the funder
individually and independently of one another.
In this work we propose a novel, network-based approach to receivable financing, which enables customers of the same funder to
autonomously pay each other as much as possible, and gives benefits to both the funder (reduced cash anticipation and exposure
risk) and its customers (smaller fees and lightweight service establishment). Our main contribution consists in providing a principled
formulation of the network-based receivable-settlement strategy, and showing how to achieve all algorithmic challenges posed by the
design of this strategy. We formulate network-based receivable financing as a novel combinatorial-optimization problem on a multigraph
of receivables. We show that the problem is NP-hard, and devise an exact branch-and-bound algorithm, as well as algorithms to
efficiently find effective approximate solutions. Our more efficient algorithms are based on cycle enumeration and selection, and exploit
a theoretical characterization in terms of a knapsack problem, as well as a refining strategy that properly adds paths between cycles.
We also investigate the real-world issue of avoiding temporary violations of the problem constraints, and design methods for handling it.
An extensive experimental evaluation is performed on real receivable data. Results attest the good performance of our methods.

Index Terms—receivable financing, graph theory, combinatorial optimization, network flow.
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1 INTRODUCTION

The term receivable indicates a debt owed to a creditor, which
the debtor has not yet paid for.
Receivable Financing (RF) is a service that allows creditors
to sell receivables to a funder or financing company. The
funder, which is typically a bank, a financial institution,
or a digital platform (e.g., BlueVine, Fundbox, C2FO, and
MarketInvoice), anticipates (part of) the receivable amount,
deducting a percentage as a fee. Creditors resort to RF to ob-
tain cash anticipation, reducing the waiting times of receiv-
able payment, which generally range from 30 to 120 days.
Being forced to face such long waits may be challenging for
businesses, as not knowing when their credits are coming in
may affect their capability of planning ahead. Conversely,
receiving early payments enables businesses to mitigate the
cash-flow issues involving receivables. A further advantage
is that funders typically offer credit control as well, relieving
creditors from the burden of chasing up debtors.
A network-based perspective. Existing RF services employ
an inherently client-server perspective: the funder, just like a
centralized server, receives multiple funding requests, and
processes each of them individually.

It is easy to observe that this strategy has an obvious
limitation, i.e., it overlooks the fact that a set of receivables
for which the RF service is simultaneously requested com-
pose a network where a customer may act as the creditor or
the debtor of different receivables. In this work we present
a novel receivable-financing method, which leverages such
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Fig. 1: Client/server (left) vs. network-based (right) receivable fi-
nancing. In the first case, the funder handles each request individu-
ally, paying a total amount of 3200. In the network-based scenario,
customers are allowed to pay each other. Assume A, B, C have 0,
1000, 0 on their accounts, respectively. Then, B has sufficient money to
pay Receivable 3, which in turns makes C have enough money to pay
Receivable 4, and so on, until all receivables have been paid. This way
no money is anticipated by the funder.

a network perspective to enable an autonomous cash flow
among customers. For instance, as shown in Figure 1, a
network-based RF service might allow the funder to antic-
ipate no money, while still having RF accomplished for all
the receivables. A real scenario is clearly more complicated
than the simple one depicted in the example. This means
that the receivables that can be autonomously paid by the
customers without involving the funder are typically only a
subset of all the receivable which the RF service is requested
for. The main goal in the design of network-based RF is
therefore to select the largest-amount subset of receivables for
which autonomous payment is possible.

Network-based RF provides noticeable advantages to
both the funder and the customers. In fact, the funder
can now entrust to the novel network-based settlement
system the settlement of the receivable financing requests
advanced by the customers who accept to enroll into it. The
system takes care to enable autonomous payment of these
receivables to the maximum extent possible. This means
that the funder no longer needs to anticipate cash for each
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request, achieving a larger availability of liquidity, and a lower
risk of incurring into payment delays or credit losses. The in-
creased cash availability in turn allows the funder to devise
proper marketing strategies to attract more customers to try
the novel settlement service. Specifically, the funder offers
the customers the benefit of a lower fee on each incoming
deliverable. A further advantage for the customer is the
easier access to the receivable financing service (in terms of
both time and effort), which is enabled by the employment
of lighter bureaucracy and risk-assessment rules.

A crucial aspect for the network-based RF service to
work properly is to regulate it with to a do-ut-des mech-
anism, where customers accept to pay selected receivables,
for which they act as a debtor, earlier than they would do
without the service. Our enrolling customer is warned that
the system does not allow non-payments, and that when
a receivable for which she plays as debtor is selected for
settlement, its amount is automatically transferred to the
creditor. However, the customer is informed that she also
benefits from early payments, because the system ensures
that they increase the chance for a debtor of subsequently
acting as a creditor. Moreover, customers may preserve their
freedom on how to handle payments, by choosing which
requests to submit to the network-based system.

Challenges and contributions. In this work we tackle a
real-world problem from a specific application domain, i.e.,
receivable financing, proposing a novel method, based on a
network-perspective that – to the best of our knowledge – has
never been employed for such a problem before. Effectively
solving the network-based receivable settlement problem
requires non-trivial algorithmic and theoretic work. This
paper focuses on the algorithmic challenges that arise amid
the design of a such a network-based approach.

We observe that the set of receivables that are available
for settlement at any day can be naturally modeled as
a multigraph, whose nodes correspond to customers, and
an arc from u to v represents a receivable having u as
a debtor and v as a creditor. Such a multigraph is arc-
weighted, with weights corresponding to receivable amounts,
and node-attributed, as every node is assigned its account
balance(s), as well as a floor and a cap, which serve the
purpose of limiting the balance(s) of a node to stay within
a reasonable range. We formulate network-based receivable
settlement as a novel combinatorial-optimization problem
on a multigraph of receivables, whose objective is to select
a subset of arcs so as to maximize the total amount of the
selected arcs, while also satisfying two constraints: (i) the
balance of every node meets the corresponding floor-cap
constraints, and (ii) every node within the output solution is
the creditor of at least one output receivable and the debtor
of at least one output receivable. We show that the problem
is NP-hard and devise both an exact algorithm and effective
algorithms to find approximate solutions more efficiently.
Our more efficient algorithms exploit the fact that a cycle of
the input multigraph is guaranteed to satisfy one of the two
problem constraints. For this reason, we formulate a further
combinatorial-optimization problem, which identifies a sub-
set of the cycles of the input multigraph, so as to maximize
the total amount and keep the floor-cap constraints satisfied.
Such a problem is shown to be NP-hard too, and our most

efficient algorithms find approximate solutions to it by ex-
ploiting a knapsack-like characterization, as well as a refin-
ing strategy that properly adds paths between the selected
cycles. Orthogonally, we focus on a practical issue that may
arise while implementing a network-based RF service in
real-world systems: to minimize system re-engineering, it
might be required for the money transfers underlying the
settled receivables to be executed one at a time and without
violating the problem constraints, not even temporarily. We
devise proper strategies to handle such a real-world issue,
by either redefining floor constraints, or taking a subset of
the settled receivables and properly ordering them.

To summarize, the main contributions of this work are:
• We devise a novel, network-based approach to receiv-

able financing (Section 2).
• We provide a principled formulation of the network-

based receivable settlement strategy in terms of a novel
optimization problem, while also showing the NP-
hardness of the problem (Section 3).

