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Abstract. Uncertain data are usually represented in terms of an uncer-
tainty region over which a probability density function (pdf) is defined.
In the context of uncertain data management, there has been a growing
interest in clustering uncertain data. In particular, the classic K-means
clustering algorithm has been recently adapted to handle uncertain data.
However, the centroid-based partitional clustering approach used in the
adapted K-means presents two major weaknesses that are related to: (7)
an accuracy issue, since cluster centroids are computed as deterministic
objects using the expected values of the pdfs of the clustered objects;
and, (%) an efficiency issue, since the expected distance between uncer-
tain objects and cluster centroids is computationally expensive.

In this paper, we address the problem of clustering uncertain data by
proposing a K-medoids-based algorithm, called UK-medoids, which is
designed to overcome the above issues. In particular, our UK-medoids
algorithm employs distance functions properly defined for uncertain ob-
jects, and exploits a K-medoids scheme. Experiments have shown that
UK-medoids outperforms existing algorithms from an accuracy view-
point while achieving reasonably good efficiency.

1 Introduction

Handling uncertainty in data management has been requiring more and more
importance in a wide range of application contexts. Indeed, data uncertainty
naturally arises from, e.g., implicit randomness in a process of data genera-
tion/acquisition, imprecision in physical measurements, and data staling. Vari-
ous notions of uncertainty have been defined depending on the application do-
main (e.g., [2-8]). In general, uncertainty can be considered at table, tuple or
attribute level [9], and is usually specified by fuzzy models [10], evidence-oriented
models [11,12], or probabilistic models [13].

In this paper, we focus on data containing attribute-level uncertainty, which
is modeled according to a probabilistic model. We hereinafter refer to this data
as uncertain objects. An uncertain object is usually represented by means of
probability density functions (pdfs), which describe the likelihood that the object
appears at each position in a multidimensional space [14,15, 1], rather than by
a traditional vectorial form of deterministic values.

Attribute-level uncertainty expressed by means of probabilistic models is
present in several application domains. For instance, sensor measurements may
be imprecise at a certain degree due to the presence of various noisy factors (e.g.,



signal noise, instrumental errors, wireless transmission) [16, 14]. To address this
issue, it is advisable to model sensor data as continuous pdfs [17,18]. Another
example is given by data representing moving objects, which continuously change
their location so that exact positional information at a given time instant may be
unavailable [19]. Further examples come from distributed applications, privacy
preserving data mining, and forecasting or other statistical techniques used to
generate data attributes [20].

Dealing with uncertain objects has raised several issues in data management
and knowledge discovery. In particular, organizing uncertain objects is challeng-
ing since the intrinsic difficulty underlying the various notions of uncertainty.
As a major exploratory task of data mining, clustering is organizing a collection
of objects (whose classification is unknown) into meaningful groups (clusters),
based on interesting relationships discovered in the data. Objects within a clus-
ter will be each other highly similar, but will be very dissimilar from objects
in other clusters. One of the most popular clustering approaches is represented
by partitional (or partitioning) clustering [21], which iteratively assigns objects
to the clusters according to a certain distance/similarity function. A major cru-
ciality in partitional clustering is how to devise a notion of cluster prototype. In
particular, a cluster prototype can be defined as a centroid, which is the “mean”
object in the cluster, or as a medoid, which is an actual object that is nearest
to all the other objects in the cluster. The K-means [22] and K-medoids [23]
algorithms are the exemplary methods of centroid-based and medoid-based par-
titional clustering, respectively.

In a recent work [1], the K-means algorithm has been adapted to the uncer-
tain data domain. However, the resulting algorithm, named UK-means, has two
major weak points. First, cluster centroids are defined as deterministic objects
and computed as the mean of the expected values over the pdfs of the uncer-
tain objects in the cluster; defining centroids in this way may result in loss of
accuracy, since only the expected values of the pdfs of the uncertain objects are
taken into account. Second, the computation of the Expected Distance (ED) be-
tween cluster centroids and uncertain objects is computationally expensive, as it
requires non-trivial numerical integral estimations; this represents an efficiency
bottleneck at each iteration of the algorithm.

