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ABSTRACT
Projective Clustering Ensembles (PCE) are a very recent
advance in data clustering research which combines the two
powerful tools of clustering ensembles and projective cluster-
ing. Specifically, PCE enables clustering ensemble methods
to handle ensembles composed by projective clustering so-
lutions. PCE has been formalized as an optimization prob-
lem with either a two-objective or a single-objective func-
tion. Two-objective PCE has shown to generally produce
more accurate clustering results than its single-objective
counterpart, although it can handle the object-based and
feature-based cluster representations only independently of
one other. Moreover, both the early formulations of PCE do
not follow any of the standard approaches of clustering en-
sembles, namely instance-based, cluster-based, and hybrid.

In this paper, we propose an alternative formulation to
the PCE problem which overcomes the above issues. We
investigate the drawbacks of the early formulations of PCE
and define a new single-objective formulation of the prob-
lem. This formulation is capable of treating the object- and
feature-based cluster representations as a whole, essentially
tying them in a distance computation between a projective
clustering solution and a given ensemble. We propose two
cluster-based algorithms for computing approximations to
the proposed PCE formulation, which have the common
merit of conforming to one of the standard approaches of
clustering ensembles. Experiments on benchmark datasets
have shown the significance of our PCE formulation, as both
the proposed heuristics outperform existing PCE methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering ; I.2.6 [Artificial Intelli-
gence]: Learning; I.5.3 [Pattern Recognition]: Cluster-
ing
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1. INTRODUCTION
Given a set of data objects as points in a multi-

dimensional space, clustering aims to detect a number of
homogeneous, well-separated subsets (clusters) of data, in
an unsupervised way [18]. After more than four decades,
a considerable corpus of methods and algorithms has been
developed for data clustering, focusing on different aspects
such as data types, algorithmic features, and application tar-
gets [14]. In the last few years, there has been an increased
interest in developing advanced tools for data clustering. In
this respect, clustering ensembles and projective clustering
represent two of the most important directions of research.
Clustering ensemble methods [28, 13, 36, 29, 17] aim to ex-
tract a “consensus” clustering from a set (ensemble) of clus-
tering solutions. The input ensemble is typically generated
by varying one or more aspects of the clustering process,
such as the clustering algorithm, the parameter setting, and
the number of features, objects or clusters. The output con-
sensus clustering is usually obtained using instance-based,
cluster-based, or hybrid methods. Instance-based methods
require a notion of distance measure to directly compare the
data objects in the ensemble solutions; cluster-based meth-
ods exploit a meta-clustering approach; and hybrid methods
attempt to combine the first two approaches based on hybrid
bipartite graph clustering.

Projective clustering [32, 35, 30, 34] aims to discover
clusters that correspond to subsets of the input data and
have different (possibly overlapping) dimensional subspaces
associated with them. Projected clusters tend to be less
noisy—because each group of data is represented in a sub-
space that does not contain irrelevant dimensions—and more
understandable—because the exploration of a cluster is eas-
ier when few dimensions are involved.

Clustering ensembles and projective clustering hence ad-
dress two major issues in data clustering distinctly: projec-
tive clustering deals with the high-dimensionality of data,
whereas clustering ensembles handle the lack of a-priori
knowledge on clustering targets. The first issue arises due
to the sparsity that naturally occurs in data representation.



As such, it is unlikely that all features are equally relevant
to form meaningful clusters. The second issue is related to
the fact that there are usually many aspects that character-
ize the targets of a clustering task; however, due to the al-
gorithmic peculiarities of any particular clustering method,
a single clustering solution may not be able to capture all
facets of a given clustering problem.

In [16], projective clustering and clustering ensembles
are treated for the first time in a unified framework.
The underlying motivation of that study is that the high-
dimensionality and the lack of a-priori knowledge problems
usually co-exist in real-world applications. To address both
issues simultaneously, [16] hence formalizes the problem of
projective clustering ensembles (PCE): the objective is to
define methods that, by exploiting the information provided
by an ensemble of projective clustering solutions, are able
to compute a robust projective consensus clustering.

PCE is formulated as an optimization problem, hence the
sought projective consensus clustering is computed as a so-
lution to that problem. Specifically, two formulations of
PCE have been proposed in [16], namely two-objective PCE
and single-objective PCE. The two-objective PCE formula-
tion consists in the simultaneous optimization of two ob-
jective functions, which separately consider the data object
clustering and the feature-to-cluster assignment. A well-
founded heuristic developed for this formulation of PCE
(called MOEA-PCE) has been found to be particularly ac-
curate, although it has drawbacks concerning efficiency, pa-
rameter setting, and interpretability of results. By contrast,
the single-objective PCE formulation embeds in one objec-
tive function the object-based and feature-based representa-
tions of candidate clusters. Apart from being a weaker for-
mulation than two-objective PCE, the developed heuristic
for single-objective PCE (called EM-PCE) is outperformed
by two-objective PCE in terms of effectiveness, while show-
ing more efficiency.