• We define a branch-and-bound algorithm to solve the
proposed optimization problem exactly (Section 4.1).

• We devise a more efficient algorithm, based on the
optimal selection of a subset of cycles (Section 4.2).

• We present a method to improve upon the cycle-
selection-based algorithm by suitably adding paths be-
tween the selected cycles (Section 4.3). This algorithm
and the branch-and-bound one are also combined into
a further hybrid algorithm (Section 4.4).

• We handle the real-world scenario where temporary
constraint violations are not allowed (Section 4.5).

• We present an extensive evaluation on a real dataset of
receivables. Results demonstrate the effectiveness of the
proposed methods in practice (Section 6).

In Section 5 we report implementation details, while Sec-
tion 7 offers related work, and Section 8 draws conclusions.

An abridged version of this paper has been presented
in [3]. New material includes novel algorithms (Sections 4.3
and 4.5), implementation details (Section 5), an extended
empirical evaluation in Section 6 (with a new dataset, and
novel algorithms), an expanded literature review (Section 7),
and further insights and explanations throughout the paper.

2 PRELIMINARIES

In this work we consider the following scenario. We focus
on the customer basis U of a single funder (we assume the
funder has no visibility on the customers of other funders).
Customers in U submit RF requests to the funder. We denote
by R the set of receivables submitted to the funder by its
customers. The goal of the funder is to select a subset ofR to
be settled, by employing a network-based strategy, i.e., mak-
ing the involved customers pay each other autonomously.
Receivables. Attributes of a receivable R ∈ R include:
• amount(R) ∈ R: amount of the receivable;
• creditor(R) ∈ U : payee of the receivable;
• debtor(R) ∈ U : payer of the receivable;
• indate(R): date the receivable entered the system;
• duedate(R): date on which the payment falls due;
• life(R) ∈ N: the maximum number of days the network-

based RF service is allowed to try to settle the receivable.
R is said active for creditor(R), and passive for debtor(R).
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TABLE 1: List of frequent symbols.
symbol definition

G=(V,E,w) input R-multigraph
blr(u) receivable balance of u’s account (u ∈ V)
bla(u) actual balance of u’s account (u ∈ V)
cap(u) upper bound on blr(u) (u ∈ V)
fl(u) lower bound on bla(u) (u ∈ V)
C set of cycles in G

C ∈ C a cycle in C
Pij paths from a node in cycle Ci to a node in cycle Cj

Pmax max size of a path set in {Pij}i,j
L; Lp max length of a cycle in C; max length of a path in Pij

K; Kp size of C’s subset; size of Pij ’s subset (beam-search algorithms)
CC weakly connected components of G
H max size of a G’s conn. component to run the exact algorithm on

Customers. An ad-hoc account is assigned from the fun-
der to each of its customers. Such a dedicated account
keeps track of the movements underlying the various
RF requests of the customer. Customers may also de-
posit/withdraw money on/from their standard account: such
deposits/withdrawals correspond to external money flows
(as they do not come from receivable settlement), which
should be properly regulated in order to maintain the
overall collaborative equilibrium of the system. Specifically,
the main requirement here is that withdrawals should not
contribute to increase the operability of the customer within
the network-based RF service, whereas the opposite should
hold for deposits. To satisfy this requirement, every cus-
tomer u ∈ U is assigned two different balances in her
dedicated account. These balances are limited by a floor and
a cap (that are set on a customer basis during sign up). Thus,
a customer u ∈ U is assigned the following attributes:
• blr(u) ∈ R: receivable balance of u’s account, i.e., the sum

of all receivables u has got paid minus the sum of all
receivables u has paid through the RF service over the
whole u’s time of activity;
• bla(u) ∈ R: actual balance of u’s account, corresponding

to the receivable balance blr(u), increased by money from
deposit operations and decreased by withdrawals;
• cap(u) ∈ R: upper bound on the receivable balance of
u’s account; requiring blr(u) ≤ cap(u) avoids unbalanced
situations where a customer utilizes the service only to
get money without paying passive receivables;
• fl(u) ∈ R: lower bound on the actual balance of u’s

account; typically, fl(u) = 0, but in some cases negative
values may be allowed.

Network-based RF in action. A receivable R is submitted
by creditor(R) to the netwok-based RF service. While sub-
mitting R, the creditor also sets life(R), i.e., the maximum
number of days R can stay in the system: if R has not been
settled during that period, the creditor gets it back (and she
may require to sell it to different financing services).

Once R has been added to the system, debtor(R) is
asked to confirm if she agrees with paying R anytime
between indate(R) and duedate(R). If debtor(R) gives her
confirmation, it means that she accepts to pay R possibly
before its duedate. This is a crucial aspect in the design of
network-based RF. In this regard, a specific mechanism
is employed to maintain the desired equilibrium where
customers autonomously pay each other as far as possible:
the debtor must accept to pay a receivable before its duedate
to gain operability within the service, so as to get her (future)
active receivables settled more easily. Indeed, according to the
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Fig. 2: An instance of MAX-PROFIT BALANCED SETTLEMENT (Prob-
lem 1). Nodes are assigned balances (in this example blr = bla), and
floor-cap ranges (square brackets). Arcs are labeled with the amount
of the corresponding receivables. Day 1: the arcs depicted with full lines
form the optimal solution. No other arcs can be selected. In fact, adding
(E,C) and (C,B) to the solution would violate C’s and E’s floor
constraint, while adding (D,A) would violate D’s floor constraint.
Day 2: receivables present in the system corresponds to the ones not
settled at Day 1, along with the two new ones depicted with dotted
lines (i.e., (A,E) and (C,A)). The optimal solution at Day 2 is an empty
set. In fact, the only way to have Problem 1’s Constraint (2) satisfied
would be selecting (A,E), (E,C), and (C,A) altogether. However, this
is not possible as it would not comply with E’s cap constraint.

constraint blr(u) ≤ cap(u), the more the receivables paid by
u through the network-based RF service, the further blr(u)
remains from cap(u) and the higher the chance for u to have
her active receivables paid.

After confirmation by debtor(R), R becomes part
of the set R of receivables that the system will at-
tempt to settle (according to the method(s) presented
in Sections 3-4). If the system is not able to set-
tle R during the period [indate(R),min{indate(R) +
life(R), duedate(R)}], creditor(R) gets the receivable
back. Otherwise, amount(R) is withdrawn from the
debtor(R)’s account and put to the creditor(R)’s account.
Without loss of generality, we assume that the settlement
fee of receivable R is paid by creditor(R) to the funder
of the RF service through a different channel. As better
explained in Section 3, a receivable R can be selected for
settlement only if it complies with the economic conditions
of debtor(R)’s (and creditor(R)’s) account (and some other
global constraints are satisfied, see Problem 1). This prevents
the system from being affected by insolvencies.