In this paper, we present UK-medoids, an algorithm for clustering uncertain
objects based on the K-medoids clustering scheme. The proposed algorithm ex-
ploits a distance function for uncertain objects, which is not limited to consider
only scalar values derived from the pdfs associated to the objects (e.g., pdf ex-
pected values). This allows for better estimating the real distance between two
uncertain objects, leading to significant improvement of the clustering quality.
Also, our algorithm does not require any expensive operation to be repeated
at each iteration; indeed, the computation of the distances between uncertain
objects in the dataset is performed only once, thus guaranteeing a significant
improvement of the efficiency w.r.t. UK-means. Experiments have shown that
our method outperforms existing algorithms from an accuracy viewpoint while
achieving reasonably good efficiency.



The rest of the paper is organized as follows. The next section discusses
some related work. Section 3 describes the uncertain data models used in the
paper. Section 4 describes the notion of uncertain distance and the UK-medoids
algorithm. Section 5 provides experimental evaluation of our algorithm and the
competing methods. Finally, Section 6 concludes the paper.

2 Related work

In the context of uncertain data management, a lot of research has been mainly
focused on data representation and modeling, indexing, query processing, and
data mining (e.g., [20]). In particular, data mining applications have involved
various tasks, such as classification [24], outlier detection [25], association anal-
ysis [26], and clustering [27,15, 1,28, 29].

As above mentioned, one of the earliest attempts to solve the problem of
clustering uncertain objects is UK-means [1]. In order to improve the UK-means
efficiency, [28] proposes some pruning techniques to avoid the computation of
redundant EDs. Such techniques make use of lower- and upper-bounds that are
ad-hoc defined for each ED to be calculated; these bounds allow for eliminating
some candidate assignments of objects to cluster centroids, avoiding the corre-
sponding ED computation. However, a major problem of this approach is that it
cannot guarantee high pruning (and, hence, high efficiency), as it depends on the
features of the objects in the specific dataset. In [29], the CK-means is proposed
as a variant of UK-means that resorts to the moment of inertia of rigid bodies
in order to reduce the execution time needed for computing EDs. Unfortunately,
the soundness of the CK-means criterion for the ED computation is guaranteed
only if the mean squared error for the definition of the EDs is used and the
distance function is based on the Euclidean norm.

It should be noted that all the UK-means variants have to face the issue
of computing cluster centroids, whose effectiveness depends on how well the
aggregated values (e.g., the expected values) extracted from the object pdfs
represent the real location of the uncertain objects. Also, computing the distance
between uncertain objects is usually accomplished by calculating the Euclidean
distance between the vectors of the (deterministic) expected values.

A more refined approach to the distance computation consists in defining a
univariate pdf, or fuzzy distance function, for each pair of objects. This univariate
pdf computes a probability for each distance value for two objects, and the
distance between the objects is finally computed by extracting an aggregated,
representative value (e.g., expected value) from the pdf of those objects. This
method has been originally presented in [27] and has been proved to be more
effective than the standard Euclidean distance applied to vectors of deterministic
values.

Devising a fuzzy distance function is a key aspect in density-based approaches
that have been proposed for clustering uncertain objects [15,27]. In [15], a fuzzy
version of the popular DBSCAN [30] algorithm, FDBSCAN, is proposed. Fuzzy
distance functions are used to compute core object and reachability probabil-



ities, which are at the basis of the density-based clustering strategy of the al-
gorithm. A similar approach is presented in [27], where FOPTICS is proposed
as a fuzzy version of the popular hierarchical density-based clustering algorithm
OPTICS [31].

It is important to note that [15,27] focus on how to efficiently compute
reachability probabilities; however, they do not provide a formal definition of
fuzzy distance function that can be applied to any clustering algorithm. By
contrast, we provide a definition of fuzzy distance function that does not depend
on a particular clustering scheme and is well-suited to continuous as well as
discrete pdfs.

3 Modeling uncertain data

Representing attribute-level uncertain objects is traditionally accomplished by
using two models, namely multivariate uncertainty and univariate uncertainty
models.