Both the early formulations of PCE have their own draw-
backs and advantages, however none of them refers to any
of the common approaches of clustering ensembles, i.e., the
aforementioned instance-based, cluster-based, and hybrid
approaches. This may limit the versatility of such early
formulations of PCE and, eventually, their comparability
with existing ways of solving clustering ensemble problems
at least in terms of experience gained in some real-world
scenarios. Besides this common shortcoming, an even more
serious weakness concerns the inability of the two-objective
PCE of treating the object-based and feature-based cluster
representations as interrelated. This fact in principle may
lead to projective consensus clustering solutions that contain
conceptual flaws in their cluster composition.

In this work, we face all the above issues revisiting the
PCE problem. For this purpose, we pursue a different ap-
proach to the study of PCE, focusing on the development of
methods that are closer to the standard clustering ensem-
ble methods. By providing an insight into the theoretical
foundations of the early two-objective PCE formulation, we
show its weaknesses and propose a new single-objective for-
mulation of PCE. The key idea underlying our proposal is
to define a function that measures the distance of any pro-
jective clustering solution from a given ensemble, where the
object-based and feature-based cluster representations are
considered as a whole. The new formulation enables the
development of heuristic algorithms that are easy to define

and, at the same time, are well-founded as they can ex-
ploit a corpus of research results obtained by the majority
of existing clustering ensemble methods. Particularly, we
investigate the opportunity of adapting each of the various
approaches of clustering ensembles to the new PCE prob-
lem. We define two heuristics that follow a cluster-based
approach, namely Cluster-Based Projective Clustering En-
sembles (CB-PCE) and a step-forward version called Fast
Cluster-Based Projective Clustering Ensembles (FCB-PCE).
We show not only the suitability of the proposed heuristics
to the PCE context but also their advantages in terms of
computational complexity w.r.t. the early formulations of
PCE. Moreover, based on an extensive experimental evalua-
tion, we assessed effectiveness and efficiency of the proposed
algorithms, and found that both outperform the early PCE
methods in terms of accuracy of projective consensus clus-
tering. In addition, FCB-PCE reveals to be faster than the
early two-objective PCE and comparable or even faster than
the early single-objective PCE in the online phase.

The rest of the paper is organized as follows. Section 2
provides background on clustering ensembles, projective
clustering, and the PCE problem. Section 3 describes our
new formulation of PCE and presents the two developed
heuristics along with an analysis of their computational com-
plexities. Section 4 contains experimental evaluation and
results. Finally, Section 5 concludes the paper.

2. BACKGROUND

2.1 Clustering Ensembles (CE)
Given a set D of data objects, a clustering solution defined

over D is a partition of D into a number of groups, i.e., clus-
ters. A set of clustering solutions defined over the same set
D of data objects is called ensemble. Given an ensemble
defined over D, the goal of CE is to derive a consensus clus-
tering, which is a (new) partition of D derived by suitably
exploiting the information available from the ensemble.

The earliest CE methods aim to explicitly solve the label
correspondence problem to find a correspondence between
the cluster labels across the clusterings of the ensemble [10,
11, 12]. These approaches typically suffer from efficiency is-
sues. More refined methods fall into instance-based, cluster-
based, and hybrid categories.

2.1.1 Instance-based CE
Instance-based CE methods perform a direct comparison

between data objects. Typically, instance-based methods
operate on the co-occurrence or co-association matrix W,
which resembles the pairwise object similarities according to
the information available from the ensemble. For each pair of
objects (~o ′, ~o ′′), the matrix W stores the number of solutions
of the ensemble in which ~o ′ and ~o ′′ are assigned to the same
cluster divided by the size of the ensemble. Instance-based
methods derive the final consensus clustering by applying
one of the following strategies: (i) performing an additional
clustering step based on W, using this matrix either as a
new data matrix [20], or as a pairwise similarity matrix in-
volved in a specific clustering algorithm [13, 22, 15]; (ii)
constructing a weighted graph based on W and partitioning
the graph according to well-established graph-partitioning
algorithms [28, 3, 29].



2.1.2 Cluster-based CE
Cluster-based CE lies on the principle “to cluster clus-

ters” [7, 28, 6]. The key idea is to apply a clustering al-
gorithm to the set of clusters that belong to the clustering
solutions in the ensemble, in order to compute a set of meta-
clusters (i.e., sets of clusters). The consensus clustering is
finally computed by assigning each data object to the meta-
cluster that maximizes a specific criterion, such as the com-
monly used majority voting, which assigns each data object
~o to the metacluster that contains the maximum number of
clusters which ~o belongs to.