3 PROBLEM DEFINITION

A network-based RF service requires the design of a proper
strategy to select a subset of receivables to be settled. Here
we assume receivable settlement works on a daily basis,
running offline at the end of a working day t, and taking as in-
put receivables that are valid at time t, i.e., R(t) = {R ∈ R |
t ∈ [indate(R), min{indate(R) +life(R), duedate(R)}]}.
This scenario induces a multigraph, where arcs correspond
to receivables, and nodes to customers. This multigraph,
termed R-multigraph, is directed, weighted, and node-attributed:
Definition 1 (R-multigraph). Given a set R(t) of receivables

active at time t, the R-multigraph induced by R(t) is a
triple G = (V, E , w), where V is a set of nodes, E is a
multiset of ordered pairs of nodes, i.e., arcs, and w : E →
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R+ is a function assigning (positive real) weights to arcs.
Each arc (u, v) ∈ E models the case “u pays v”, i.e., it
corresponds to a receivable R where u = debtor(R), v =
creditor(R), and w(u, v) = amount(R). Each node v ∈
V is assigned attributes blr(u), bla(u), cap(u), and fl(u).

The objective in our network-based settlement is to select
a set of receivables, i.e., arcs of the R-multigraph G, so as
to maximize the total amount. This is a desideratum for both
the funder and its customers. A larger amount of settled
receivables brings more profit to the founder, and also larger
savings for the customers, who – in the absence of this
service – would be forced to pay for more expensive (tradi-
tional) alternatives. The identified receivables should satisfy
two constraints for every customer u spanned by them:
(1) the resulting blr(u) and bla(u) should be within cap(u)
and fl(u) (i.e., blr(u) ≤ cap(u), bla(u) ≥ fl(u)), and (2) u
should be the payer of at least one selected receivable and
the payee of at least another selected receivable. Constraint
(2) arises due to a specific marketing choice, i.e., preventing
a customer from only paying receivables in a given day.
This is based on the idea that showing clients that any day
they pay a receivable, they also receive at least one payment
as creditors, may crucially help increase their appreciation
and engagement with the service. Moreover, preventing a
customer from only paying receivables serves the aim of
ensuring the aforementioned do-ut-des principle.

The above desiderata are formalized into the following
combinatorial-optimization problem, while Figure 2 depicts
a (toy) problem instance.

Problem 1 (MAX-PROFIT BALANCED SETTLEMENT). Given
an R-multigraph G=(V, E , w), find

E∗ = argmax
Ê⊆E

∑
e∈Ê

w(e) subject to

(∑
(v,u)∈Ê

w(v, u)−
∑

(u,v)∈Ê

w(u, v)
)
∈[fl(u)−bla(u), cap(u)−blr(u)], (1)

|{(u, v) | (u, v) ∈ Ê}| ≥ 1, and |{(v, u) | (v, u) ∈ Ê}| ≥ 1, (2)

∀u ∈ V(Ê) = {u ∈ V | (u, v) ∈ Ê ∨ (v, u) ∈ Ê}.
Theorem 1. Problem 1 is NP-hard.

Proof: (Sketch) We reduce from SUBSET SUM [11]:
given a set S of positive real numbers and a further real
number B larger than the minimum number in S, find a
subset S∗ ⊆ S such that the sum of the numbers in S∗ is
maximum and no more than B. The idea of the reduction is
to show that solving MAX-PROFIT BALANCED SETTLEMENT
on a two-node R-multigraph with as many arcs between the
two nodes as the number of input numbers in S corresponds
to solving the original SUBSET SUM problem instance. A
detailed proof is shown in [3].

4 ALGORITHMS

4.1 Exact algorithm
Our first proposal to solve the MAX-PROFIT BALANCED
SETTLEMENT problem is a branch-and-bound exact algorithm,
dubbed Settle-BB. Given a R-multigraph G = (V, E , w),
the search space of MAX-PROFIT BALANCED SETTLEMENT
corresponds to the set 2E of all (multi)subsets of arcs of

G. In the proposed Settle-BB algorithm such a search space
is represented as a binary-tree T , with |E|+1 levels, where
every level (but the root) is logically assigned an arc e ∈ E .
Every level of the tree comes with a decision on whether
the corresponding arc is part of the output or not. The
assignment of arcs to the levels of T is decised based
on a certain ordering of the arcs (e.g., by non-increasing
amount, see Section 5). A path in T , from the root to a leaf,
corresponds to an admissible solution Ê ∈ 2E to the problem
(setting a decision for all arcs in E). A tree-node other than
the root or a leaf (T ’s nodes are termed “tree-nodes”, to
distinguish them from R-multigraph’s nodes) represents a
set of solutions, corresponding to all possible decisions for
the arcs within the path from the root to that non-leaf node.

The search space T is visited by the proposed Settle-BB
according to some strategy, e.g., BFS or DFS (see Section 5).
While visiting the various tree-nodes, Settle-BB considers
a lower bound and an upper bound on the set of solutions
corresponding to the current tree-node. Such bounds are
used in a traditional branch-and-bound fashion to prune the
search space. For a detailed description of Settle-BB please
see [3], [4].

4.2 Beam-search algorithm
Being MAX-PROFIT BALANCED SETTLEMENT NP-hard,
the exact Settle-BB algorithm cannot handle large R-
multigraphs. We thus design an alternative algorithm that
finds approximate solutions and can run on larger instances.
To this end, we exploit the idea of enumerating all cycles in
the input multigraph, and selecting a subset of them while
keeping the constraints satisfied. The intuition behind this
strategy is twofold. First, a solution composed of a set of
cycles always satisfies the other constraint of the problem, as
every node of a cycle has at least one incoming arc and one
outgoing arc. Also, cycle enumeration is a well-established
problem, for which a variety of algorithms exist. As a trade-
off between effectiveness, efficiency and simplicity, in this
work we employ a variant of the Johnson’s algorithm [10]
that works on multigraphs [8].

For a principled cycle selection, we focus on the problem
of seeking cycles that satisfy the constraints in Problem 1
and exhibit maximum total amount:
Problem 2 (OPTIMAL CYCLE SELECTION).Given an R-

multigraph G=(V, E , w) and a set C of cycles in G, find
a subset C∗⊆C so that:

C∗ = argmaxĈ⊆C

∑
e∈E(Ĉ) w(e)

subject to E(Ĉ)=
⋃

C∈Ĉ C meets Constraint (1) in Problem 1.

Theorem 2. Problem 2 is NP-hard.

Proof: (Sketch) We reduce from MAXIMUM INDEPEN-
DENT SET [6], which asks for a maximum-sized subset of
vertices in a graph no two of which are adjacent. Given a
graph G = (V,E) instance of MAXIMUM INDEPENDENT
SET, the idea of the reduction is to construct an instance
〈G,C〉 of OPTIMAL CYCLE SELECTION where there is a cycle
for every vertex in V , and those cycles satisfy certain con-
ditions on the weights on their arcs depending on the two
corresponding vertices are adjacent in G or not. Ultimately,
it can be shown that the optimal cycle set found on the con-
structed OPTIMAL CYCLE SELECTION instance corresponds



5

Algorithm 1: Settle-BEAM

Input: R-multigraph G = (V, E , w), integer K
Output: Multiset E∗ ⊆ E

1: E∗ ← ∅
2: C← cycles of G {[8]}
3: while C 6= ∅ do
4: C′ ← K-sized subset of C by Greedy MAX COVER {[9]}
5: C′2 ← {{Ci, Cj}|Ci, Cj ∈ C′}
6: for all {Ci, Cj} ∈ C′2 do
7: Cij ← Ci ∪ Cj

8: process all C ∈ C′ \ {Ci, Cj} one by one, by non-
increasing ω(·) score (Eq.(3)); add C to Cij if Cij ∪
C ∪ E∗ is feasible for Problem 2

9: E∗ ← E∗ ∪ arg maxCij∈C′2

∑
e∈Cij

w(e)

10: C← C \ (C′ ∪ {C ∈ C | C ∩ E∗ = C})

to the solution to the original MAXIMUM INDEPENDENT SET
instance. The detailed reduction can be found in [3].