Using a multivariate uncertainty model, an m-dimensional uncertain object
is defined in terms of an m-dimensional region and a multivariate probability
density function, which stores the probability according to which the exact rep-
resentation of the object coincides with any point in the region. In a univariate
uncertainty model, an m-dimensional uncertain object has, for each attribute, an
interval and a univariate probability density function that assigns a probability
value to any point within the interval. Formally:

Definition 1 (multivariate uncertain object). A multivariate uncertain ob-
ject o is a pair (R, f), where R C R™ is the region in which o is defined and
fiR™ — 3?3' is the probability density function of o at each point z € R.

Definition 2 (univariate uncertain object). A univariate uncertain object
o0 is a tuple (aM,...,a™). Each attribute a™ is a pair (IM, fM), for each
h € [1.m], where IM) = [1M) «(M] is the interval of definition of a\™, and
fM R — §R8' is the probability density function that assigns a probability value
to each z € I,

For each multivariate uncertain object, the probability density function in-
volved in its representation can be either continuous or discrete. A continuous
multivariate m-dimensional probability density function defined over a region
R CR™ is a function f: R™ — R such that:

/ flz)dz=1 and / f(z)dz=0
zZER zeR™\R

A discrete multivariate m-dimensional probability density function defined
over a set of points S = {z1,...,2,} (2, € R, for each u € [1..v]) is a function



f:R™ — R such that:

Zf(z)zl and / f(z)dz=0
zeS zeRm\ S

For the univariate model, a continuous (resp. discrete) univariate probability
density function can be trivially defined in terms of a continuous (resp. dis-
crete) multivariate probability density function, in which the region (resp. set)
of definition is a subset of R (i.e., m = 1).

We hereinafter refer to uncertainty models involving continuous probability
functions. Note that this assumption does not result in loss of generality, since the
corresponding “discrete” version can be obtained by simply replacing integrals
with sums in the equations.

4 Clustering uncertain data

4.1 Computing uncertain distance

To measure the distance between uncertain objects, we need to devise a suitable
notion of uncertain distance, which is involved in the proposed clustering algo-
rithm. Uncertain distance is defined in terms of an uncertain distance function.
In order to make the uncertain distance independent from the chosen uncertainty
model, we provide definitions of uncertain distance function for both multivariate
and univariate uncertainty models.

Definition 3 (uncertain distance function). Given a set of uncertain ob-
jects D = {o1,...,0n}, the uncertain distance function defined over D is a
function A: D x D x R — R, for which the following conditions hold:

/ Aloi,05,2) dz =1, Vo;,0; € D,
zeR
(1, ifi=j,z2=0
Al0i, 05,2) = {0, if i=7j,2%0
For any pair of uncertain objects 0;, 05,4 # j, A can be derived from the pdfs as-

sociated to the uncertain objects. The definition of A depends on the uncertainty
model used for representing o; and o; (Sect. 3).

Uncertain distance function for multivariate objects. If o; = (R, f;),
0j = (Rj, f;) are multivariate uncertain objects, A is defined as:

A(04,05,2) = / / Ildist(x,y) = 2] fi(x) f;(y) de dy (1)
xcR; yeR;
where dist(x,y) is a distance measure between any pair x,y € R™ (e.g., Eu-

clidean distance), and I[A] is the indicator function, which is equal to 1 when
the event A occurs, 0 otherwise.



Uncertain distance function for univariate objects. If o; = ((Ii(l), fi(l)),
..,(Ii(m), fi(m))), 0j = ((I](l), f;l)), ce (I](-m), f;m))) are univariate uncertain

objects, A is defined as:

A(oi,oj,z):/-~- /I[fdist(xl,...,xm) = 7] H W(h)(oi,oj,xh) dzq---dz,,

L1ER zmER h=1
(2)

where

— UM :DxDxR—R,
— UMW (0s,05,x1) = [ [I[lu—v| = z4] fi(h)(u) f;h)(v) du dv, he€[l.m],
uelMver™
— faist : R™ — R is a function that computes a scalar value from the com-
ponents of a vector (z1,...,T,,). In this work, this function is defined as

Jaist =/ (1/m) > xp2.

It can be proved that the condition | A(0;,0;,2) dz = 1 holds for both the
zeER
definitions of A, for all 0;, 0; in the dataset.

