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We study a novel clustering problem in which the pairwise relations between objects are categorical. This
problem can be viewed as clustering the vertices of a graph whose edges are of different types (colors). We
introduce an objective function that ensures the edges within each cluster have, as much as possible, the
same color. We show that the problem is NP-hard and propose a randomized algorithm with approximation
guarantee proportional to the maximum degree of the input graph. The algorithm iteratively picks a random
edge as a pivot, builds a cluster around it, and removes the cluster from the graph. Although being fast,
easy-to-implement, and parameter-free, this algorithm tends to produce a relatively large number of clusters.
To overcome this issue we introduce a variant algorithm, which modifies how the pivot is chosen and how
the cluster is built around the pivot. Finally, to address the case where a fixed number of output clusters is
required, we devise a third algorithm that directly optimizes the objective function based on the alternating-
minimization paradigm.

We also extend our objective function to handle cases where object’s relations are described by multiple
labels. We modify our randomized approximation algorithm to optimize such an extended objective function
and show that its approximation guarantee remains proportional to the maximum degree of the graph

We test our algorithms on synthetic and real data from the domains of social media, protein-interaction
networks, and bibliometrics. Results reveal that our algorithms outperform a baseline algorithm both in the
task of reconstructing a ground-truth clustering and in terms of objective-function value.

1. INTRODUCTION

Clustering is one of the most fundamental and well-studied problems in data mining. The
goal of clustering is to partition a set of objects in different clusters, so that objects in
the same cluster are more similar to each other than to objects in other clusters. A com-
mon trait underlying most clustering paradigms is the existence of a real-valued proximity
function f(,-) representing the similarity/distance between pairs of objects. The proximity
function is either provided explicitly as input, or it can be computed implicitly from the
representation of the objects.

In this paper we consider a clustering setting where the relation among objects is rep-
resented by a relation type, that is a label from a finite set of possible labels L, while a
special label Iy ¢ L is used to denote that the objects have no relation. In other words,
we consider the case where the range of the proximity function f(-,-) is categorical, instead
of numerical. This setting has a natural graph interpretation: the input can be viewed as
an edge-labeled graph G = (V,E, L,ly, ), where the set of vertices V' corresponds to the
objects to be clustered, the set of edges E' comprises all unordered pairs within V' having
some relation (i.e., whose relation is represented by a label other than the Iy label), and
the function ¢ assigns to each edge in E a label from L. We find it intuitive to think of the
edge label as the “color” of that edge, we thus use the terms label and color (as well as the
terms edge-labeled graph and chromatic graph) interchangeably throughout the paper.
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Fig. 1: An example of chromatic clustering: (a) input graph, (b) the optimal solution for
CHROMATIC-CORRELATION-CLUSTERING (Problem .

The key objective in our framework is to find a partition of the vertices of the graph
such that the edges in each cluster have, as much as possible, the same color (label). An
example is shown in Figure [1} Intuitively, a red edge (z,y) provides positive evidence that
the vertices x and y should be clustered in such a way that the edges in the subgraph induced
by that cluster are mostly red. Furthermore, in the case that most edges of a cluster are
red, it is reasonable to label the whole cluster with the red color. Note that a clustering
algorithm for this problem should also deal with inconsistent evidence, as a red edge (z,y)
provides evidence for the vertex = to participate in a cluster with red edges, while a green
edge (z, z) provides contradicting evidence for the vertex x to participate in a cluster with
red edges. Aggregating such inconsistent information is resolved by optimizing a proper
objective function.

Applications. The study of edge-labeled graphs is motivated by many real-world applica-
tions and is receiving increasing attention in the data-mining literature [Fan et al. 2011} |Jin
et al. 2010; Xu et al. 2011]. As an example, social networks are commonly represented as
graphs, where the vertices represent individuals and the edges model relationships among
these individuals. Again, these relationships can be of various types, e.g., colleagues, neigh-
bors, schoolmates, football-mates.

As a further example, biologists study protein-protein interaction networks, where vertices
represent proteins and edges represent interactions occurring when two or more proteins
bind together to carry out their biological function. Those interactions can be of different
types, e.g., physical association, direct interaction, co-localization, etc. In these networks,
for instance, a cluster containing mainly edges labeled as co-localization, might represent
a protein complex, i.e., a group of proteins that interact with each other at the same time
and place, forming a single multi-molecular machine [Lin et al. 2007].

In bibliographic data, co-authorship networks represent collaborations among authors:
in this case the topic of the collaboration can be viewed as an edge label, and a cluster
represents a topic-coherent community of researchers.

In our experiments in Section [5| we show how our framework applies to all the above
domains.

Contributions. In this paper we study the problem of clustering objects with categorical
similarity. The problem was originally introduced in |[Bonchi et al. 2012]. Here we present
an extended version of that work. Our contributions can be summarized as follows.

e We define CHROMATIC-CORRELATION-CLUSTERING, a novel clustering problem for ob-
jects with categorical similarity, by revisiting the well-studied correlation-clustering
framework [Bansal et al. 2004]. We show that our problem is a generalization of the
traditional CORRELATION-CLUSTERING problem, implying that it is NP-hard.

e We extend our problem to address the case where relations between objects are described
by a set of labels, rather than a single label only; this case naturally arises in variety of
scenarios. In this respect, we define a generalized version of our problem, which we call
MULTI-CHROMATIC-CORRELATION-CLUSTERING.

e We introduce a randomized algorithm, named Chromatic Balls, that provides an approx-
imation guarantee proportional to the maximum degree of the graph.

e Though of theoretical interest, Chromatic Balls has some limitations when it comes to
practice. Trying to overcome these limitations, we introduce two alternative algorithms:
a more practical lazy version of Chromatic Balls, and an algorithm that directly opti-
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mizes the proposed objective function via an iterative process based on the alternating-
minimization paradigm.

e We introduce Multi-Chromatic Balls, a modified version of our Chromatic Balls approx-
imation algorithm to handle MULTI-CHROMATIC-CORRELATION-CLUSTERING problem.
We show that Multi-Chromatic Balls still achieves an approximation guarantee: event
though the approximation factor increases by a factor equal to size of the input label
set, it still remains remains proportional to the maximum degree in the graph.

o We empirically evaluate our algorithms both on synthetic and real datasets. Experiments
on synthetic data show that all our algorithms outperform a baseline algorithm in the
task of reconstructing a ground-truth clustering. Experiments on real-world data confirm
high accuracy in terms of objective-function values.

Roadmap. The rest of the paper is organized as follows. In the next section we recall the
traditional correlation clustering problem and introduce our new formulations, for both the
single-label case and multiple-label case. In Section [3| we describe our proposed algorithms
for the single-label version of the problem: the Chromatic Balls algorithm and its approxi-
mation guarantee, along with two more practical algorithms, namely Lazy Chromatic Balls
and Alternating Minimization. In Section [4] we introduce our Multi-Chromatic Balls for the
multiple-label formulation. In Section [5] we report our experimental analysis. In Section [f]
we discuss related work, while Section [7] concludes the paper.

2. PROBLEM DEFINITION

Background: correlation clustering. Generally speaking, a clustering problem asks us
to partition a set of objects into groups (clusters) of similar objects. Let V be a set of objects
and let V5 denote the set of all unordered pairs of objects in V, i.e., Vo = {S C V| |S] = 2}.
Let also sim : V5 — R be a real-valued pairwise similarity function defined over the objects
in V; typically the range of sim is [0, 1]. Assuming that cluster identifiers are represented by
natural numbers, a clustering C can be viewed as a function C : V' — N. Typically, the goal
is to find a clustering C that optimizes an objective function that measures the quality of the
clustering based on the function sim(:,-). Numerous formulations and objective functions
have been defined in the literature. One of these, considered in both the area of theoretical
computer science and data mining, is the foundation of the CORRELATION-CLUSTERING
problem [Bansal et al. 2004].