2.1.3 Hybrid CE
Hybrid CE methods combine ideas from instance-based

and cluster-based approaches. The objective is to build a
hybrid bipartite graph whose vertices belong to the set of
data objects and the set of clusters. For each object ~o and
cluster C, the edge (~o, C) of the bipartite graph usually as-
sumes a unit weight, if the object ~o belongs to the cluster
C according to the clustering solution that includes C, and
zero otherwise [36]. Some methods use weights in the range
[0, 1], which express the probability that object ~o belongs
to cluster C [29]. The consensus clustering of hybrid CE
methods is obtained by partitioning the bipartite graph ac-
cording to well-established methods (e.g., METIS [19]). The
nodes representing clusters are filtered out from the graph
partition.

2.2 Projective Clustering (PC)
Let D be a set of data objects, where each ~o ∈ D is defined

on a feature space F = {1, . . . , |F|}. A projective cluster C
defined over D is a pair 〈ΓC ,∆C〉 such that

• ΓC denotes the object-based representation of C. It is
a |D|-dimensional real-valued vector whose component
ΓC,~o ∈ [0, 1], ∀~o ∈ D, represents the object-to-cluster
assignment of ~o to C, i.e., the probability Pr(C|~o) that
object ~o belongs to C;

• ∆C denotes the feature-based representation of C. It is
a |F|-dimensional real-valued vector whose component
∆C,f ∈ [0, 1], ∀f ∈ F , represents the feature-to-cluster
assignment of the feature f to C, i.e., the probabil-
ity Pr(f |C) that feature f belongs to the subspace of
features associated with C.

Note that the above definition addresses all possible types
of projective clusters handled by existing PC algorithms. In
fact, both soft and hard object-to-cluster assignments are
taken into account—the assignment is hard when ΓC,~o ∈
{0, 1} rather than [0, 1], ∀~o ∈ D. Similarly, feature-to-cluster
assignments may be equally-weighted, i.e., ∆C,f = 1/R
(where R is the number of relevant features for C), if f
is recognized as relevant, ∆C,f = 0 otherwise. This repre-
sentation is suited for dealing with the output of all those
PC algorithms which only select the relevant features for
each cluster, without specifying any feature-to-cluster as-
signment probability distribution. Such algorithms fall into
bottom-up [34, 25], top-down [32, 31, 2, 37, 5], and hybrid ap-
proaches [24, 35, 1]. On the other hand, the methods defined
in [34, 8, 30] handle projective clusters having soft object-
to-cluster assignment and/or feature-to-cluster assignment
unequally weighted.

The object-based (ΓC) and the feature-based (∆C) repre-
sentations of any projective cluster C are exploited to define

the projective cluster representation matrix (for brevity, pro-
jective matrix) XC of C. XC is a |D|×|F|matrix that stores,
∀~o ∈ D, f ∈ F , the probability of the intersection of the
events “object ~o belongs to C” and “feature f belongs to the
subspace associated with C”. Under the assumption of inde-
pendence between the two events, such a probability is equal
to the product of Pr(C|~o) = ΓC,~o with Pr(f |C) = ∆C,f .
Hence, given D = {~o1, . . . , ~o|D|} and F = {1, . . . , |F|}, ma-
trix XC can be formally defined as:

XC =

 ΓC,~o1×∆C,1 . . . ΓC,~o1×∆C,|F|
...

...
ΓC,~o|D|×∆C,1 . . . ΓC,~o|D|×∆C,|F|

 (1)

The goal of a PC method is to derive from an input set D
of data objects a projective clustering solution denoted by
C, which is defined as a set of projective clusters that satisfy
the following conditions:∑
C∈C

ΓC,~o = 1, ∀~o ∈ D and
∑
f∈F

∆C,f = 1, ∀C ∈ C

The semantics of any projective clustering C is that for each
projective cluster C ∈ C, the objects belonging to C are
actually close to each other if (and only if) they are projected
onto the subspace associated with C.

2.3 Projective Clustering Ensembles (PCE)
A projective ensemble E is defined as a set of projective

clustering solutions. No information about the ensemble
generation strategy (algorithms and/or setups), nor original
feature values of the objects within D are provided along
with E . Moreover, each projective clustering solution in E
may contain in general a different number of clusters.

The goal of PCE is to derive a projective consensus clus-
tering by exploiting information on the projective solutions
within the input projective ensemble.