As OPTIMAL CYCLE SELECTION is NP-hard, we design
an effective approximate solution by combining KNAP-
SACK-solving methodologies with the principles of beam
search. We start by observing that OPTIMAL CYCLE SELEC-
TION is an instance of the MULTIDIMENSIONAL SET UNION
KNAPSACK problem, which is defined as follows:

Problem 3 (MULTIDIMENSIONAL SET UNION KNAPSACK).
Let U = {x1, . . . , xh} be a universe of elements, S =
{S1, . . . , Sk} be a set of items, where Si ⊆ U , ∀i ∈ [1..k],
p : S → R be a profit function for items in S , and
q : U → Rd be a d-dimensional cost function for ele-
ments in U . For any Ŝ ⊆ S define also: U(Ŝ) =

⋃
S∈Ŝ S,

P (Ŝ) =
∑

S∈Ŝ p(S), and Q(Ŝ) =
∑

x∈U(Ŝ) q(x). Given
a d-dimensional vector B ∈ Rd, MULTIDIMENSIONAL
SET UNION KNAPSACK finds S∗ = argmaxŜ⊆S P (Ŝ)
s.t. Q(Ŝ) ≤ B.

Motivated by this connection with MULTIDIMENSIONAL
SET UNION KNAPSACK, we devise an algorithm for OP-
TIMAL CYCLE SELECTION inspired by Arulselvan’s algo-
rithm [2], which achieves a 1− e−1/fmax approximation
guarantee for MULTIDIMENSIONAL SET UNION KNAPSACK,
where fmax is the maximum number of items in which an
element is present. Arulselvan’s algorithm first computes
all subsets of 2 items whose weighted union is within the
budget B. Next, it expands each subset with items Si added
one by one in decreasing order of an ad-hoc-defined score,
as long as the budget constraint B is satisfied. The score
employed for selecting an item is directly proportional to
its profit, and inversely proportional to its frequency within
the entire item set S . The algorithm outputs the augmented
subset yielding the highest profit.

Our ultimate Settle-BEAM algorithm (Algorithm 1)
adapts Arulselvan’s algorithm to our context, introducing
the following modifications. (i) We extend the algorithm so
as to handle a MULTIDIMENSIONAL SET UNION KNAPSACK
problem instance derived from the input OPTIMAL CYCLE
SELECTION instance as stated in Theorem 4.5 in [3] (trivial
extension). (ii) We define the score of a cycle C ∈ C as:

ω(C) =

∑
e∈C w(e)∑
e∈C

w(e)
f(e)

, where f(e) = |{C ∈ C : e ∈ C}|, (3)

This score considers the total cycle amount, penalized by
a term accounting for the frequency of an arc within the

Algorithm 2: Settle-PATH

Input: R-multigraph G = (V, E , w), two integers K,Kp

Output: Multiset E∗ ⊆ E
1: C∗ ← cycles of G selected by Algorithm 1
2: E∗ ←

⋃
C∈C∗ C

3: for all Ci, Cj ∈ C∗ do
4: Pij ← paths from a node in Ci to a node in Cj {[8]}
5: P∗ij ← paths selected by Algorithm 1 on input 〈G,Kp〉

and setting C := Pij at Line 2
6: E∗ ← E∗ ∪

⋃
P∈P∗ij

P

cycle set C. The intuition is that frequent arcs must be
penalized as they contribute less to the objective function,
which is defined on the union of the arcs of all selected
cycles (see Problem 2). Finally, (iii) we employ beam search
to mitigate the burden of pairwise cycle enumeration and
augmentation. We first select a subset C′ ⊆ C of cycles of size
K ≤ |C|whose union arc set exhibits the maximum amount:
we solve this step by observing that it is basically an instance
of (weighted) MAX COVER [9], where arcs correspond to
elements and cycles to sets, and consequently adopting the
classic greedy (1 − 1

e )-approximation algorithm for MAX
COVER. We then use C′ for pairwise cycle computation
and augmentation. We repeat the procedure (by selecting
a further K-sized subset of C\C′) until C has become empty.

The running time of Settle-BEAM is dominated by cy-
cle enumeration (Line 2), as the number of cycles in a
(multi)graph can be exponential. This is however not block-
ing for us: as it is unlikely that the problem constraints are
satisfied on long cycles, we employ a simple yet effective
workaround of detecting cycles up to a certain size L. This
way, the time complexity of Settle-BEAM is O(LK2 |C|). For
a more detailed complexity analysis please see [3], [4].

4.3 Adding paths between cycles

An interesting insight on cycle-based solutions to MAX-
PROFIT BALANCED SETTLEMENT is that they can be im-
proved by looking for paths connecting two selected cycles. An
approach based on this observation is particularly appeal-
ing as adding a path between two cycles keeps the cycle
constraint of our problem (i.e., Constraint (2) in Problem 1)
satisfied, therefore one has only to focus on the floor-cap
constraint while checking admissibility of paths.

Within this view, we propose a refinement of the
Settle-BEAM algorithm where, for every pair Ci, Cj of se-
lected cycles, we (i) compute paths Pij from a node in Ci to
a node in Cj , and (ii) take a subset P∗ij ⊆ Pij such that the
total amount

∑
e∈P,P∈P∗ij

w(e) is as large as possible and
adding P∗ij to the initial MAX-PROFIT BALANCED SETTLE-
MENT solution still meets the cap-floor constraints. We dub
this algorithm Settle-PATH and outline it as Algorithm 2.
To compute a path set Pij , we employ a simple variant
of the (multigraph version of the) well-known Johnson’s
algorithm [8], where we make the underlying backtracking
procedure start from nodes in Ci and yield a solution (i.e., a
path) every time it encounters a node in Cj . The selection of
P∗ij ⊆ Pij can be accomplished by running either a standard
greedy method (as in Algorithm 2 in the first version of our
work [3]), or Algorithm 1 (with the modification that the set
C at Line 2 corresponds to Pij).
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Algorithm 3: Settle-H/Settle-H-PATH

Input: R-multigraph G = (V, E , w), three integers H,K,Kp

Output: Multiset E∗ ⊆ E
1: E∗ ← ∅, CC← weakly connected components of G
2: for all G ∈ CC s.t. |arcs(G)| ≤ H do
3: E∗ ← E∗∪ Settle-BB on input G {Section 4.1}
4: for all G ∈ CC s.t. |arcs(G)| > H do
5: E∗ ← E∗∪ Settle-BEAM or Settle-PATH on input

〈G,K,Kp〉 {Algorithms 1–2}

The running time of Settle-PATH is expected to be dom-
inated by the various path-enumeration steps. As far as
the remaining steps, the worst case corresponds to em-
ploying Algorithm 1 for both cycle- and path-selection,
which leads to an overall time complexity of O(LK2|C| +
|C∗|2LpK

2
p |Pmax|), where Lp and Kp are two integers play-

ing the same roles as L and K , respectively, in Algorithm 1
when run on path sets, and Pmax = argmaxP∈{Pij}i,j |P|.