PROBLEM 1 (CORRELATION-CLUSTERING). Given a set of objects V' and a pairwise sim-
ilarity function sim : Vo — [0,1], find a clustering C : V- — N that minimizes the cost

cost(V, sim,C) = Z (1—sim(x,y)) + Z sim(z,y). O (1)
(z,y)eVa, (z,y)eVa,
C(z)=C(y) C(z)#C(y)

The intuition underlying the above problem is that the cost of placing two objects x
and y in the same cluster should be equal to the dissimilarity 1 — sim(z,y), while the cost
of having the objects in different clusters should correspond to their similarity sim(z,y).
A common scenario is when the similarity is binary, that is sim : V5 — {0, 1}. In this case
Equation reduces to counting the (unordered) pairs of objects that have similarity 0 and
are put in the same cluster plus the number of pairs of objects that have similarity 1 and
belong to different clusters.

The CORRELATION-CLUSTERING problem, both the general and the binary version, can al-
ternatively be formulated from a graph perspective. Considering for example binary CORRE-
LATION-CLUSTERING, the input to the problem can be represented as a graph where the
set of vertices corresponds to the set of objects to be clustered, while two objects are con-
nected by an edge if and only if they have similarity 1. Then, the objective function simply
counts the number of edges that are cut plus the number of absent edges (i.e., unconnected
unordered pairs of objects) that are not cut.

We show next how to extend the CORRELATION-CLUSTERING formulation to the case
where the relations between objects are categorical. We first consider single-label relations
(Section ; then, we focus on the more general case where relations are described by
multiple labels (Section [2.2]).
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2.1. Chromatic correlation clustering

The formulation of our clustering problem where objects have categorical relations resembles
the CORRELATION-CLUSTERING formulation with binary similarities. Particularly, adopting
a graph-based terminology, the input to our problem is an edge-labeled graph G, whose
edges have a color (label) taken from a set L. We also assume that every absent edge in
G is implicitly labeled with a special label Iy ¢ L. The objective is to derive a partition of
the vertices V in G (i.e., a clustering C : V' — N) such that the relations among vertices
in the same cluster are as much color-homogeneous as possible, while minimizing, at the
same time, the number of edges across different clusters. We also want to characterize each
output cluster with the label that best represents the edges therein; thus, our output also
comprises a cluster labeling function ¢/ : C[V] — L (where C[V] denotes the codomain of C)
that assigns a label from L to each cluster. The formal definition of our problem, which we
call CHROMATIC-CORRELATION-CLUSTERING, is reported next.

PROBLEM 2 (CHROMATIC-CORRELATION-CLUSTERING). Let G = (V,E,L,ly,f) be an
edge-labeled graph, where V is a set of vertices, E C V5 is a set of edges, L is a set of labels,
lo ¢ L is a special label, and £ : Vo — LU {lp} is a labeling function that assigns a label
to each unordered pair of vertices in V' such that {(x,y) = ly if and only if (x,y) ¢ E. We
want to find a clustering C : V — N and a cluster labeling function ¢l : C[V] — L so as to
manimize the cost

cost(G,Crel) = > (1=1[l(z,y) =clC@))+ > (1—1[(z,y)=1h), (2)
(z,y)€Va, (z,y)EVa,
C(z)=C(y) C(z)#C(y)

where 1[-] denotes the indicator function. O

Equation is composed of two terms, representing intra- and inter-cluster costs, re-
spectively. In particular, the intra-cluster-cost term aims to measure the homogeneity of
the labels on the intra-cluster edges: a pair of vertices (x,y) assigned to the same cluster
pays a cost if and only if their relation type ¢(z, y) is different from the predominant relation
type of the cluster as indicated by the function ¢f. On the other hand, as far as the inter-
cluster cost, the objective function penalizes two vertices x and y unless they are adjacent
(i.e., unless ¢(z,y) # lo); instead, if x and y are adjacent, the objective function incurs a
cost, regardless of the label ¢(z,y) on the shared edge.

Example 2.1. Consider the problem instance in Figure (a), along with the solution in
Figure (b), where the two clusters depicted are labeled with the green and blue label,
respectively. The intra-cluster cost of the solution is equal to the number of intra-cluster
edges that have a label different from the one assigned to the corresponding cluster. As both
the clusters are mono-chromatic cliques, the resulting overall intra-cluster cost is zero. The
overall cost of the solution is thus equal to the inter-cluster cost only, which corresponds to
the number of edges between vertices in different clusters and is therefore equal to 5. 0O

It is easy to observe that, when |L| = 1, the CHROMATIC-CORRELATION-CLUSTERING
problem corresponds to the binary version of CORRELATION-CLUSTERING. Thus, our prob-
lem is a generalization of the standard problem. Since CORRELATION-CLUSTERING is NP-
hard [Bansal et al. 2004], we can easily conclude that CHROMATIC-CORRELATION-CLUSTER-
ING is NP-hard as well.

The previous observation motivates us to consider whether applying standard CORRE-
LATION-CLUSTERING algorithms, just ignoring the different colors, would be a good solution
to the problem. As we show in the following example, such an approach is not guaranteed
to produce a good solution.

Ezxample 2.2. For the problem instance in Figure (a), the optimal solution of the stan-
dard CORRELATION-CLUSTERING problem that does not discriminate among colors, would
be composed of a single cluster containing all the six vertices, as, according to Equation ,
this solution has a (minimum) cost of 4 corresponding to the number of missing edges within
the cluster. Conversely, this solution has a non-optimal cost 12 when evaluated in terms of
the CHROMATIC-CORRELATION-CLUSTERING objective function, i.e., according to Equation
(@. Instead, the optimum in this case corresponds to the cost-5 solution depicted in Fig-

ure[](b). O
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2.2. Multi-chromatic correlation clustering

We now shift the attention to the case where object relations can be expressed by more
than one label, i.e., the input to our problem is an edge-labeled graph whose edges may
have multiple labels. To deal with this more general version of the problem, we extend the
formulation in Problem [2| by (i) measuring the intra-cluster label homogeneity by means
of a distance function d; between sets of labels, and (i¢) allowing the output cluster label
function ¢l to assign a set of labels to each cluster (instead of a single label). The formal
definition of our problem is as followsﬂ

PROBLEM 3 (MULTI-CHROMATIC-CORRELATION-CLUSTERING). Let G = (V, E, L,l,¥)
be an edge-labeled graph, where V is a set of vertices, E C V5 is a set of edges, L is a set
of labels, ly ¢ L is a special label, and ¢ : Vo — 28 U {ly} is a labeling function that assigns
a set of labels to each unordered pair of vertices in 'V such that £(x,y) = ly if and only if
(z,y) & E. Let also dg : 2F U {lg} x 2L U {lp} — RT be a distance function between sets of
labels. We want to find a clustering C : V. — N and a cluster labeling function cl : C[V] — 2F
so as to minimize the cost

cost(G,Cocl) = Y de(Um,y),cl(C@) + Y de(b(z,y){lo}). O (3)
(z,y)€Va, (z,y)€Va,
C(z)=C(y) C(z)#C(y)

It is easy to see that MULTI-CHROMATIC-CORRELATION-CLUSTERING is a generalization of
CHROMATIC-CORRELATION-CLUSTERING. In particular, MULTI-CHROMATIC-CORRELATION-
CLUSTERING reduces to CHROMATIC-CORRELATION-CLUSTERING when all edges in the input
graph are single-labeled and the distance dy is defined as

0, ifl; =1
de({l}, {l2}) = { 1, othlerwi:e.