2.3.1 Two-objective PCE
In [16], PCE is formulated as a two-objective optimiza-

tion problem, whose objectives take into account the object-
based (function Ψo) and the feature-based (function Ψf )
cluster representations of a given projective ensemble E :

C∗ = arg min
C∈E

{Ψo(C, E), Ψf (C, E)} (2)

where

Ψo(C, E) =
∑
Ĉ∈E

ψo(C, Ĉ), Ψf (C, E) =
∑
Ĉ∈E

ψf (C, Ĉ) (3)

Functions ψo and ψf are defined as ψo(C′, C′′) =

(ψo(C′, C′′)+ ψo(C′′, C′))/2 and ψf (C′, C′′) =

(ψf (C′, C′′) + ψf (C′′, C′)) /2, respectively, where

ψo(C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
J
(
ΓC′ ,ΓC′′

))

ψf (C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
J
(
∆C′ ,∆C′′

))
J
(
~u,~v
)

=
(
~u · ~v

)
/
(
‖~u‖22 + ‖~v‖22 − ~u · ~v

)
∈ [0, 1] denotes the

extended Jaccard similarity coefficient (also known as Tani-
moto coefficient) between any two real-valued vectors ~u and
~v [26].



The problem defined in (2) is solved by a well-founded
heuristic, in which a Pareto-based Multi-Objective Evolu-
tionary Algorithm, called MOEA-PCE, is used to avoid com-
bining the two objective functions into a single one.

2.3.2 Single-objective PCE
To overcome some issues of the two-objective PCE for-

mulation (such as those concerning efficiency, parameter
setting, and interpretation of the results), [16] proposes
an alternative PCE formulation based on a single-objective
function, which aims to consider the object-based and the
feature-based cluster representations in E as a whole:

C∗ = arg min
C∈E

∑
C∈C

∑
~o∈D

ΓαC,~o
∑
Ĉ∈E

∑
Ĉ∈Ĉ

ΓĈ,~o
∑
f∈F

(
∆C,f −∆Ĉ,f

)2

where α > 1 is a positive integer that ensures non-linearity
of the objective function w.r.t. ΓC,~o.

To solve the above problem, the EM-based Projective Clus-
tering Ensembles (EM-PCE) heuristic is defined. EM-PCE
iteratively looks for the optimal values of ΓC,~o (resp. ∆C,f )
while keeping ∆C,f (resp. ΓC,~o) fixed, until convergence.

3. CLUSTER-BASED PCE

3.1 Problem Statement
Experimental results have shown that the two-objective

PCE formulation is much more accurate than the single-
objective counterpart [16]. Nevertheless, two-objective PCE
suffers from an important conceptual issue that has not been
discussed in [16], proving that the accuracy of two-objective
PCE can be further improved. We unveil this issue in the
following example.

Example: Let E be a projective ensemble defined over a
set D of data objects and a set F of features. Suppose that
E contains only one projective clustering solution C and that
C in turn contains two projective clusters C′ and C′′, whose
object- and feature-based representations are different from
one another, i.e., ∃ ~o ∈ D s.t. ΓC′,~o 6= ΓC′′,~o, and ∃ f ∈ F
s.t. ∆C′,f 6= ∆C′′,f .

Let us consider two candidate projective consensus clus-
terings C1 = {C′1, C′′1 } and C2 = {C′2, C′′2 }. We assume
that C1 = C, whereas C2 is defined as follows. Cluster C′2
has object- and feature-based representations given by ΓC′
(i.e., the object-based representation of the first cluster C′

within C) and ∆C′′ (i.e., the feature-based representation
of the second cluster C′′ within C), respectively; cluster C′′2
has object- and feature-based representations given by ΓC′′
(i.e., the object-based representation of the second cluster
C′′ within C) and ∆C′ (i.e., the feature-based representation
of the first cluster C′ within C), respectively. According to
(3), it is easy to see that:

Ψo(C1, E)=Ψo(C2, E)=0 and Ψf (C1, E)=Ψf (C2, E)=0

Both the candidates C1 and C2 minimize the objectives of the
early two-objective PCE formulation reported in (2), and
hence, they are both recognized as optimal solutions. This
conclusion is conceptually wrong, because only C1 should be
recognized as an optimal solution, since only C1 is exactly
equal to the unique solution of the ensemble. Conversely, C2
is not well-representative of the ensemble E , as the object-
and feature-based representations of its clusters are inversely
associated to each other w.r.t. the associations present in

C. Indeed, in C2, C′1 = 〈ΓC′ ,∆C′′〉 and C′′1 = 〈ΓC′′ ,∆C′〉,
whereas, the solution C ∈ E is such that C′ = 〈ΓC′ ,∆C′〉
and C′′ = 〈ΓC′′ ,∆C′′〉.

The issue described in the above Example arises because
the two-objective PCE formulation ignores that the object-
based and feature-based representations of any projective
cluster are strictly coupled to each other, and hence, need
to be considered as a whole. In other words, in order to ef-
fectively evaluate the quality of a candidate projective con-
sensus clustering, the objective functions Ψo and Ψf cannot
be kept separated from each other.