4.4 Hybrid algorithm
The MAX-PROFIT BALANCED SETTLEMENT problem can be
solved by running any of the algorithms presented in Sec-
tions 4.1–4.3 on each weakly connected component of the
input R-multigraph separately, and then taking the union
of all partial solutions. Based on this straightforward ob-
servation, we ultimately propose a hybrid algorithm, which
runs the exact Settle-BB algorithm on the smaller connected
components and the Settle-BEAM or Settle-PATH algorithm
on the remaining ones. Our hybrid algorithm is outlined
as Algorithm 3: we term it either Settle-H or Settle-H-PATH,
depending on whether it is equipped with Settle-BEAM or
Settle-PATH, respectively.

4.5 Temporary constraint violation
Given a set E∗ of receivables selected for settlement, the
eventual step of our network-based RF service is, for every
receivable R ∈ E∗, to transfer amount(R) from debtor(R)’s
account to creditor(R)’s account. A typical desideratum
from big (financial) institutions is that these money transfers
happen by exploiting procedures and software solutions
already in place within the institution, in order to minimize
the effort in system re-engineering. For instance, our part-
ner institution required to interpret money transfers as a
sequence of standard bank transfers. To accomplish this,
money transfers have to typically be executed one at a
time, meaning that some constraints in Problem 1 might be
temporarily violated. As an example, look at Figure 2 and
assume the money transfer corresponding to the receivable
from D to E is the first one to be executed: this would
lead to the temporary violation of D’s floor constraint. In
real scenarios constraint violation might not be allowed, not
even temporarily. In banks, for instance, a floor-constraint
violation corresponds to an overdraft on a bank account,
which, even if it lasts a few milliseconds only, would any-
way cause that account being charged. Another motivation
may be simply that existing systems do not accept any form
of temporary violation.

Motivated by the above, here we devise solutions to
the temporary-constraint-violation issue. In particular, we
focus on floor constraints only, as temporary violation of
cap constraints or cycle constraints is not really critical. We

Algorithm 4: Redefine-Floors
Input: R-multigraph G = (V, E , w), two integers H,K
Output: List E∗ ⊆ E

1: E∗ ← [ ]
2: repeat
3: Ê ← a solution to Problem 1 on input 〈G, H,K〉, with

floors set as fl(u) = ubin(u), ∀u ∈ V {Equation (5)}
4: order Ê in some way and append it to E∗
5: remove all arcs in Ê from G
6: for all u ∈ V(Ê) do
7: ∆(u)←

∑
v:(v,u)∈Ê w(v, u)−

∑
v:(u,v)∈Ê w(u, v)

8: blr(u)← blr(u) + ∆(u), bla(u)← bla(u) + ∆(u)
9: until E = ∅ ∨ Ê = ∅

propose two solutions: the first one is based on a clever
redefinition of floor values, while the second one consists
in properly selecting and ordering a subset of the arcs that
were originally identified for settlement. The details of both
solutions are reported next.
Redefining floor values. The first proposal to handle tem-
porary constraint violation is based on the following result:
properly redefining floor values leads to output solutions
to MAX-PROFIT BALANCED SETTLEMENT containing only
receivables that do not violate the original floor constraints,
regardless of the ordering with which the corresponding money
transfers are executed. Specifically, given a set E∗ ⊆ E of arcs
in a MAX-PROFIT BALANCED SETTLEMENT solution, for ev-
ery node u ∈ V(E∗), let in(u, E∗) =

∑
v:(v,u)∈E∗ w(v, u) and

out(u, E∗) =
∑

v:(u,v)∈E∗ w(u, v) denote the total amount
received and paid by u within E∗, respectively. Let also
ubin(u) denote an upper bound on the amount in(u, E∗)
that u can receive in any possible solution E∗. Our first
observation is that, by setting fl(u) = ubin(u), ∀u ∈ V(E∗),
no customer u will ever pay a total amount larger than
her current bla(u) balance availability bla(u) in any MAX-
PROFIT BALANCED SETTLEMENT solution, i.e., it would be
guaranteed that, for all solutions E∗ and all u ∈ V(E∗),
bla(u) ≥ out(u, E∗). In fact, for all solutions E∗ it holds that:

in(u, E∗)− out(u, E∗) + bla(u) ≥ fl(u) = ubin(u)

⇔ bla(u)− out(u, E∗) ≥ ubin(u)− in(u, E∗) ≥ 0

⇒ bla(u) ≥ out(u, E∗). (4)

Now, the key question is how to define ubin(u). A simple
way would be setting it to the u’s in-degree. Another option
consists in defining it based on the cap constraint:

cap(u) ≥ in(u, E∗)−out(u, E∗)+blr(u)

⇒ cap(u) ≥ in(u, E∗)−bla(u)+blr(u) {Equation (4)}
⇔ in(u) ≤ cap(u)+bla(u)−blr(u).

Combining the two options, we ultimately define

ubin(u)=min
{∑

v:(v,u)∈Ew(v,u), cap(u)+bla(u)−blr(u)
}
. (5)

To summarize, our first strategy to handle temporary
constraint violation consists in computing a solution E∗
to MAX-PROFIT BALANCED SETTLEMENT with a floor con-
straint fl(u) = ubin(u) (Equation (5)), for all u. Based on
the above arguments, E∗ guarantees no temporary floor-
constraint violation, independently of the execution order
of the corresponding money transfers. As a refinement,
one can run this method iteratively, i.e., removing the arcs
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Algorithm 5: Select-and-Order
Input: R-multigraph G = (V, E , w), two integers H,K
Output: List E∗ ⊆ E

1: E∗ ← [ ]; i← 1
2: repeat
3: E+ ← ∅
4: for all u ∈ V(E) do
5: Eu ← a subset of {(u, v) | (u, v) ∈ E} s.t. bla(u) −∑

e∈Eu w(e) ≥ fl(u), ∀(u, v) ∈ Eu : w(u, v) + blr(v) ≤
cap(v), and

∑
e∈Eu w(e) is maximized

6: E+ ← E+ ∪ Eu
7: set ts(e) = i, ∀e ∈ E+
8: order E+ in some way and append it to E∗
9: for all u ∈ V(E+) do

10: ∆(u)←
∑

v:(v,u)∈E+ w(v, u)−
∑

v:(u,v)∈E+ w(u, v)
11: blr(u)← blr(u) + ∆(u), bla(u)← bla(u) + ∆(u)
12: E ← E \ E+; i← i + 1
13: until E+ = ∅
14: E− ← ∅
15: repeat
16: E− ← E∗ \ {arcs of the (1,1)-D-core of E∗} {[7]}
17: for all (u, v) ∈ E− do
18: E−uv ← {(u, v)}; X ← {(u, v)}
19: while X 6= ∅ do
20: X̂ ← ∅
21: for all (x, y) ∈ X do
22: X̂ ← X̂ ∪ {(y, z) ∈ E∗ | ts(y, z) = ts(x, y) + 1}
23: X ← X̂ ; E−uv ← E−uv ∪X
24: remove all arcs in E−uv from E∗
25: until E− = ∅

yielded at any iteration and computing a new solution on
the remaining graph. The overall solution is the union of
all partial solutions, and the arcs are ordered based on the
iterations: money transfers corresponding to arcs computed
in earlier iterations should be executed before the ones in
later iterations (while arc ordering within the same iteration
does not matter). This method is outlined as Algorithm 4.