Given an uncertain distance function A, we now provide a definition of un-
certain distance by extracting a single, well-representative numerical value from

A.

Definition 4 (uncertain distance). Given a set of uncertain objects D =
{01,...,0,}, let A be the uncertain distance function defined over D. The un-
certain distance is a function § : D x D — R, which is defined as:

6(0i,05) = /ZA(Oi,OjaZ) dz (3)
zER

According to Eq. (3), d(0;, 0;) is the expected value of the uncertain distance
function A between o; and o;. Note that, if 0;,0; are multivariate uncertain
objects, 0(0;,04) can be directly computed as:

Sonop= [ [ distle.y) fi@) () do dy (4)
xER; yERj
whereas, if 0;, 0; are univariate uncertain objects, §(0;,0;) can be calculated as:
8(0i,05) = faist (WM (01,05), ..., "™ (01, 05)) (5)
where

™ (0;,0,) = / / o —y| fM () P (y) de dy, b e [1.m].

wel™ yer™



4.2 The UK-medoids algorithm

In this section we present our K-medoids-based algorithm for clustering uncer-
tain objects, named UK-medoids. The outline of UK-medoids is given in Algo-
rithm 1.

Algorithm 1 UK-medoids

Input: a set of uncertain objects D = {o01,...,0,}; the number of output clusters k
Output: a set of clusters C

1: compute distances 6(0;,0;),Vo;,0; € D

2: compute the set S = {m1,...,my} of initial medoids

3: repeat

4 S — S

5. S0

6 C={C1,...,Cx} —{0,...,0}

7 for allo € D do

8 {assign each object to the closest cluster, based on its uncertain distance to
cluster medoids}

9: m; < argmin, ¢ 5 (0,0")

10: C; —C;U {0}

11:  end for

12:  for all C € C do

13: {recompute the medoid of each cluster}
14: m «— argmin,co Yo 6(0,0)

15: S —Su{m}

16:  end for

17: until S # 5’

18: return C

The input for the UK-medoids algorithm is a dataset D of n uncertain objects
and the number k of clusters to be discovered, and the output is a set C of k
clusters. Initially, all the uncertain distances between any pair of objects 0;,0; €
D are computed (Line 1). The distances are calculated only once and are used
at each iteration of the algorithm. Then, the set of k initial medoids is computed
(Line 2). The initial medoids can be selected by means of either random chance or
a suitable procedure aimed to choose well-separated medoids (e.g., that proposed
for the Partitioning Around Medoids (PAM) algorithm [32]).

After the initialization steps, the algorithm performs the main loop (starting
from Line 3) which is comprised of two phases. In the first phase (Lines 7 — 11),
each object o in D is assigned to the cluster represented by the medoid m closest
to 0. In the second phase, the medoids in the set S are recomputed according to
the objects assigned to each cluster (Lines 12 — 16). Such phases are iteratively
repeated until a local optimum has not been reached, i.e., there has been some
change in the current S w.r.t. the previous iteration (Line 17).



Proposition 1. Given a dataset D of n uncertain objects, Algorithm 1 works
in O(n? I), where I is the mazimum number of iterations.

5 Experimental evaluation

We devised an experimental evaluation aimed to assess the ability of our algo-
rithm in clustering uncertain objects, both in terms of accuracy and efficiency.
We also compared our UK-medoids to K-means-based uncertain data clustering
algorithms, i.e., UK-means and its variant CK-means.

5.1 Evaluation methodology

Datasets. Experimental analysis was performed on benchmark datasets from
the UCI Machine Learning Repository.! We chose four datasets with numerical
real-value attributes, namely Iris, Wine, Glass, and Ecoli.

Table 1. Datasets used in the experiments

’ dataset ‘ objects ‘attm’butes classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5

Table 1 shows the main characteristics of the datasets. Iris contains mea-
surements on different iris plants. Wine reports results of a chemical analysis of
Italian wines derived from three different cultivars. In Glass, each glass instance
is described by the values of its chemical components. Ecoli contains data on
the Escherichia Coli bacterium, which are identified with values coming from
different analysis techniques.