A key point of differentiation between the multiple-label and single-label formulations
is that the former employs a distance function d; to measure how much label sets differ
from each other. Among the various possible choices of dy, in this work we use the popular
Hamming distance, as a good tradeoff between simplicity and effectiveness. The Hamming
distance between two sets of labels Ly C L, Ly C L is defined as the number of disagreements
between Li and Lo:

de(L1, La) = [L1 \ La| + L2 \ L.

In our context, thus, the distance dy lies within the range [0..|L| + 1]. Also, this choice of
distance makes the cost paid by an inter-cluster edge in Equation equal to the number
of labels present on that edge (plus 1), i.e., d¢(4(x,y), {lo}) = [4(x,y)|+ 1, ¥(x,y) € E. This
is desirable, as we recall that in the ideal output clustering every pair of vertices in different
clusters should have a relation represented by the [y label, which models the “no-edge”
case. Thus, the cost of an inter-cluster edge should be a function of the size of the label
set present on that edge: the larger the number of labels, the further that relation from the
absent-edge case.

3. ALGORITHMS FOR CHROMATIC-CORRELATION-CLUSTERING
3.1. The Chromatic Balls algorithm

We present next a randomized approximation algorithm for the CHROMATIC-CORRELATION-
CLUSTERING problem. This algorithm, called Chromatic Balls, is motivated by the Balls
algorithm [Ailon et al. 2008|, which is an approximation algorithm for standard CORRE-
LATION-CLUSTERING.

For completeness, we briefly review the Balls algorithm. The algorithm takes as input an
undirected graph and processes it in iterations. In each iteration, the algorithm produces a
cluster, and the vertices participating in the cluster along with the edges incident to such
vertices are removed from the graph. In particular, the algorithm picks as a pivot a vertex
uniformly at random, and forms a cluster consisting of the pivot itself along with all vertices
that are still in the graph and are adjacent to the pivot.

The outline of our Chromatic Balls is reported as Algorithm [I} The main difference with
the Balls algorithm is that the edge labels are taken into account in order to build label-
homogeneous clusters around the pivots. To this end, the pivot chosen at each iteration

1For the sake of presentation, in Problemand in the remainder of the paper, we assume that the powerset
2L does not include the empty set, i.e., 20 = {S C L | |S| > 1}.
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Algorithm 1 Chromatic Balls

Input: Edge-labeled graph G = (V, E, L,ly, ), where £ : Vo — LU {lp}
Output: Clustering C : V — N; cluster labeling function ¢ : C[V] — L
141
while F # () do
pick an edge (x,y) € E uniformly at random
C+{z,ytU{zeV|Llx,2z)=L(y,z) =Llz,y)}
C(x) + i, for all x € C
(i) = £z, y)
remove C from G: V+ V\C, E+ E\{(z,y) e E|zeC}
1—1+1
end while
for all z € V do
C(x) + i
cl(i) + a label from L
1+ 1+1
end for

of Chromatic Balls is an edge (x,y), rather than a single vertex. The pivot edge is used to
build a cluster around it: beyond the vertices x and y, the cluster C being formed contains
all other vertices z still in the graph for which the triangle (z,vy, z) is monochromatic, that
is, £(z,y) = £(y, z) = (x,y). Since the label ¢(z,y) forms the basis for creating the cluster
C, the cluster inherits this label. All vertices in C' along with all their incident edges are
removed from the graph, and the main cycle of the algorithm terminates when there are no
edges anymore. Eventually, all remaining vertices (if any) are made singleton clusters.

Running time. We now focus on the time complexity of the Chromatic Balls algorithm.
To this end, we denote by n and m the number of vertices and edges in the input graph,
respectively.

The overall time complexity is determined by two main steps, i.e., (i) picking the pivot
edges, and (i7) building the clusters around the pivots. To choose pivots uniformly at random
in an efficient way, one can shuffle the whole edge set once, at the beginning of the algorithm,
by employing a linear-time algorithm for generating a random permutation of a finite set
of objects (e.g., the well-known Knuth-shuffle algorithm). Then, it suffices to follow the
ordering determined by the shuffling algorithm and pick the first edge that is still in the
graph. This way, each edge is accessed once, whether it is selected as pivot or not, and the
phase of choosing pivots overall takes O(m) time.

Building a cluster C, instead, requires to access all neighbors of the pivot edge (x,y). As
the current cluster is removed from the graph at the end of each iteration, the neighbors
of a pivot are not considered again in the remainder of the algorithm. Thus, each edge in
the graph is overall visited O(1) times, and the entire phase of building all the clusters
takes O(m) time, which corresponds to the overall time complexity of the Chromatic Balls
algorithm.

Theoretical analysis. We now analyze the quality of the solutions output by Chromatic
Balls. Our main result, given in Theorem [3.3] shows that the approximation guarantee of
the algorithm depends on the number of bad triplets incident on a pair of vertices in the
input graph. The notion of bad triplet is defined below; however, we anticipate here that
this corresponds to a constant-factor approximation guarantee for bounded-degree graphs.

We define a subset of three vertices {z,y, 2z} to be a bad triplet (B-triplet) if the induced
triangle has at least two edges and is non-monochromatic, i.e., |{(z, y), (z, 2), (y, 2) }NE| > 2
and |[{l(x,y),4(x,2),£(y,2)} > 1. We denote by T the set of all B-triplets for an instance
of our problem. Moreover, given a pair (z,y) € Va2, we let T, C T denote the set of
all B-triplets in 7 that contain both x and y, ie., T,y = {t € T | € t,y € t}, while
Trnae = MaxX(g y)ev;, |Toy| denotes the maximum number of B-triplets that contain a pair of
vertices.

We consider an instance G = (V, E, L, 1y, ¢) of Problem [2| and the output (C,cf) of our
Chromatic Balls algorithm on G, where, we recall, C is the output clustering while ¢/ is the
cluster labeling function. We rewrite the cost function in Equation as the sum of the
costs paid by a single pair (z,y) € V. To this end, in order to simplify the notation, we
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hereinafter write the cost by omitting C and ¢f while keeping G only:

cost(G) = Z costyy (G), (4)

(z,y)€V2

where cost,, (G) denotes the aforementioned contribution of the pair (z,y) to the total cost.
A first result we exploit in our analysis is the following: a pair of vertices (x,y) pays a

non-zero cost in a solution output by Chromatic Balls only if such a pair belongs to at least

one B-triplet of the input graph. This result is formally stated in the following lemma.

LEMMA 3.1. If costyy(G) > 0, then T,y # 0.

PROOF. According to the cost function defined in Equation , costzy (G) > 0 if and
only if either 1) z and y are adjacent and the edge (x,y) is split (i.e.,  and y are put in
different clusters), or 2) = and y are placed in the same cluster C' while ¢(x,y) is not equal
to the label of C. We analyze each case next.

1) According to the outline of Chromatic Balls, (x,y) is split when, at some iteration i, it
happens that z is put into cluster C, while y does not or vice versa. Assuming that
the vertex chosen to belong to C' is « (an analogous reasoning holds considering y as
belonging to C), we have two subcases:

(a) An edge (z, z) is chosen as pivot, with z # y. The fact that the edge (z,y) is split
implies one of the following: either ¢(xz,y) # £(x, 2) or £(y, z) # £(x, z); each of the
cases further implies that the triangle {z,y, z} is a B-triplet.

(b) The edge chosen as pivot is (z,w), with {z,w}N{z,y} = 0. In this case, to have (i)
(z,y) split and (i4) = put in the cluster being formed while y does not, it must be
verified that either £(z,y) # £(z,w) or £(w,y) # £(z,w). Each of these cases implies
that there exists a B-triplet containing = and y (i.e., either {z,y, 2z} or {z,y, w}).