We attempt to solve the above drawback by proposing the
following alternative formulation of PCE, which is based on
a single objective function:

C∗ = arg min
C∈E

Ψof (C, E) (4)

where Ψof is a function designed to measure the “distance”
of any well-defined projective clustering solution C from E in
terms of both data clustering and feature-to-cluster assign-
ment. To carefully take into account efficiency, we define
Ψof based on an asymmetric function, which has been de-
rived by adapting the measure defined in [16] to our setting:

Ψof (C, E) =
∑
Ĉ∈E

ψof (C, Ĉ) (5)

where

ψof (C′, C′′) =
1

2

(
ψof (C′, C′′) + ψof (C′′, C′)

)
(6)

and

ψof (C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
Ĵ
(
XC′ ,XC′′

))
(7)

In (7), the similarity between any pair C′, C′′ of projective
clusters is computed in terms of their corresponding pro-
jective matrices XC′ and XC′′ (cf. (1), Sect. 2.2). For this
purpose, the Tanimoto similarity coefficient can easily be
generalized to operate on real-valued matrices (rather than
vectors):

Ĵ(X, X̂) =

∑|rows(X)|
i=1 Xi · X̂i

‖X‖22 + ‖X̂‖22 −
∑|rows(X)|
i=1 Xi · X̂i

(8)

where Xi · X̂i denotes the scalar product between the i-th
rows of matrices X and X̂. >From a dissimilarity viewpoint,
as Ĵ ∈ [0, 1], we adopt in this work the measure 1 − Ĵ . We

hereinafter refer to 1− Ĵ as Tanimoto distance.
It can be noted that the proposed formulation based

on the function Ψof fulfils the requirement of measuring
the quality of a candidate consensus clustering in terms of
both data clustering and feature-to-cluster assignments as a
whole. In particular, we remark that the issue described in
the previous Example does not arise in the proposed formu-
lation. Indeed, considering again the two candidate projec-
tive consensus clusterings C1 and C2 of the Example, it is
easy to see that:

Ψof (C1, E) = 0 and Ψof (C2, E) > 0

Thus, C1 is correctly recognized as an optimal solution,
whereas C2 is not.



3.2 Heuristics
Apart from solving the critical issue of two-objective PCE

previously explained, a major advantage of the proposed
PCE formulation w.r.t. the early ones defined in [16] is its
close relationship to the classic formulations typically em-
ployed by CE algorithms. Like standard CE, the problem
defined in (4) can be straightforwardly proved to be a special
version of the median partition problem [4], which is defined
as follows: given a number of partitions (clusterings) de-
fined over the same set of objects and a distance measure
between partitions, find a (new) clustering that minimizes
the distance from all the input clusterings. The only differ-
ence between (4) and any standard CE formulation is that
the former deals with projective clustering solutions (and
hence, it needs a new measure for comparing projective clus-
terings), whereas the latter involves standard clustering so-
lutions. The closeness to CE is a key point of our work, as
it enables the development of heuristic algorithms for PCE
following standard approaches to CE. The advantage in this
respect is twofold: heuristics for PCE can be defined by ex-
ploiting the extensive and well-established work so far given
for standard CE, which enables the development of solutions
that are simple and easy-to-understand, and effective at the
same time.

Within this view, a reasonable choice for defining proper
heuristics for PCE is to adapt the standard CE approaches,
i.e., instance-based, cluster-based, and hybrid (cf. Sect. 2.1),
to the PCE context. However, it is arguable if all such
CE approaches are well-suited for PCE. In fact, defining
an instance-based PCE method is intrinsically tricky, and
this also holds for the hybrid approach, which is essentially
a combination of the instance-based and cluster-based ones.
We explain the issues on defining instance-based PCE in the
following.

First, as the focus of any hypothetical instance-based PCE
is primarily on data objects, performing the two PCE steps
of data clustering and feature-to-cluster assignment alto-
gether would be hard. Indeed, focusing on data objects
may produce information about data clustering only (for
instance, by exploiting a co-occurrence matrix properly re-
defined for the PCE context). This would force the assign-
ment of the features to the various clusters to be performed
in a separate step, and only once the objects have been
grouped in clusters. Unfortunately, performing the two PCE
steps of data clustering and feature-to-cluster assignment
distinctly may negatively affect accuracy of the output con-
sensus clustering. According to the definition of projective
clustering, the information about the various objects belong-
ing to any projective cluster should not be interpreted as
absolute, but always in relation to the subspace associated
to that cluster and vice versa. Thus, data clustering and
feature-to-cluster assignment should be interrelated, at each
step of the heuristic algorithm to be defined.