All the selected datasets originally contain deterministic values, hence the
uncertainty was synthetically generated for each object of any dataset. In case
of univariate uncertain objects, we generated the uncertain interval 7" and the
pdf M) defined over I, for each attribute a), with h€[1..m] of the object o.
The interval 1" was randomly chosen as a subinterval within [min,, , maz,, ],
where min,, (resp. maz,, ) is the minimum (resp. maximum) deterministic value
of the attribute h, over all the objects belonging to the same ideal class of
0. As concerns f"), we considered two continuous density functions, namely
Uniform and Normal pdfs, and Binomial as a discrete mass function. We set
the parameters of Normal and Binomial pdfs in such a way that their mode
corresponded to the deterministic value of the h-th attribute of the object o.

We performed experiments for multivariate uncertain objects as well. In this
case, we generated uncertainty starting from the univariate model, assuming

! http://archive.ics.uci.edu/ml/



statistical independence for the pdfs of the attributes of any object. Since uni-
variate and multivariate models gave similar results, here we report only results
on the univariate models for the sake of brevity.

Clustering validity criteria. To assess the quality of clustering solutions
we exploited the availability of reference classifications for the datasets. The
objective was to evaluate how well a clustering fits a predefined scheme of known
classes (natural clusters). To this purpose, we resorted to the F-measure [33],
which is one of the most commonly used external validity criteria, and is defined
in terms of the Information Retrieval notions’ Precision and Recall.

Given a collection D of uncertain objects, let I' = {I7,..., 'y} be the ref-
erence classification of the objects in D, and C = {C1,...,Ck} be the output
partition yielded by a clustering algorithm. Precision of cluster C'; with respect
to class I is the fraction of the objects in C; that has been correctly classified:

|C; N T
p.= =2 d
Y |C;]

Recall of cluster C; with respect to class I5 is the fraction of the objects in I
that has been correctly classified:

|C; N L
Ry = =4 —4
! |15

Using a macro-averaging strategy on the local values of precision and recall,
the overall precision (P) and recall (R) are computed as:

1 & 1 &
P=_ P R=— R;;
Hizljem[ﬁ}%] s Hizljemu%] h

Finally, in order to score the quality of C w.r.t. I' by means of a single value,
the overall F-measure (F € [0,1]) is computed as the harmonic mean of the
overall precision and recall:

2PR
F= 6
P+R (©6)
Settings. In K-means-based approaches, the set of initial centroids is ran-

domly selected. Therefore, to avoid that clustering results were biased by ran-
dom chance, we averaged accuracy and efficiency measurements over 100 differ-
ent runs. We made a similar choice also for UK-medoids, since we noted that
the use of a refined strategy for selecting initial medoids (e.g., the procedure
proposed in [32]) gave no significant improvement w.r.t. random selection.

We computed the integrals involved into the distances calculation by tak-
ing into account lists of samples derived from the pdfs. To accomplish this, we
employed the classic Monte Carlo sampling method.? We also performed a pre-
liminary tuning phase to properly set the number of samples .S; in particular, for

2 We used the SSJ library, available at http://www.iro.umontreal.ca/~simardr/ssj/



Table 2. Clustering quality results (F-measure)

‘ dataset‘ pdf ‘UK—means ‘ CK—means‘UK-medoids‘

Uniform 0.45 0.50 0.84

Iris Normal 0.84 0.85 0.88
Binomial 0.62 0.58 0.87
Uniform 0.46 0.50 0.80

Wine | Normal 0.69 0.70 0.70
Binomial 0.63 0.58 0.73
Uniform 0.26 0.29 0.71

Glass | Normal 0.63 0.59 0.68
Binomial 0.27 0.29 0.67
Uniform 0.30 0.53 0.73

Ecoli | Normal 0.73 0.74 0.77
Binomial 0.50 0.44 0.72

each method and dataset, we chose S in such a way that there was no significant
improvement in accuracy for any S’ > S. In general, the optimal S depended
on the width of the uncertainty interval/region; however, according to our ex-
periments, 50 and 400500 samples represented a reasonably good choice, for
univariate and multivariate uncertainty model, respectively.