2) In this case, as both  and y are chosen as being part of the current cluster C, it must
hold that the pivot chosen is (z,w), with {z,w} N {z,y} = 0, and both {z, z,w} and
{z,y,w} are mono-chromatic triangles. This fact, along with the hypothesis ¢(x,y) #
£(z,w), implies that both {z,y, z} and {z,y, w} are B-triplets.

The above reasoning shows that all situations where the pair (x,y) pays a non-zero cost
imply the existence of at least one B-triplet that contains z and y. The lemma follows. 0O

A direct implication of Lemma [3.1] is that one can express the cost of the solution of our
Chromatic Balls algorithm in terms of B-triplets only. Indeed, the lemma guarantees that
vertex pairs that are not contained in a B-triplet pay no cost; thus, all non-B-triplets can
safely be discarded. For every t € T, let oy denote the cost paid by t in a Chromatic Balls
solution. Note that «; can be less than 3, because not all the three vertex pairs of t are
charged against t, as a vertex pair may participate in more than one B-triplet of the input
graph, but its contribution to the overall cost is at most one. As a consequence, the cost(G)
can be expressed as:

cost(G) = Z Q.
teT

Let us now focus on the cost of an optimal solution for our problem instance G. Let
cost*(G) denote such an optimal (i.e., minimum) cost. As shown in the next lemma, we can
lower bound cost*(G) by using o.

LEMMA 3.2. The cost of the optimal solution on graph G has the following bound

1
t*(G) >
cost™(G) > 3T

Q.
teT

PrOOF. We start by observing that a B-triplet incurs a non-zero cost in every solution,
and thus in the optimal solution as well. Here by “a non-zero cost incurred by a B-triplet”
we mean a non-zero cost paid by at least one of the vertex pairs in that B-triplet. Then, a
lower bound on the cost of the optimal solution cost*(G) can be obtained by counting the
number of disjoint B-triplets in the input. This lower bound can alternatively be expressed
by considering the whole set of (not necessarily edge-disjoint) B-triplets in the input by
restating the following result by Ailon et al. [Ailon et al. 2008]: denoting by {f; | t € T}
any assignment of nonnegative weights to the B-triplets in T satisfying EteTx ) Br <1 for

all (x,y) € Vo, it holds that cost™(G) > >, 7 Bt-
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Now, we note that, as a; < 3, then, for every vertex pair (z,y) it holds that Zteny oy <
3| Tay| < 3T0maq; and thus Zteny spt— < 1, for all (x,y) € Vo. This implies that setting

max

Bt = 37— suffices to satisfy the condition Zte?’my Bt <1 for all (z,y) € V3, and thus the

result by Ailon et al. applies:

cost* (@) > Zﬁt = 3T1 Zat.

teT mat e

a

The final approximation factor of the Chromatic Balls algorithm can now be easily derived
by combining Lemma [3.1] and Lemma Such a result is formally stated in the following
theorem.

THEOREM 3.3. The approximation ratio of the Chromatic Balls algorithm on input G is
cost(QG)
———= < 3Thmae-
cost*(G) — “r
Proor. Immediate from Lemma [3.1] and Lemma 3.2
cost(G) _ Yier o
cost*(G) T =3

max

= 3Tmaz-

a

Theorem shows that the approximation factor of the Chromatic Balls algorithm is
bounded by the maximum number T,,, of B-triplets that contain a specific pair of vertices.
The result quantifies the quality of the performance of the algorithm as a property of
the input graph. For example, as the following corollary shows, the algorithm provides a
constant-factor approximation for bounded-degree graphs.

COROLLARY 3.4. The approximation ratio of the Chromatic Balls algorithm on input G
18

cost(G)
i Sl A _
cost*(G) — 6 (Dmaz — 1),

where Dpgr = maxgey |{(x,y) | (z,y) € E}| is the mazimum degree of a vertex in G.

PROOF. By definition, at least two vertex pairs within any B-triplet must be connected
by an edge. Thus, the number of B-triplets containing a pair (z,y) is upper bounded by the
number of neighbors of x plus the neighbors of y minus 2, which is clearly < 2 Dy,q, — 2.
This leads t0 3Thmaz < 6(Dpmasz — 1), which proves the corollary. DO

3.2. Enhancing the Chromatic Balls algorithm

In this section we present two additional algorithms for the CHROMATIC-CORRELATION-
CLUSTERING problem. The first one is a variant of the Chromatic Balls algorithm that em-
ploys two heuristics in order to overcome some weaknesses of Chromatic Balls. The second
one is an alternating-minimization method that is designed to directly optimize the objec-
tive function so as to reach a local optimum.

3.2.1. Lazy Chromatic Balls.
The algorithm we present next is motivated by the following example, in which we discuss
what may go wrong during the execution of the Chromatic Balls algorithm.

Ezample 3.5. Consider the graph in Figure[J: it has a fairly evident green cluster com-
posed of all vertices in the graph but S and T (i.e, vertices {U,V,RX,Y,W,Z}).

However, as all the edges have the same probability of being selected as pivots, Chromatic
Balls might miss this green cluster, depending on which edge is selected first. For instance,
suppose that the first pivot chosen is (Y,S). Chromatic Balls forms the red cluster {Y,S, T}
and removes it from the graph. Removing vertex Y makes the edge (X,Y) missing, which
would have been a good pivot to build a green cluster. At this point, even if the second
selected pivot edge is a green one, say (X,Z), Chromatic Balls would form only a small
green cluster {X,W,Z}. 0O

Motivated by the previous example we introduce the Lazy Chromatic Balls heuristic, which
tries to minimize the risk of bad choices. Given a vertex 2 € V, and a label [ € L, let §(z,1)
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Fig. 2: An example of an edge-labeled graph.

Algorithm 2 Lazy Chromatic Balls

Input: Edge-labeled graph G = (V, E, L, g, ¢), where £ : Vo — LU {lp};
Output: Clustering C : V — N; cluster labeling function ¢/ : C[V] — L
1: 1+ 1
2: while E # () do
3:  pick a random vertex x € V with probability proportional to A(z)
4:  pick a random vertex y € {z € V | (z,2z) € E} with probability proportional to
6(y, A(z))
5. C+{z,ytU{zeV |Ll(z,2) =Ly, z)=4Lx,y)}
6: repeat
7: C'+—{zeV|FweCNLlz,z)=lw,z)=Llx,w)}
8: }
9

C"+—{zeV |FweCALly,z)=Llw,z)=Ly,w)
: C+cucuc”
10 untilC'’uUC” =10
11:  C(x) <+, forallz e C
12: (i) = l(u,v)
13:  remove C from G: V+ V\C, E+ E\{(z,y) € E|z € C}
14: i1 +1
15: end while
16: for all z € V do
17: C(x) <14
18:  cl(i) + alabel from L
19:  i4i+1
20: end for

denote the number of edges incident on x having label I. Also, let A(z) = max;ey, 6(z, 1),
and A\(z) = argmax;c; 6(z,l). Lazy Chromatic Balls differs from Chromatic Balls for two
reasons:

Pivot random selection. At each iteration Lazy Chromatic Balls selects a pivot edge in two
steps. First, a vertex z is picked up with probability directly proportional to A(z). Then,
a second vertex y is selected among the neighbors of x with probability proportional to
5y, Az)).

Ball formation. Given the pivot (z,y), Chromatic Balls forms a cluster by adding all vertices
z such that (z,y, z) is a monochromatic triangle. Lazy Chromatic Balls instead, iteratively
adds vertices z in the cluster as long as they form a triangle (X,Y, z) of color ¢(x,y), where
X is either x or y, and Y can be any other vertex already belonging to the current cluster.

We remark that the heuristics at the basis of Lazy Chromatic Balls require no input
parameters: the probabilities of picking a pivot are indeed defined based on A(-) and 4(, -),
which are properties of the input graph. The algorithm is therefore parameter-free like
Chromatic Balls. The details of Lazy Chromatic Balls are reported as Algorithm [2| while in
the following example we further explain how the Lazy Chromatic Balls actually works.