Taking a subset of arcs and properly ordering them. Our
second solution to overcome temporary constraint violation
consists in selecting a subset of the arcs that were originally
identified for settlement, and ordering them, so as to guar-
antee that (i) executing the corresponding money transfers
according to that ordering is free from constraint violations,
and (ii) the arc subset still satisfies MAX-PROFIT BALANCED
SETTLEMENT’s constraints. While doing so, the objective
remains maximizing the total amount of the arcs in the subset.

More specifically, the algorithm at hand (Algorithm 5)
consists of two phases, i.e., arc selection (Lines 2–13) and arc
removal (Lines 14–25). Arc selection aims at identifying, for
every node u, the best (in terms of overall amount) subset Eu
of arcs outgoing from u whose total amount complies with
u’s floor constraint, and such that no arc (u, v) ∈ Eu leads to
the violation of v’s cap constraint (Line 5). This corresponds
to (a simple variant of) the SUBSET SUM problem, which is
known to be NP-hard [11]. For nodes with small-sized out-
neighborhood, the problem might even be solved optimally,
by brute-force. Alternatively, for nodes with larger out-
neighborhoods, an approximated solution can be computed
by adopting some existing approximation algorithms for
SUBSET SUM. Once such Eu subsets, for all u ∈ V(E), have
been identified, all arcs within such Eu sets are appended to
the output E∗ list, with their timestamp set as equal to the
current i (Lines 7–8), and the balances of the corresponding

nodes are updated (Lines 9–11). As the selection of some
arcs during a certain iteration may increase the balance of
some nodes, and, thus, enable the selection of further arcs in
the next iterations, the arc-selection phase is repeated until
no new arc is selected in the current iteration.

The (temporary) list of arcs that has been built during arc
selection guarantees that the floor-cap constraints of every
selected node are still satisfied. Moreover, if the correspond-
ing money transfers are executed following the ordering of
the list, it is also ensured that no floor constraint will ever
be violated. On the other hand, the current solution may
violate the second constraint of the MAX-PROFIT BALANCED
SETTLEMENT problem, i.e., the one that every node within
the solution has at least one incoming arc and at least one
outgoing arc. Hence, the algorithm has also an arc-removal
phase, where those arcs E− that are not part of the (1,1)-
D-core [7] of the subgraph induced by the current solution
are discarded (Line 16), and arcs that have been selected
“thanks to” such discarded arcs are (iteratively) removed
too (Lines 17–24). Arc removal is iteratively repeated until
an empty E− set has been built step, as removing arcs in one
iteration may cause further constraint violations.

5 IMPLEMENTATION

Here we provide some insights for a correct and/or efficient
implementation of the proposed algorithms.

As a first observation, all algorithms can benefit from a
preprocessing step, where nodes with no incoming or out-
going arcs are filtered out of the input R-multigraph. In fact,
the removal of those nodes is safe as they certainly violate
Constraint (2) in our MAX-PROFIT BALANCED SETTLEMENT
problem. Such a filtering may be exploited recursively, as the
removal of those nodes may cause further nodes to have no
incoming/outgoing arcs. Ultimately, the overall procedure
corresponds to extracting what in the literature is referred
to as the (1, 1)-D-core [7] of the input R-multigraph.

Another general preprocessing consists in preventively
filtering nodes based on their values of bla and blr . Specif-
ically, given an R-multigraph G = (V, E , w) and a node
u ∈ V , the difference in blr(u) induced by any solution
to MAX-PROFIT BALANCED SETTLEMENT is lower-bounded
and upper-bounded by LB(u) = min(v,u)∈E w(v, u) −∑

(u,v)∈E w(u, v) and UB(u) =
∑

(v,u)∈E w(v, u) −
min(u,v)∈E w(u, v), respectively. Therefore, a node u ∈ V
cannot be part of any solution to MAX-PROFIT BALANCED
SETTLEMENT (and, thus, it can safely be discarded) if
UB(u) ≤ fl(u)− bla(u), or LB(u) ≥ cap(u)− blr(u)

As far as the search-space exploration in Settle-BB (Sec-
tion 4.1), we process the arcs in non-increasing amount
order. The reason is that arcs with larger amount are likely to
contribute more to the optimal solution. In terms of visiting
strategy, we experimented with both BFS and DFS, observing
no substantial difference between the two.

Finally, in Settle-BEAM (Algorithm 1) we compute the
set C′2 of (admissible) cycle pairs (Line 5) as follows. Let
C′ (Line 4) be partitioned into C′adm (admissible cycles)
and C′¬adm (non-admissible cycles). For all C ∈ C′, let
C′adm(C) = {C ′ ∈ C′+ \ {C} | C ∩C ′ 6= ∅} and C′¬adm(C) =
{C ′ ∈ C′¬adm \ {C} | C ∩ C ′ 6= ∅}. The set C′2 is computed
as (starting with C′2=∅):
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TABLE 2: Size of the input R-multigraphs extracted from the real dataset considered in the experiments (algorithm: Settle-H).

dataset span size
Worst scenario Normal scenario Best scenario

cap <∞ cap =∞ cap <∞ cap =∞ cap <∞ cap =∞
avg max avg max avg max avg max avg max avg max

Log17 2017/18 #nodes 50 563 77 323 50 548 77 280 77 134 105 671 77 082 105 627 97 888 121 274 97 789 121 244
#arcs 51 708 132 944 51 600 132 786 92 560 215 913 92 025 215 078 132 564 278 246 131 325 276 497

for all C ∈ C′adm do
for all C′∈C′adm(C)∪C′¬adm(C) s.t. C∪C′ is admissible do

C′2 ← C′2 ∪ {{C,C′}}
for all C′ ∈ C′adm \ C′adm(C) s.t. C ∪ C′ is admissible do

C′2 ← C′2 ∪ {{C,C′}}
for all C ∈ C′¬adm do

for all C′∈C′adm(C)∪C′¬adm(C) s.t. C∪C′ is admissible do
C′2 ← C′2 ∪ {{C,C′}}

The rationale is that, for any C ∈ C′adm, there is no need to
consider any C ′ ∈ C′¬adm\C′¬adm(C), as an admissible cycle
C cannot be admissible if coupled with a non-admissible
cycle that does not overlap with C . Similarly, for any C ∈
C′¬adm, there is no need to consider any C ′ ∈ C′adm\C′adm(C)
or any C ′ ∈ C′¬adm \C′¬adm(C), as a non-admissible cycle C
cannot become admissible if coupled with any other cycle
that does not overlap with C .

6 EXPERIMENTS

In the first version of our work [3] we experimented with a
real dataset provided by UniCredit – a noteworthy European
bank – consisting of a random sample of a receivable log,
spanning one year in 2015/16. Those experiments assessed
the performance of the proposed Settle-H algorithm, with
respect to the other simpler methods we devised, i.e., Settle-
BB-LB and Settle-BEAM. The results reported in our first
paper show that Settle-H outperforms both competitors
in terms of total amount of the receivables selected for
settlement. We also assessed the scalability of Settle-H on
segments of data of increasing size, up to 90 days.