5.2 Results

Accuracy. Table 2 summarizes the F-measure results obtained by UK-medoids
and the other methods. We can observe that UK-medoids drastically outper-
formed UK-means and CK-means on all the datasets, with Uniform and Binomial
pdfs. In particular, compared to best competing method, the accuracy improve-
ment obtained by our UK-medoids was from 34% to 42% with Uniform pdfs and
from 10% to 38% with Binomial pdfs. In case of Normal pdfs, UK-medoids per-
formed 3+5% better than the other methods on three datasets, whereas all the
methods behaved similarly in Wine. The reduction of gap between UK-medoids
and K-means-based approaches on Normal pdfs can be explained in that, ac-
cording to our uncertainty generation scheme, the expected value of a Normal
pdf associated to any attribute of each uncertain object was set equal to the
deterministic value of the attribute for that object. This allowed the centroid
generation strategy of UK-means and CK-means to perform well in that case.

It should be also noted that UK-means and CK-means performed similarly
for all the pdfs and datasets, as expected, since they employ a similar clustering
scheme; the only differences between the two methods are due to random choices,
such as selection of initial centroids and pdf sampling for the computation of the
integrals.
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Fig. 1. Clustering time performances

Efficiency. To evaluate the efficiency of UK-medoids and the competing
methods, we measured their time performances in clustering uncertain objects.?
Figure 1 shows the total execution times (in milliseconds) obtained by the meth-
ods on the various datasets. For UK-medoids and CK-means, we calculated the
sum of the times obtained for the pre-computing phase (i.e., uncertain distances
computation for UK-medoids and cluster centroids computation for CK-means),
together with the algorithm runtimes.

In the figure, it can be noted that our UK-medoids was 1+2 orders of magni-
tude faster than UK-means, which was the slowest method on all datasets. The
slowness of UK-means is mainly due to the EDs computation needed for each
object in the dataset, at each iteration of the algorithm.

As expected, CK-means outperformed UK-medoids on all datasets, which
is explained by a difference between the computational complexities of the two
algorithms. Indeed, both the phases of pre-computing and algorithm execution
are quadratic (resp. linear) with the number of objects in the dataset for UK-
medoids (resp. CK-means). However, it should be emphasized that the CK-
means algorithm is less general than the other methods, as it works only if the

3 Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB mem-
ory and running Microsoft WinXP Pro
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Fig. 2. Performance of the algorithm runtimes (pre-computing phases are ignored)

mean squared error for the definition of the EDs is used and the distance function
is based on the Euclidean norm.

We also measured separately the times of the pre-computing phases, which
involve the calculation of uncertain distances (in UK-medoids) and cluster cen-
troids (in CK-means). Figure 2 shows that the gap between UK-medoids and
CK-means was reduced w.r.t. that measured by including the total runtimes
(Figure 1). This result confirms that the major difference between UK-medoids
and CK-means is given by the pre-computing phase. Thus, in case of multiple
runs of the two algorithms, we can state that the performance of UK-medoids
and CK-means are comparable, since the pre-computing phase has to be per-
formed once.

6 Conclusion

We addressed the problem of clustering uncertain objects based on an efficient
K-medoids clustering scheme. We provided distance functions for both univariate
and multivariate uncertain objects, which are well-suited to continuous as well as
discrete pdfs. Moreover, these functions are designed to better estimate the real



distance between two uncertain objects since they are not limited to consider
only scalar values derived from the object pdfs.

Our UK-medoids has been experimentally shown to outperform other existing

methods in terms of accuracy, regardless of the choice of uncertainty density
function. Also, from an efficiency viewpoint, UK-medoids performs up to two
orders of magnitude faster than the baseline method UK-means.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Chau, M., Cheng, R., Kao, B., Ng, J.: Uncertain Data Mining: An Example in
Clustering Location Data. In: Proc. PAKDD Conf. (2006) 199-204

Imielinski, T., Lipski Jr., W.: Incomplete Information in Relational Databases.
Journal of the ACM 31(4) (1984) 761-791

Abiteboul, S., Kanellakis, P., Grahne, G.: On the Representation and Querying of
Sets of Possible Worlds. In: Proc. SIGMOD Conf. (1987) 3448

Sadri, F.: Modeling Uncertainty in Databases. In: Proc. ICDE Conf. (1991) 122—
131