Ezample 3.6. Consider again Figure[d Vertices X and Y have the mazimum number of
edges of one color: they both have 5 green edges. Hence, one of them is chosen as the first
pivot vertex x by Lazy Chromatic Balls with higher probability than the remaining vertices.
Suppose that X is picked up, i.e., x = X. Given this choice, the second pivot y is chosen
among the neighbors of X with probability proportional to §(y, \(x)), i.e., the higher the
number of green edges of the neighbor, the higher the probability for it to be chosen. In
this case, hence, Lazy Chromatic Balls would likely choose Y as a second pivot vertex y, thus
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Algorithm 3 Alternating Minimization

Input: Edge-labeled graph G = (V, E, L,ly,{), where £ : Vo — LU {lp}; number K of
output clusters
Output: Clustering C : V — N; cluster labeling function ¢/ : C[V] — L
1: initialize C and ¢f at random, such that C[V] = {1,..., K}

2: let z1,...,xz, be the vertices in V ordered in some way

3: repeat

4: forall ke {l,...,K} do

5: cl(k) + the majority label among the intra-cluster edges of cluster &
6: end for

7. fori=1,...,ndo

8: if cluster C(z;) is not a singleton then

9: k* « argmingcpy g e (Equation )

10: Clx;) < k*

11: end if

12:  end for
13: until convergence

making (X,Y) the selected pivot edge. Afterwards, Lazy Chromatic Balls adds to the newly
formed cluster the vertices {U,V,Z} because each of them forms a green triangle with the
pivot edge. Then, R enters the cluster too, because it forms a green triangle with Y and V,
which is already in the cluster. Similarly, W enters the cluster thanks to Z. O

Running time. Picking the first pivot  can be implemented with a priority queue with
priorities A X rnd, where rnd is a random number. This requires computing A for all
vertices, which takes O(nh + m) time (where h = |L|). Putting all vertices in the queue
takes instead O(nlogn) time.

The time complexity of the various steps of the main cycle (over all the iterations of the
cycle) is as follows. Given x, the second pivot y is selected by probing all neighbors of
still in the graph (this is needed to pick up a neighbor of x with probability proportional to
d(y, A(x)). This takes O(m) time, as for each pivot z, its neighbors are accessed only once
throughout the whole execution. Building the various clusters takes O(m) time as well, as
it requires a traversal of the graph where each edge is accessed O(1) times. Finally, once
a cluster C has been built, the priority with which the neighbors of each vertex in C are
stored in the priority queue needs to be updated. This in turns requires updating (i) A for
all of such vertices, which can be done in O(mh) time, and (z4) the priority queue based on
the new A values computed, which takes O(mlogn) time.

In conclusion, therefore, the overall time complexity of the Lazy Chromatic Balls algorithm
is O((h +logn) m).

3.2.2. An alternating-minimization approach.

A nice feature of the previous algorithms is that they are parameter-free: they produce
clusterings by using information that is local to the pivot edges, without forcing the num-
ber of output clusters in any way. However, in some cases, it would be desirable to have
a pre-specified number K of clusters. To this end, we present here an algorithm based on
the alternating-minimization paradigm [Csiszar and Tusnady 1984, that takes as input
the number K of output clusters and attempts to minimize Equation directly. The
pseudocode of the proposed algorithm, called Alternating Minimization, is reported as Algo-
rithm Bl

In a nutshell, Alternating Minimization starts with a random assignment of both vertices
and labels to clusters (Line 1) and works by iteratively alternating between two optimization
steps until convergence, i.e., until no changes, neither in C nor in ¢, have been observed with
respect to the previous iteration (Lines 3-13). In the first step, the algorithm finds the best
label for every cluster given the current assignment of vertices to clusters (Lines 4-6). It is
easy to see that an optimal solution of this step corresponds to simply assign to each cluster
the label present on the majority of the edges connecting two vertices in that cluster (with
ties broken arbitrarily). In the second step, the algorithm finds the best cluster assignment
for every « € V given the assignments of every other y € V' and the current cluster labels
(Lines 7-12). Particularly, while updating the cluster labels in the first step does not depend
on the order with which the various clusters are processed, for this second step we need
to establish an ordering among the vertices in V' and update cluster assignments following
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Algorithm 4 Multi-Chromatic Balls

Input: Edge-labeled graph G = (V, E, L, ly, ), where £ : Vo — 2X U {lp}
Output: Clustering C : V — N; cluster labeling function ¢/ : C[V] — 2T
141
while F # () do
pick an edge (z,y) € E uniformly at random
C«{z,ytU{z € V| de(l(z,y),l(z,2)) = de({(z,y),L(y, 2)) = 0}
C(x) + i, forallz € C
(i) = (z,y)
V<« V\C, E<~ E\{(z,y) € E|x € C} (remove C from G)
t—1+1
end while
for all z € V do
C(x) + i
cl(i) + a label set from 2%
1 1+1
end for

that ordering. Given a vertex x;, the best cluster k* for x; is the cluster resulting in the
minimum clustering cost (computed according to Equation ) when vertex z; is assigned
to it. Looking at Equation , it is easy to see that the cost paid by a single vertex x; when
assigned to a cluster k is equal to the sum of two terms: (i) the number of vertices y # x;
within cluster k such that the label ¢(x;,y) is other than the label assigned to k, and (%)
the number of edges connecting x; with some vertex in a cluster other than k:

c=» (=1[lzi,y)=clB)])+ > (1 —1z,y) =) (5)
yeV\{z:}, yeV\{z:},
C(y)=k C(y)#k

Therefore, the best cluster for x; is the one that minimizes the above cost, that is k* =
argmingep . g cik (Line 9).

Both the steps of the Alternating Minimization algorithm are solved optimally. As a conse-
quence the value of the CHROMATIC-CORRELATION-CLUSTERING objective function is guar-
anteed to be non-increasing in every iteration of the algorithm, until convergence. Finding
the global optimum is obviously hard, but the algorithm is guaranteed to converge to a local
minimum.

Running time. The running time of Alternating Minimization is determined by the com-
plexity of the two main steps performed at each iteration of the algorithm, i.e., computing
cluster labels and assigning vertices to clusters.

Computing cluster labels requires a traversal of the graph to determine, for each label
l € L and for each cluster C, the number of intra-cluster edges in C' having label [. This
information is then exploited for computing the majority intra-cluster-edge label of each
cluster. As a result, the first step overall takes O(m + Kh) time.

To implement efficiently the second step, i.e., assigning vertices to clusters, one can build a
data structure where the cost ¢;x of vertex x; with respect to cluster k& (computed according
to Equation (5))) is accessed in constant time. It is easy to see that (re-)building such a
data structure at every iteration of the algorithm requires just a traversal of the graph, thus
taking O(m + Kn) time (the part O(Kn) is for initializing the data structure itself). This
way, computing the optimal cluster k* for all vertices takes O(Kn) time. Once the new
cluster k* of a vertex x; has been computed, the data structure storing the costs ¢;; needs
to be updated. This can be done with a constant number of operations performed on every
single neighbor of x;; as a result, the global updating of the data structure considering all
vertices x1,...,x, costs a traversal of the graph, i.e., O(m) time. Summing up all partial
costs, the overall cost of the second main step of the algorithm turns out to be O(m+ Kn).

In conclusion, as usually h = |L| < n, the time complexity of Alternating Minimization
can be expressed as O(s(Kn + m)), where s is the number of iterations to convergence.

4. ALGORITHMS FOR MULTI-CHROMATIC-CORRELATION-CLUSTERING

In this section we present an approximation algorithm for solving the MULTI-CHROMATIC-
CORRELATION-CLUSTERING problem (Problem . The proposed algorithm, called Multi-
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Chromatic Balls, roughly follows the scheme of the Chromatic Balls algorithm designed for
the single-label version of the problem.