In this work we report additional experiments on a novel,
more recent dataset, i.e., a sample of the receivable log of
UniCredit, spanning one year in 2017/2018. The evaluation
described in the remainder of this section expands our pre-
vious experiments in three directions: (i) first, we compare
the proposed Settle-H algorithm to a baseline for network-
based receivable financing that we suitably define. Next,
we assess the impact of the novel algorithmic contributions
hereby introduced, i.e., (ii) improving the solutions based
on cycle selection by suitably adding paths between the
selected cycles (comparing Settle-H to Settle-PATH), and (iii)
avoiding temporary constraints violations (Algorithm 4).

Dataset. We tested the performance of our algorithms on a
novel real dataset provided by UniCredit. The dataset, which
we dub Log17, consists of a random sample of the receivable
log of the bank, spanning a time interval of one year, in
2017/2018. The sample roughly includes 5M receivables and
400K customers. Obviously, we worked on an anonymized
version of the log: the dataset contains sensitive information
– such as the identity of the customers, and other personal
data – that cannot be publicly disclosed, and was also made
inaccessible to us.

Customers’ attributes. Following the settings employed in
our previous experiments [3], we set customers’ attributes
by computing statistics on a training prefix of 3 months,

TABLE 3: Comparing best cycle-based algorithm (Settle-H) vs. RFB
baseline in terms of (i) total amount (euros) of settled receivables, (ii)
total number of settled receivables (#R), and (iii) number of distinct
customers involved in at least a daily solution (#C).

quar- sce- Settle-H RFB
ter nario amount #R #C amount #R #C
Q1 W 208 452 169 2045 853 75 871 408 8 6
Q2 133 998 727 2482 933 28 759 273 4 3
Q3 cap: 250 919 555 2445 1007 57 472 835 4 3
Q4 <∞ 435 864 820 2678 1019 128 409 243 8 3
Q1 N 100 052 350 3582 1578 0 0 0
Q2 210 803 336 5054 1832 0 0 0
Q3 cap: 181 024 199 5069 2083 0 0 0
Q4 <∞ 405 407 829 5171 1998 68 940 677 4 3
Q1 B 128 172 168 5369 2347 0 0 0
Q2 223 972 720 7429 2740 0 0 0
Q3 cap: 138 227 899 7934 3262 0 0 0
Q4 <∞ 380 133 762 7786 2968 0 0 0

Q1 W 250 919 555 4474 1504 75 871 408 8 6
Q2 374 766 629 5194 1525 28 759 273 4 3
Q3 cap: 300 021 017 5321 1603 57 472 835 4 3
Q4 ∞ 516 434 249 6896 1645 128 409 243 8 3
Q1 N 395 904 601 9373 3012 0 0 0
Q2 555 117 105 11 712 3270 0 0 0
Q3 cap: 471 313 548 14 342 3888 0 0 0
Q4 ∞ 679 395 059 15 319 3581 189 533 414 26 15
Q1 B 552 458 593 14 314 4566 0 0 0
Q2 699 245 106 19 557 5519 0 0 0
Q3 cap: 544 101 823 22 306 6078 0 0 0
Q4 ∞ 907 115 932 23 606 5881 120 592 737 22 15

The initial actual balance bla(u) of a customer u was set
equal to the average absolute daily difference between the
total amount of her passive receivables and the total amount
of her active receivables, computed over the days when
such a difference yielded a negative value. The rationale
is that in those days the customer would have needed
further liquidity in addition to that provided by incoming
receivables, to finalize the payment of the receivables where
she acted as the debtor. Based on the assumption that real
customers would try a new service with a limited initial
cash deposit, we also imposed an initial upper bound of
50K euros on the actual balance of customers.

We set the cap of a customer to be either (i) finite, and,
specifically, equal to her average daily incoming amount in
the training data (using the average cap of all customers as
the default value for customers with no incoming payments
in the training interval), or (ii) cap =∞: here, accounts were
allowed to grow arbitrarily.

Finally, we set fl(u) = 0, for each customer u. The
heuristics we use are the result of several discussions with
marketing experts of our partner institution.
Simulation. We defined 6 simulation settings:
1) Finite CAP. Let fcap(u) be the finite value of the cap of a

customer u computed as above. We considered 3 scenarios:

•Worst: life(R)=5,∀R∈R; cap(u)=fcap(u),∀u∈U ;
•Normal: life(R)=10,∀R∈R; cap(u)=2fcap(u),∀u∈U ;
•Best: life(R)=15,∀R∈R; cap(u)=3fcap(u),∀u∈U ;

2) CAP = ∞. We considered Worst, Normal, and Best sce-
narios here too, with life values equal to the correspond-
ing finite-CAP cases, but we set cap(u) =∞, ∀u ∈ U .

Such settings identify different sets of valid receivables for a
day, and yield different multigraphs. Table 2 reports on the
sizes of the multigraphs extracted from the Log17 dataset.
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TABLE 4: Evaluating path selection: comparing the best cycle-based algorithm, Settle-H, with the two path-based algorithms.

Settle-H Settle-H-PATH-G Settle-H-PATH-S

cap sce- quar- time amount time amount %gain vs time amount %gain vs %gain vs
nario ter (s) (s) Settle-H (s) Settle-H-PATH-G Settle-H

<∞

W

Q1 4 208 452 169 4 206 122 369 −1 54 208 658 217 1 0.1
Q2 6 133 998 727 6 142 880 339 7 38 139 157 842 −3 3.9
Q3 5 250 919 555 4 251 236 654 0 18 251 689 885 0 0.3
Q4 6 435 864 820 6 436 866 648 0 54 437 305 782 0 0.3

N

Q1 8 100 052 350 8 171 073 852 71 375 130 166 286 −24 30.1
Q2 95 210 803 336 47 224 572 822 7 525 222 848 364 −1 5.7
Q3 13 181 024 199 14 187 757 266 4 429 215 370 572 15 19.0
Q4 23 405 407 829 38 425 474 537 5 448 413 760 885 −3 2.1

B

Q1 50 128 172 168 47 139 304 792 9 576 140 389 844 1 9.5
Q2 215 223 972 720 185 238 760 149 7 721 245 781 771 3 9.7
Q3 66 138 227 899 34 154 369 240 12 677 158 211 843 2 14.5
Q4 192 380 133 762 109 395 718 595 4 1150 392 670 886 −1 3.3

∞

W

Q1 20 374 766 629 7 401 557 792 7 256 407 383 061 1 8.7
Q2 169 226 076 200 122 250 268 430 11 330 264 854 214 6 17.2
Q3 17 300 021 017 17 317 522 710 6 300 316 476 954 0 5.5
Q4 98 516 434 249 101 540 613 736 5 214 543 879 376 1 5.3

N

Q1 246 395 904 601 162 434 561 172 10 1761 458 001 083 5 15.7
Qs2 968 555 117 105 739 622 621 171 12 2023 624 403 545 0 12.5
Q3 573 471 313 548 505 516 884 575 10 1766 604 594 618 17 28.3
Q4 884 679 395 059 694 713 902 252 5 2279 727 907 790 2 7.1

B

Q1 804 552 458 593 634 602 544 685 9 3004 538 053 935 −11 −2.6
Q2 1604 699 245 106 1170 819 639 994 17 4822 727 206 932 −11 4
Q3 971 544 101 823 814 647 240 125 19 3430 685 719 252 6 26
Q4 1609 907 115 932 943 970 525 923 7 3360 963 608 594 −1 6.2

Assessment criteria. We measure the performance of the
algorithms in terms of the total amount of the receivables
selected for settlement. This metric provides direct evidence
of the benefits for both the funder and the customers: the
greater the amount, the less liquidity the funder has to
anticipate, and the smaller the fees for customers.
Parameters. Unless otherwise specified, all experiments re-
fer to L = 15 (maximum length of a cycle), Lp = 15 (max-
imum length of a path between cycles), H = 20 (size of a
connected component to be handled with the exact Settle-BB
algorithm), and K = Kp = 1000 (size of the subset of cycles
to be used in every iteration of the Settle-BEAM algorithm
and the Settle-PATH algorithm, respectively). These values
were chosen experimentally, i.e., by verifying the limits that
our implementation could handle, with a good tradeoff
between effectiveness and efficiency.
Testing environment. All algorithms were implemented in
Scala (v. 2.12). Experiments were run on an i9 Intel 7900x
3.3GHz, 128GB RAM machine.