Lakshmanan, L.V.S.; Leone, N., Ross, R.B., Subrahmanian, V.S.: ProbView: A
Flexible Probabilistic Database System. ACM TODS 22(3) (1997) 419-469
Dalvi, N.N.; Suciu, D.: Efficient Query Evaluation on Probabilistic Databases. In:
Proc. VLDB Conf. (2004) 864-875

Green, T., Tannen, V.: Models for Incomplete and Probabilistic Information. IEEE
Data Engineering Bulletin 29(1) (2006) 17-24

Aggarwal, C.C.: On Density Based Transforms for Uncertain Data Mining. In:
Proc. ICDE Conf. (2007) 866-875

Tao, Y., Xiao, X., Cheng, R.: Range Search on Multidimensional Uncertain Data.
TODS 32(3) (2007) 15-62

Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design, and
Implementation. Idea Group Publishing (2006)

Lee, S.K.: An Extended Relational Database Model for Uncertain and Imprecise
Information. In: Proc. VLDB Conf. (1992) 211-220

Lim, E.P., Srivastava, J., Shekhar, S.: An Evidential Reasoning Approach to At-
tribute Value Conflict Resolution in Database Integration. TKDE 8(5) (1996)
707-723

Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working Models for Uncertain
Data. In: Proc. ICDE Conf. (2006) 7-18

Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over
imprecise data. In: Proc. SIGMOD Conf. (2003) 551-562

Kriegel, H.P., Pfeifle, M.: Density-Based Clustering of Uncertain Data. In: Proc.
ACM SIGKDD Conf. (2005) 672-677

Cantoni, V., Lombardi, L., Lombardi, P.: Challenges for Data Mining in Dis-
tributed Sensor Networks. In: Proc. ICPR Conf. (2006) 1000-1007

Faradjian, A., Gehrke, J., Bonnet, P.. GADT: A Probability Space ADT for Rep-
resenting and Querying the Physical World. In: Proc. ICDE Conf. (2002) 201-211
Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-
based approximate querying in sensor networks. VLDB Journal 14(4) (2005) 417-
443

Li, Y., Han, J., Yang, J.: Clustering Moving Objects. In: Proc. ACM SIGKDD
Conlf. (2004) 617622



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Aggarwal, C.C., Yu, P.S.: A Survey of Uncertain Data Algorithms and Appli-
cations. Technical Report RC24394, IBM Research Division, Thomas J. Watson
Research Center (October 2007)

Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall (1988)
MacQueen, J.B.: Some methods for classification and analysis of multivariate
observations. In: Proc. Berkeley Symposium on Mathematical Statistics and Prob-
ability. (1967) 281-297

L. Kaufman and P. J. Rousseeuw: Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley (1990)

Bi, J., Zhang, T.: Support Vector Classification with Input Data Uncertainty. In:
Proc. NIPS Conf. (2004) 483-493

Aggarwal, C.C., Yu, P.S.: Outlier Detection with Uncertain Data. In: Proc. SDM
Conf. (2008) 483-493

Chui, C.K., Kao, B., Hung, E.: Mining Frequent Itemsets from Uncertain Data.
In: Proc. PAKDD Conf. (2007) 47-58

Kriegel, H.P., Pfeifle, M.: Hierarchical Density-Based Clustering of Uncertain Data.
In: Proc. ICDM Conf. (2005) 689-692

Ngai, W.K., Kao, B., Chui, C.K., Cheng, R., Chau, M., Yip, K.Y.: Efficient Clus-
tering of Uncertain Data. In: Proc. ICDM Conf. (2006) 436-445

S. D. Lee and B. Kao and R. Cheng: Reducing UK-means to K-means. In: Proc.
ICDM Workshops. (2007) 483-488

Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In: Proc. ACM SIGKDD
Conf. (1996) 226-231

Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering Points
To Identify the Clustering Structure. In: Proc. SIGMOD Conf. (1999) 49-60
Kaufmann, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Proc. Sta-
tistical Data Analysis based on the L; Norm Conf. (1987) 405-416

van Rijsbergen, C.J.: Information Retrieval. Butterworths (1979)