The outline of our Multi-Chromatic Balls is reported as Algorithm[4 Like Chromatic Balls,
the main idea of the algorithm is to pick a pivot edge (z,y) uniformly at random, build a
cluster around it, and remove such a cluster from the graph. The process continues until
there is no edge remaining to be picked as a pivot. A major peculiarity of Multi-Chromatic
Balls is the presence of multiple labels on the edges of the input graph, which implies that the
distance function d, between sets of labels should now be taken into account to determine
how the cluster is built around the pivot (x,y). In particular, the cluster C defined at
every iteration of the algorithm is composed of all vertices z such that the labels on the
edges of the triangle (z,y,z) have all distance dy equal to zero, i.e., d¢(4(x,y),{(z,2)) =
de(0(z,y),L(y, z)) = 0. According to our choice of distance dy (i.e., Hamming distance), the
latter condition is equivalent to having label sets ¢(z,y), ¢(z, 2), (y, z) equal to each other,
ie., (x,y) = l(x,z) = l(y, z). Finally, note that the presence of multiple labels on edges
affects the way how the output clusters are labeled: following the common intuition, all
clusters can now have more than one label assigned.

Running time. The time-complexity analysis of the Multi-Chromatic Balls algorithm is
similar to Chromatic Balls. Choosing the pivots requires again O(m) time, while the step of
selecting the vertices to be included in the current clusters requires visiting each edge in the
graph at most once. But here, unlike Chromatic Balls, for each edge one needs to compute
the distance dy to test whether the vertex being currently considered should be included
into the current cluster. Assuming O(h) time to compute d; (which corresponds to the time,
e.g., to compute the Hamming distance we consider in this work), the total time spent in
the cluster-formation step is thus @(hm), which corresponds to the overall time complexity
of the Multi-Chromatic Balls algorithm.

Theoretical analysis. The Multi-Chromatic Balls achieves a provable approximation guar-
antee, as formally stated in the following theorem.

THEOREM 4.1. The approximation ratio of the Multi-Chromatic Balls algorithm on input
G=(V,E,L,ly,0) is

cost(QG)
r(G) = ot (@) < 3hTqz-

PROOF. The MULTI-CHROMATIC-CORRELATION-CLUSTERING problem formulation can
be reinterpreted from a single-label perspective by considering all labels in 2 as a “single”
label. The difference from the standard CHROMATIC-CORRELATION-CLUSTERING formula-
tion is that the cost paid by a single vertex pair is this way bounded by h = |L| (rather than
being < 1). Based on this observation, it is easy to see that running the Multi-Chromatic Balls
algorithm on an instance G of the MULTI-CHROMATIC-CORRELATION-CLUSTERING problem
is equivalent to running the Chromatic Balls algorithm on the same instance G reinterpreted
from a single-label perspective. This means that a vertex pair (z,y) in the Multi-Chromatic
Balls solution pays a non-zero cost only if the cost paid by the same vertex pair in the solu-
tion output by Chromatic Balls on the single-label reinterpretation of the problem instance
is greater than zero. At the same time, however, the cost of (z,y) in the Multi-Chromatic
Balls solution is bounded by h. Combining the latter two arguments implies that the ap-
proximation ratio of Multi-Chromatic Balls is guaranteed to be within a factor h of the
approximation ratio achieved by the Chromatic Balls algorithm: the approximation ratio of
Multi-Chromatic Balls is thus 3hT,,4.. O

The above theorem states that the approximation ratio of Multi-Chromatic Balls increases
the approximation ratio of Chromatic Balls by a factor A = |L|. However, this is not really
problematic as the number of labels on real-world edge-labeled graphs is typically small
and can safely be assumed to be constant. Moreover, as the following corollary shows, the
approximation ratio remains constant for bounded-degree graphs.

COROLLARY 4.2. The approximation ratio of the Multi-Chromatic Balls algorithm on
input G is

(@) < 6h (Dmas —1). O

5. EXPERIMENTAL EVALUATION

In this section we report experiments to test the validity of the proposed algorithms, i.e.,
Chromatic Balls, Lazy Chromatic Balls, Alternating Minimization, and Multi-Chromatic Balls,
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Algorithm 5 Synthetic data generator

Input: number of vertices n, number of clusters K, number of labels h, probability p of
intra-cluster edges, probability ¢ of inter-cluster edges, probability w that an edge inside
a cluster has a color different from the cluster
Output: edge labeled graph G = (V, E ,L,1p,0)
LV [Ln], E<0, L {lL,...,
2: produce a clustering C by abslgmng each vertex x € V to a cluster selected uniformly
at random
3: assign to each cluster a label selected uniformly at random from L
4: for all pairs (z,y) € Vo do
5. pick 3 random numbers r1, 72,73 € [0, 1]
6: if C(z) =C(y) then
7 if 71 < p then
8 if 7o < w then
9: E <+ EU{(z,y)}
10: ¢(x,y) < a random label from L\ {cf(C(x))}

11: else

12: E <+ EU{(z,y)}
13: Lz, y) + cL(C(x))
14: end 1f

15: end if

16:  else if r3 < ¢ then
17: E+— EU{(x,y)}

18: l(x,y) < a random label from L
19:  end if
20: end for

which, for the sake of brevity, we refer to as CB, LCB, AM, and M-CB, respectively. We
also evaluate the performance of the baseline described in the Introduction, namely the
“standard” Balls algorithm [Ailon et al. 2008|, whichproduce a clustering C ignores colors.
We refer to this baseline as B.

All algorithms are implemented in JAVA, and all experiments are performed on a single
core of a desktop machine with Intel Core cPU at 2.90GHz and 16GB rRAM. Also, as all
algorithms are randomized, all measurements reported are averaged over 50 runs.

5.1. Experiments on synthetic data

We evaluate our (single-label) algorithms on synthetic datasets generated by the process
outlined in Algorithm [5 In a nutshell, the generator initially assigns vertices and labels to
clusters uniformly at random, and then adds noise according to the probability parameters
p, ¢, and w. Given the assignment of vertices to clusters, intra-cluster edges are sampled
with probability p, and they are given the correct label (the label of the cluster they are
assigned to) with probability 1—w, while, inter-cluster edges are sampled with probability g.
Further details about the synthetic generator can be found in Appendix [A]

The initial assignment of vertices and labels to clusters serves as a ground truth underlying
the corresponding synthetic dataset. We compare the resulting clusterings with the ground-
truth clustering using the well-known F-measure external cluster—vahdlty criterion. Given a
ground-truth clustering C and a clustering solution C having K and K clusters, respectively,
F-measure is defined in terms of precision and recall as follows:

FC,0)=-Y8; F.
c,c) n 4 kkén[la)%] kKo

where F}, = (2P, R;,)/(P;;, + Ry,) such that Py, = S;.,./Sk and Ry, = S;,/S;, while
S;.ni denotes the number of common objects between cluster k of C and cluster k of C, and

S;. and S;, are the sizes of clusters k and k, respectively. It easy to see that F' € [0, 1].

We generate datasets with a fixed number of vertices (n = 1000), and we vary (i) the
noise level; (i7) the number of labels h; and (4i¢) the number of clusters K in the ground
truth. To adjust the noise level, we vary one parameter among p, ¢, and w, while keeping
fixed the other two; for the sake of brevity, we report results with varying ¢ while keeping
p and w set to 0.5.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14

0.45 ﬁ —B HCB + LCB ¥ AM & AM* 37000
0.4 32000
0.35
27000
<3 0.3 2
322000
0.25
4
0.2 17000
0.15 12000
0.02 0025 003 0035 0.04 0.045 0.02 0025 0.03 0035 0.04 0.045
q q
0.6
21000
0.5
19000
0.4
= Z 17000
5]
0.3 15000
=X T N ::5’;4:\;:3 T
0.2 13000
0 5 10 15 20 0 5 10 15 20
ILI ILI

50 100 150 200 250 300 350 50 100 150 200 250 300 350
K K

Fig. 3: Accuracy on synthetic datasets (single-label) in terms of F-measure (left) and so-
lution cost (right), by varying level of noise (1st row), number of labels (2nd row), and
number of ground-truth clusters (3rd row).