A more crucial issue arises even accepting to perform
data clustering and feature-to-cluster assignment separately.
Given a set of data objects to be included in any projec-
tive cluster, the feature-to-cluster assignment process should
take into account that the notion of subspace of any given
projective cluster makes sense only if it refers to the whole
set of objects belonging to that cluster. In other words, say-
ing that any set of data objects forms a cluster C having a
subset S of features associated with it does not mean that
each object within C is represented by S, but rather that

Algorithm 1 CB-PCE

Input: a projective ensemble E; the number K of clusters in the
output projective consensus clustering;

Output: the projective consensus clustering C∗

1: ΦE ←
⋃
Ĉ∈E Ĉ

2: P← pairwiseClusterDistances(ΦE) {(8)}
3: M← metaclusters(ΦE , P, K)
4: C∗ ← ∅
5: for allM ∈M do
6: Γ∗M ← object-basedRepresentation(ΦE ,M) {(12)}
7: ∆∗M ← feature-basedRepresentation(ΦE ,M) {(22)}
8: C∗ ← C∗ ∪ {〈ΓM, ∆M〉}
9: end for

the entire set C is represented by S. Unfortunately, perform-
ing feature-to-cluster assignment apart from data clustering
contrasts with the semantics of a subspace associated to a
set of objects in a projective cluster. Indeed, the various fea-
tures could be assigned to any given cluster C only by con-
sidering the objects within C independently of one another.
Let us consider, for example, the case where the assignment
is performed by averaging over the objects within C and over
the feature-based representations of all the clusters within
the ensemble E , i.e., ∆C,f = avg~o∈C,Ĉ∈Ĉ,Ĉ∈E{ΓĈ,~o ×∆Ĉ,f},
∀f ∈ F . This case clearly shows that each feature f is
assigned to C by considering each object within C indepen-
dently from the other ones belonging to C.

Within this view, we discard instance-based and hybrid
approaches to embrace a cluster-based approach. In the fol-
lowing, we describe our cluster-based proposal in detail and
also show how this is particularly appropriate to the PCE
context.

3.2.1 The CB-PCE algorithm
The Cluster-Based Projective Clustering Ensembles (CB-

PCE) algorithm is proposed as a heuristic approach to the
PCE formulation given in (4). In addition to the notation
provided in Sect. 2, CB-PCE employs the following symbols:
M denotes a set of metaclusters (i.e., a set of sets of clusters),
M ∈ M denotes a metacluster (i.e., a set of clusters), and
M ∈M denotes a cluster (i.e., a set of data objects).

The outline of CB-PCE is reported in Alg. 1. Similarly to
standard cluster-based CE, the first step of CB-PCE aims
to group the set ΦE of clusters from each solution within the
input ensemble E into metaclusters (Lines 1-2). A clustering
step over the set ΦE is performed by the function metaclus-
ters. This step exploits the matrix P of pairwise distances
between the clusters within ΦE (Line 1). The distance be-
tween any pair of clusters is computed by resorting to the
Tanimoto similarity coefficient reported in (8). The set M
of metaclusters is finally exploited to derive the object- and
feature-based representations of each projective cluster to
be included into the output consensus clustering C∗ (Lines
3-8). Such representations are denoted by Γ∗M and ∆∗M,
∀M ∈ M, respectively; more precisely, Γ∗M (resp. ∆∗M)
denotes the object-based (resp. feature-based) representa-
tion of the projective cluster within C∗ corresponding to the
metacluster M.

Γ∗M and ∆∗M are derived by focusing on the optimization
of a criterion easy to solve, which enables the finding of
reasonable and effective approximations at the same time.
In particular, we adapt the widely used majority voting to
the context at hand. Let us first consider Γ∗M values. If



the projective clustering solutions within the ensemble are
all hard at a clustering level, the majority voting criterion
leads to the definition of the following optimization problem:

{Γ∗M | M ∈M} = argmin
{ΓM|M∈M}

∑
M∈M

∑
~o∈D

ΓM,~o

|M|
∑
M∈M

1− ΓM,~o

s.t . ∑
M∈M

ΓM,~o = 1, ∀~o ∈ D

ΓM,~o ∈ {0, 1}, ∀M ∈M, ∀~o ∈ D

whose solution can be easily proved to be as follows
(∀M, ∀~o):

Γ∗M,~o=

 1 if M = arg min
M′∈M

1

|M′|
∑

M∈M′
1− ΓM,~o

0 otherwise

that is, each object ~o is assigned to the metaclusterM con-
taining the maximum number of clusters to which ~o belongs
(i.e., such that ΓM,~o = 1).

If the ensemble contains projective clusterings that are
soft at clustering level, the following problem can be defined:

{Γ∗M|M∈M} = argmin
{ΓM|M∈M}

Q (9)

s.t . ∑
M∈M

ΓM,~o = 1, ∀~o ∈ D (10)

ΓM,~o ≥ 0, ∀M ∈M, ∀~o ∈ D (11)

where

Q=
∑
M∈M

∑
~o∈D

ΓαM,~o AM,~o , AM,~o=
1

|M|
∑
M∈M

1− ΓM,~o

and α > 1 is an integer that guarantees the non-linearity
of the objective function Q w.r.t. ΓM,~o, needed to ensure
Γ∗M,~o ∈ [0, 1] (rather than {0, 1}).1 The solution for such
a problem however is not as straightforward as that of the
traditional case (i.e., hard data clustering). We derive the
solution in the following.