6.1 Results

Comparison against a baseline. Whilst we are not aware
of any external method, as this is (to the best of our knowl-
edge) the first attempt to exploit the receivable network to
optimize RF, we define a possible baseline for the proposed
algorithm(s) as follows. We start from a solution E∗ = E
composed of all the arcs of the input multigraph, and, as
long as E∗ violates some Problem 1’s constraints, we iter-
atively: (i) remove arcs from E∗ in non-decreasing amount
order, until Constraint (1) in Problem 1 is satisfied; (ii) ex-
tract the (1, 1)-D-core from the subgraph induced by E∗ (to
satisfy Constraint (2) in Problem 1). In Table 3 we compare
this baseline, dubbed RFB, and Settle-H. We split the Log17
dataset into 3-month periods, to have an understanding of
the performance on a quarterly basis, and speed up the
evaluation by parallelizing on different quarters. For each
quarter, parameter-configuration, and algorithm, we report:
total amount (euros) of the settled receivables, number of
settled receivables (#R), and number of distinct customers

TABLE 5: Evaluating method for avoiding temporary constraint
violation (Algorithm: Settle-H; cap <∞)

quarter scenario amount
Q1

W

7 836 382
Q2 10 821 713
Q3 11 026 866
Q4 18 073 953
Q1

N

7 836 382
Q2. 10 821 713
Q3 11 026 866
Q4 18 073 953
Q1

B

7 836 382
Q2. 10 821 713
Q3 11 026 866
Q4 18 073 953

involved in a daily solution (#C). The main observation here
is that the baseline achieves a consistent loss (70%–100%)
against Settle-H in all quarters and scenarios: this confirms
the strength of the proposed algorithm.
Evaluating path selection. A further experiment we carried
out was on the impact of enriching a cycle-based solution by
adding paths between cycles. We picked Settle-H, which the
previous assessment proved to be our best cycle-selection-
based algorithm, and compared it to its path-selection ver-
sion Settle-PATH. Specifically, we consider the two versions
of Settle-PATH mentioned in Section 4.3: Settle-H-PATH-G,
which performs a simple greedy path selection, and, Settle-
H-PATH-S, which employs the more refined selection method
in Algorithm 1. Both variants are based on the outline in
Algorithm 2. The results of this experiment are in Table 4.

The main finding here is that our path-based algorithms
outperform the best no-path method in all configurations
(but one, where they however exhibit small losses, i.e., 1%
and 2.6%). Settle-H-PATH-G achieves an average gain over
Settle-H of, respectively, 1.5%, 21.8% and 8% in the finite-
cap worst, normal, and best scenarios, and 7.3%, 9.3%,
and 13% in the infinite-cap worst, normal, and best cases.
The average gain of Settle-H-PATH-S over Settle-H is, re-
spectively, 1.2%, 14.2%, and 9.2% in the finite-cap worst,
normal, and best scenarios, and 9.2%, 15.9%, and 8.4% in
the infinite-cap worst, normal, and best cases. This attests the
relevance of the idea of adding paths to the cycle-based solutions.

The two path-selection strategies are comparable: Settle-
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H-PATH-S wins in 12 configurations, with 5% avg gain, while
Settle-H-PATH-G wins in 8 configurations, with 7% avg gain.

As for running time, Settle-H-PATH-G is comparable to
Settle-H, and actually faster in 75% of cases. The motivation
may be that adding paths to a daily solution causes the
algorithm to work on smaller graphs in the next days. As
expected, Settle-H-PATH-S is instead consistently (about one
order of magnitude) slower than Settle-H-PATH-G and Settle-
H, due to its more sophisticated path-selection strategy.
Avoiding temporary constraint violation. We tested the
performance of Algorithm 4 for avoiding temporary con-
straint violation, employing the Settle-H algorithm and con-
sidering the finite-cap scenario. The results are reported
in Table 5. We observe that, although the settled amount
is expectedly less than its counterpart where temporary
constraint violation is not addressed, this amount remains
reasonably large, i.e., in the order of 1M/10M euros.

7 RELATED WORK

The MAX-PROFIT BALANCED SETTLEMENT problem that we
study in this work is a novel contribution of ours [3]. We
have introduced network-based receivable settlement in the
first version of our work. In the present version, we offer
further algorithmic contributions, such as improving cycle-
based solutions via proper selection of paths among identi-
fied cycles, and methods to adapt the original algorithm to
real-world scenarios where temporary constraint violations
is not permitted. To the best of our knowledge, no previous
work has ever adopted a similar, network-based formulation,
neither for receivable financing, nor for other applications.

There are some problems falling into the same broad
application domain, while still being clearly different from
ours. The main goal of these problems is to predict – based
on historical data – whether a receivable will be paid, the
date of the payment, and late-payment amounts. In this
regard, Zeng et al. [14] devise (supervised) machine-learning
models for invoice-payment outcomes, enabling customized
actions tailored for invoices or customers. Kim et al. [12]
focus on debt collection via call centers, proposing machine-
learning models for late-payment prediction and customer-
scoring rules to assess the payment likelihood and the
amount of late payments. Tater et al. [13] propose ensemble
methods to predict the status of an invoice being affected
by other invoices that are simultaneously being processed.
Cheon and Shi [5] devise a customer-attribute-based neural-
network architecture for predicting the customers who will
pay their (outstanding) invoices with high probability. Ap-
pel et al. [1] present a prototype developed for a multina-
tional bank, aimed to support invoice-payment prediction.

It is apparent that all those works do not share any
similarity with our network-based formulation of receivable
financing: our goal is to select a receivables according to a
(novel) combinatorial-optimization problem that enables money
circulation among customers, while the above works predict
future outcomes on the payment of receivables. Such predic-
tion problems cannot even be somehow auxiliary for our
setting. In fact, as discussed in Section 2, our network-based
receivable-financing service does not allow non-payments by
design. Thus, in our context, asking whether payments will
be accomplished or not is a meaningless question.

8 CONCLUSION

We have presented network-based receivable financing. We
extend [3], where we described a novel optimization prob-
lem on a multigraph of receivables, an exact algorithm, and
more efficient, cycle-selection-based algorithms. Here, we
present further algorithms, and adaptations to real-world
scenarios where temporary constraint violations are not
allowed. Experiments on real data attest the performance
of our algorithms. In the future we plan to consider dynamic
aspects, and other applications, e.g., receivable trading.
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