As far as the number of clusters required as input by the AM algorithm, we consider two
options: the average number of clusters output by the CB algorithm, and the number of
clusters in the ground truth. We refer to these two settings by AM and AM*, respectively.

Results. In Figure 3| we report the performance of our algorithms in terms of F-measure,
as well as solution cost (Equation (2)).

All trends observed by varying the parameters ¢, h = |L|, and K are intuitive. Indeed,
for all methods, the performance decreases as the noise level ¢ increases (Figure 1st row).
On the other hand, all methods give better solutions, in terms of cost, as the number of
ground-truth clusters K increases (Figure 3} 3rd row, right). The reason is that, since CB
and LCB tend to produce a large number of clusters, with a larger K the difference tends
to disappear.

All proposed methods generally achieve both F-measure and solution cost results evi-
dently better than the baseline. Particularly, in terms of solution cost, CB, LCB, and AM
perform very close to each other and generally better than AM*. In terms of F-measure,
instead, LCB is recognized as the best method in most cases.

In Figure |7_1|We report the number of clusters produced by B, CB, and LCB (we omit AM
and AM* from the figure, as for these methods the number of clusters is pre-specified). The
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Fig. 4: Experiments on synthetic datasets: number of clusters by varying ¢ (left) and |L|
(right).

Table I: Characteristics of real data. n: number of vertices; m: number of edges; Dgq4:
average degree; |L|: number of labels.

dataset n m Dy |L|
String 18152 401 582 44.25

Youtube 15088 19923067 2640.92 5
DBLP 312416 2110470 13.51 100
Flickr 80513 5 899 882 73.28 196

output clusters seem in general to be independent from the noise as well as the number
of labels. However, as expected, we observe that CB tends to produce a larger number of
clusters than LCB.

5.2. Experiments on real data

We experiment with four real datasets (Table . The first three datasets (i.e., String,
YouTube, and DBLP) represent edge-labeled graphs whose edges have only one label as-
sociated. The Flickr dataset is instead a graph where multiple labels are present on each
edge.

String. A protein-protein interaction (PPI) network obtained from string-db.org, i.e., a
database of known protein interactions for a large number of organisms. The dataset is an
undirected graph where vertices represent proteins and edges represent protein interactions.
Edges are labeled with 4 types of interactions, including direct (physical) and indirect
(functional) associations.

Youtube. This dataset represents a network of associations in the youtube site. The ver-
tices of the network represent users, videos, and channels. Entities in the network have
five different types of associations: contact, co-contact, co-subscription, co-subscribed, and
favorite; these are the edge labels considered by our algorithms. The dataset has been com-
piled by Tang et al. [Tang et al. 2009] and is available at http://socialcomputing.asu.edu/
datasets/YouTubel

DBLP. This is a recent snapshot of the popular DBLP co-authorship network (http://
dblp.uni-trier.de/xml/). For each co-authorship edge, we consider the bag of words obtained
by merging the titles of all papers coauthored by the two authors. Words are stemmed and
stop-words are removed. We then apply Latent Dirichlet Allocation (LDA) |Blei et al. 2003]
to automatically identify 100 topics on each edge. After LDA topic-modeling, for each edge,
we assign its most prominent topic discovered as an edge label.

Flickr. Flickr is a popular online community, where users share photos, participate in
common-interest groups, and form friendships. The dataset is a publicly-available subset of
the contact network underlying such a community containing information about friendship
between Flickr users and groups of interest joined by the users (http://socialcomputing.asu.
edu/datasets/Flickr). An edge between two users exists if and only if they have the “friend”
relationship. Every edge between two users is labeled with the IDs of all interest groups
that are joined by both the users.

Single-label results. Tables [[]H[V]summarize the results obtained on real data in terms of
(average) solution cost, runtime (seconds), and number of output clusters, respectively. As
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Table II: Single-label results on real datasets: average cost

cost

dataset B CB LCB AM
String 163 305 160 060 155 881 156 976
Youtube | 23550213 18956000 22644858 19670899
DBLP 2260065 1633149 1678714 2018952

Table III: Single-label results on real datasets: runtime (s)

runtime (s)

dataset B CB LCB AM
String 1.95 2.14 5.02 82.07
Youtube | 5.89 6.78 16.15 273.36
DBLP 1.79 1.89 5.23 886.79

Table IV: Single-label results on real datasets: average number of output clusters

#clusters

dataset B CB LCB AM
String 1086 1451 784 1451
Youtube 568 1078 672 1078
DBLP 66276 123197 99948 123197

already observed in synthetic data, all proposed algorithms clearly outperform the baseline
B in terms of solution cost. CB is the best method on Youtube and DBLP, achieving up to
27.74% improvement with respect to the baseline in terms of solution cost. Instead, CB is
slightly outperformed by LCB and AM on String, while LCB outperforms AM on String and
DBLP.

As far as efficiency goes (Table , we observe that all runtimes comply with the time-
complexity analysis reported previously. Indeed, the baseline and the CB algorithm, which
work both linearly in the number of edges of the input graph, are comparable to each other
and outperform the other algorithms. LCB is slightly worse than CB (and B), while AM is in
general the slowest method, mostly due to the multiple iterations needed for convergence.
In general, however, all the proposed methods are very efficient, as they take a few seconds
(CB and LCB) or minutes (AM), even on large and dense graphs like Youtube and DBLP.

Furthermore, Table [[V] shows that LCB tends to produce fewer clusters than CB, which
conforms with the results observed in synthetic datasets and, in general, with the design
principles of LCB.

Finally, as a qualitative example of the results produced by our methods, Figure [f] shows
a cluster from the DBLP co-authorship network recognized by the LCB algorithm, contain-
ing 23 authors (vertices). Among the 71 intra-cluster edges, 58 have the same label, i.e.,
Topic 18, whose most representative (stemmed) keywords are: queri, effici, spatial,
tempor, search, index, similar, data, dimension, aggreg. Other topics (edge col-
ors) that appears are “sensor networks”, “frequent pattern mining”, “algorithms on graphs
and trees”, “support vector machines”, “classifiers and Bayesian learning”.

Multiple-label results. Let us now shift the attention to the multiple-label case. Table
[V] summarizes the results obtained by our M-CB algorithm on the multiple-label Flickr
dataset in term of solution cost (i.e., objective function value), runtime (seconds), and
average number of clusters output. In the table we also report the corresponding results
achieved by the baseline B.

As previously observed in the single-label case, the proposed M-CB consistently out-
performs the baseline B in terms of accuracy. Particularly, M-CB reduces the cost of the
baseline by roughly 27%. Concerning running times, the time complexity of M-CB increases
the complexity of its single-label counterpart (i.e., CB) by a factor h = |L|. Thus, unlike the
single-label case, here we observe a gap between the runtimes of M-CB and the baseline.
Nevertheless, such a gap remains quite small: the running time of M-CB is still within a few
seconds.
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Fig. 5: An example cluster from DBLP.

Table V: Multiple-label results on the Flickr real dataset: cost, runtime (s), and average
number of output clusters.

B M-CB
cost 8487181 6222204
runtime (s) 0.68 1.95
# clusters 27032 41814

6. RELATED WORK

The problem we study in this paper is a novel clustering problem that has not been explicitly
studied before. Next we briefly overview related research on some neighborhood areas.