Theorem 1. The optimal solution of problem P defined
in (9)-(11) is given by (∀M, ∀~o):

Γ∗M,~o =

[ ∑
M′∈M

(
AM,~o

AM′,~o

) 1
α−1

]−1

(12)

Proof. The optimal Γ∗M,~o can be found by means of the
conventional Lagrange multipliers method. To this end, we
first consider the relaxed problem P ′ of P obtained by tem-
porarily discarding the inequality constraints from the con-
straint set of P (i.e., the constraints defined in (11)).

We define the new (unconstrained) objective function Q′

for P ′ as follows:

Q′ = Q+
∑
~o∈D

λ~o

( ∑
M′∈M

ΓM′,~o − 1

)
(13)

The optimal Γ∗M,~o are computed by first retrieving the
stationary points of Q′, i.e., the points for which

∇Q′ =

(
∂ Q′

∂ ΓM,~o
,
∂ Q′

∂ λ~o

)
= 0

1Alternatively, to obtain Γ∗M,~o ∈ [0, 1], properly defined reg-
ularization terms can be introduced (see, e.g., [21]).

Thus, we solve the following system of equations:

∂ Q′

∂ ΓM,~o
= α AM,~o (ΓM,~o)

α−1 + λ~o = 0 (14)

∂ Q′

∂ λ~o
=

∑
M′∈M

ΓM′,~o − 1 = 0 (15)

Solving (14) w.r.t. ΓM,~o and substituting such a solution in
(15), we obtain:

∑
M′∈M

(
−λ~o

α AM′,~o

) 1
α−1

= 1 (16)

Solving (16) w.r.t. λ~o and substituting such a solution in
(14), we obtain:

α AM,~o (ΓM,~o)
α−1−

[ ∑
M∈M

(
1

α AM′,~o

) 1
α−1

]−(α−1)

= 0 (17)

Finally, solving (17) w.r.t. ΓM,~o, we obtain a stationary
point whose expression is exactly equal to that in (12):

Γ∗M,~o =

[ ∑
M′∈M

(
AM,~o

AM′,~o

) 1
α−1

]−1

(18)

As it holds that (i) the stationary points of the Lagrangian
function Q′ are also stationary points of the original objec-
tive function Q, (ii) the feasible region of P and hence, the
feasible region of P ′ is a convex set, and (iii) Q is convex
w.r.t. ΓM,~o, it follows that such a stationary point repre-
sents a global minimum of Q, and, accordingly, the optimal
solution of P ′. Moreover, as AM,~o ≥ 0, ∀M, ∀~o, it is trivial
to observe that Γ∗M,~o ≥ 0, ∀M, ∀~o. Therefore, the solution
in (18) satisfies the inequality constraints that were tem-
porarily discarded in order to define the relaxed problem P ′

(cf. (11)); thus, it represents the optimal solution of the
original problem P , which proves the theorem.

An analogous reasoning can be carried out for ∆∗M,f . In
this case, the problem to be solved is the following:

{∆∗M|M∈M}= arg min
{∆M|M∈M}

∑
M∈M

∑
f∈F

∆β
M,f BM,f (19)

s.t . ∑
f∈F

∆M,f = 1, ∀M ∈M (20)

∆M,f ≥ 0, ∀M ∈M, ∀f ∈ F (21)

where BM,f = |M|−1∑
M∈M 1−∆M,f and β plays the same

role as α in function Q. The solution of such a problem is
similar to that derived for Γ∗M,~o :

Theorem 2. The optimal solution of the problem defined
in (19)-(21) is given by the following (∀M, ∀f):

∆∗M,f =

 ∑
f ′∈F

(
BM,f

BM,f ′

) 1
β−1

−1

(22)

Proof. Analogous to Theorem 1.



Rationale of CB-PCE.
Let us now informally show that CB-PCE is well-suited

for PCE, thus supporting one of the claim of this work, i.e.,
cluster-based approaches are particularly appropriate to the
PCE context (unlike instance-based and hybrid ones).

Looking at the PCE formulation reported in (4), it is easy
to see that function Ψof retrieves the consensus clustering
C∗ so that each cluster within C∗ is ideally “assigned” to ex-
actly one cluster of each projective clustering solution in the
input ensemble E , where the “assignments” are performed
by minimizing the Tanimoto distance 1− Ĵ (cf. (8)). Thus,
considering all the solutions in the ensemble, any cluster
C ∈ C∗ is assigned to a set of clusters (metacluster)M that
contains exactly one cluster of each solution in the ensem-
ble, that is |M| = |E|, and M ′∈ C ∧M ′′∈ C ⇔ M ′ = M ′′,
∀M ′,M ′′∈M, ∀C ∈ E .