Edge-labeled graphs Graphs having edges labeled with a type of relation between the
incident vertices are receiving increasing attention. So far, problems other than cluster-
ing have been studied on this kind of graph. Existing literature has mainly focused on
reachability /shortest-path queries. Jin et al. |[Jin et al. 2010] study the subset-constrained
reachability query problem in edge-labeled graphs, which consists of checking whether two
vertices are connected by a path having edge labels exclusively from a given set. Xu et al. [Xu
et al. 2011] propose a partition-based algorithm for efficiently processing subset-constrained
reachability queries, while Fan et al. [Fan et al. 2011] study reachability queries and graph
pattern queries in graphs where both edges and vertices are labeled. Rice and Tsotras [Rice
and Tsotras 2010], instead, show that road networks have a natural representation in terms
of edge-labeled graphs and study the problem of label-constrained shortest-path queries on
that kind of network. The same problem is also studied in |Likhyani and Bedathur 2013;
Bonchi et al. 2014].

Multidimensional networks. Multidimensional (or multi-layered) networks are networks
defined as a set of graphs spanning the same set of entities. An intuitive representation of
these networks is as edge-labeled graphs with multiple labels on the edges. Existing literature
on multidimensional networks has focused on general characterization/analysis [Magnani
and Rossi 2011} Berlingerio et al. 2011bj [Kazienko et al. 2011], shortest paths [Brodka et al.
2011], and clustering [Tang et al. 2011} Berlingerio et al. 2011a; [Rocklin and Pinar 2011].
The semantics of clustering this kind of network is however quite different from the problem
we address in this work. Indeed, the goal behind clustering multidimensional networks is to
find a partitioning of vertices which is relevant in all the dimensions (colors) at the same
time. In other words, in that setting each group of vertices is recognized as a good cluster
only if it is actually good in the green network and the red network, and so on. In our
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work, we are rather interested in finding groups of objects that induce color-homogeneous
clusters, which are not necessarily forced to be good for all colors simultaneously.

Close in spirit to clustering multidimensional networks, Boden et al. [Boden et al. 2012]
propose mining coherent subgraphs on multi-layered networks, that is finding, for every
possible subset of labels L’ € 2F, all subgraphs that look coherent (i.e., densely connected
and composed of edges with similar labels) with respect to L’. The problem studied by
Boden et al. differs from the problem we tackle in this work as we are interested in finding a
(single) partition of the vertices in the graph while simultaneously identifying the label (or
the set of labels) that represent the various clusters well. In a sense, the work by Boden et
al. is close to the classic problem of subspace clustering [Parsons et al. 2004], while our work
can be rather interpreted as a reformulation of projected clustering [Kriegel et al. 2009] on
edge-labeled graphs.

Correlation Clustering. The problem of CORRELATION-CLUSTERING was first defined by
Bansal et al. [Bansal et al. 2004] in its binary version. Ailon et al. [Ailon et al. 2008] proposed
the Balls algorithm that achieves expected approximation factor 5 if the weights obey the
probability condition. If the weights obey the triangle inequality too, then the algorithm
achieves a 2 approximation guarantee. Giotis and Guruswami |Giotis and Guruswami 2006]
consider correlation clustering when the number of clusters is fixed. Ailon and Liberty [Ailon
and Liberty 2009 study a variant of correlation clustering where the goal is to minimize
the number of disagreements between the produced clustering and a given ground truth
clustering, while Ailon at al. |Ailon et al. 2012| study the problem of bipartite correlation
clustering. Finally, the correlation-clustering formulation has been recently extended to
allow overlapping clusters [Bonchi et al. 2013].

We remark that none of the existing correlation-clustering variants considers edge-labeled
graphs.

7. CONCLUSION AND FUTURE WORK

In this paper we introduce a novel clustering problem where the pairwise relations be-
tween objects are categorical. The problem has interesting applications, such as clustering
social networks where individuals share different types of relations, or clustering protein
networks, where proteins are associated with different types of interactions. We propose
four algorithms and evaluate them on several synthetic and real datasets.

Our problem is a novel clustering formulation well-suited for mining, e.g., multi-labeled
and heterogeneous datasets that are becoming increasingly common. With respect to the
earlier version presented in [Bonchi et al. 2012], a major extension provided here is the
capability of handling datasets where relationships between objects are described by mul-
tiple labels. However, we believe that there are still many other interesting extensions and
fruitful future research directions. Among others, we would like to extend the problem for-
mulation in order to output overlapping clusters, as well as investigate how the theoretical
results about our synthetic generator discussed in Appendix [A] can be exploited to design
further approximation algorithms. Other interesting directions include the use of other dis-
tance measures (beyond the Hamming distance) in the MULTI-CHROMATIC-CORRELATION-
CLUSTERING problem, the extension of the LCB and AM algorithms to the multiple-label
context, and the definition of cluster validity criteria that are specific of the context of
edge-labeled graphs.

APPENDIX
A. SYNTHETIC RANDOM GENERATOR: RECOVERING THE HIDDEN GROUND TRUTH

We prove next how to recover with high probability the ground truth of a dataset randomly
generated according to the synthetic generator described in Section |5} This result can be
particularly useful for designing further approximation algorithms based on the implicit as-
sumption that the dataset observed has been generated according to the synthetic generator
at hand.

To prove the desired result, we use the classical result by McSherry [McSherry 2001] and
the following Chernoff-type bound.

THEOREM A.1 (|CHERNOFF 1981]). Let X, Xo,..., X} be independently distributed
{0, 1} variables with E[X;| = p. Then, for every t > 0, we have

Pr

k
> Xi-E[X]
i=1

> t] < 26727&2/]9.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:19

THEOREM A.2. Let p,q,w the real numbers taken as input by the generator in Algo-

rithm |8 There exists a constant ¢ such that, if w # l_Tl and % > c l‘ﬁn, then, for

sufficiently large n, we can recover (C,cl) with high probability.

PROOF SKETCH. Let S; be the cardinality of the i-th cluster V;, ¢ =1,..., k. Also, define
Xi; to be an indicator random variable such that Xu = 1 if and only if vertex j goes to
cluster V;, i = 1,...,k,j = 1,...,n. Clearly, S; = >, X;; and Pr[X;; =1] = ¢ and

E[S;] = %. Let d > 0 be a constant. Applying Theorem by setting t = 4/ §n logn where

d > 0, and a union bound we obtain

d 2k
Pr |3cluster V; s.t. |[V; —E[Vi]| >4/ inlogn < — =o(1).
n

Hence with high probability [V;| = (1 +0o(1))% foralli =1,...,k . We condition on this
event, call it G, and apply the Chernoff bound again. Specifically, let Y; be the number of
edges induced by cluster V;. Then, E[Y;] = p("4¥) for all i = 1,.., k.

Pr [Ecluster Vist. |V —EY; \/dlogn | g} = o(1).

By removing the conditioning on event G, we obtaln that Wlth hlgh probability Y; =
(14 o(1))p( "/ k [ In a similar way, the number of edges of cluster V; with color cf(V;)

is with high probablhty (14 o(1))p(1 — w)("ék) For every other color than cf(V;) the

number of edges with that color is (1 + o(1))p™5 ("/k) This suggests the following two-

step procedure for recovering C, ¢f: (a) Apply Corollary 1 from |[McSherry 2001] by setting
§ =n~? for some constant d > 0. This results in obtaining C with probability 1 —n~?. (b)

Using the above concentration results, given that the condition w # Z_Tl guarantees that
p(1—w) ("ék) #pry (”ék), obtain ¢f. Hence, we can recover (cf, C) with probability 1 —o(1)
where the neglibible term goes down to 0 polynomially fast. O
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