Clearly, if one would know in advance the optimal set of
metaclusters to be assigned to the clusters within C∗, the
problem in (4) would be optimally solved by computing,
for each metacluster M, the cluster C∗ that minimizes the
Tanimoto distance from all the clusters within M, that is:

C∗ = arg min
C

∑
M∈M

1− Ĵ(XC ,XM ) (23)

However, it holds that: (i) the metaclusters are not known
in advance, as their computation is part of the optimization
process; (ii) the problem in (23) is hard to solve: it falls into
the class of median problems in which the distance to be
minimized is the Tanimoto distance; this kind of problems
has been recently proved to be NP-hard [9].

The validity of CB-PCE as a heuristic approach to the
PCE formulation proposed in (4) lies in that it exactly fol-
lows the scheme reported above (i.e., it first recognizes meta-
clusters and then assigns objects and features to metaclus-
ters), following some approximations. These approximations
are needed for solving two critical points:

1. a sub-optimal set of metaclusters is computed by clus-
tering the overall set of projective clusters within the
ensemble, where the distance measure used for com-
paring clusters is the Tanimoto distance, which is the
measure employed by the proposed formulation in (4);

2. Γ∗M and ∆∗M values (for each metaclusterM) are com-
puted by optimizing an easy-to-solve criterion that ef-
fectively approximates the problem in (23).

3.2.2 Speeding-up CB-PCE: FCB-PCE
Given a set D of data objects and a set F of features, the

computational complexity of the measure Ĵ reported in (8)
(used for computing the similarity between two projective
clusters) is O(|D| |F|), as it involves a comparison between
two |D|×|F| matrices. For efficiency purposes, we can lower
the complexity by defining an alternative measure working
in O(|D| + |F|). Given any two projective clusters C′ and

C′′, such a measure, called Ĵfast, exploits the object-based
(ΓC′ and ΓC′′) and the feature-based (∆C′ and ∆C′′) rep-
resentation vectors of C′ and C′′, respectively, rather than
their corresponding projective matrices. Formally:

Ĵfast(C
′, C′′) =

1

2

(
Ĵ(ΓC′ ,ΓC′′) + Ĵ(∆C′ ,∆C′′)

)
(24)

where Ĵ(·, ·) denotes again the Tanimoto similarity coeffi-
cient defined in (8), which is in this case applied to real-

valued vectors rather than matrices. It is easy to observe
that, like Ĵ , Ĵfast ∈ [0, 1].

Taking into account Ĵfast, we define a version of the CB-
PCE algorithm which is similar to that defined in Sect. 3.2.1,
except for the measure involved for comparing the projec-
tive clusters, which is, in this case, based on Ĵfast. We here-
inafter refer to this alternative version of the algorithm as
Fast Cluster-Based Projective Clustering Ensembles (FCB-
PCE) algorithm.

Although clearly advantageous in terms of efficiency, a
major drawback of FCB-PCE concerns accuracy. In fact,
a major weakness of the measure Ĵfast exploited by FCB-

PCE is that it is less accurate than its slow counterpart Ĵ
exploited by CB-PCE. This essentially depends on the fact
that comparing any two projective clusters C′ and C′′ by in-
volving their projective matrices XC′ and XC′′ , respectively,
is generally more effective than involving their object- and
feature-based representation vectors ΓC′ , ΓC′′ , ∆C′ , and
∆C′′ [23].2 Indeed, although it can be trivially proved that
XC′ = XC′′ ⇔ ΓC′ = ΓC′′ ∧ ∆C′ = ∆C′′ , the vectors ΓC′ ,
∆C′ , and ΓC′′ , ∆C′′ are in general a factorization of the
matrices XC′ and XC′′ , respectively (i.e., XC′ = ΓTC′ ∆C′

and XC′′ = ΓTC′′ ∆C′′). Thus, only matrices XC′ and XC′′

provide the whole information about the representation of
the corresponding projective clusters.

Although Ĵfast is less accurate than Ĵ , it still allows the
comparison of projective clusters by taking into account
their object- and feature-based representations altogether.
Hence, the proposed FCB-PCE heuristic based on Ĵfast still
represents a valuable heuristic to the PCE formulation pro-
posed in this work, as it overcomes the main issue of two-
objective PCE explained in Sect. 3.1.

3.2.3 Computational Analysis
Here we discuss the computational complexity of the pro-

posed CB-PCE and FCB-PCE algorithms. We are given: a
set D of data objects, each one defined over a feature space
F , a projective ensemble E defined over D and F , and a
positive integer K representing the number of clusters in
the output projective consensus clustering. We also assume
that the size |C| of each solution C in E is O(K). For both
the algorithms, we may distinguish three steps:

1. pre-processing : it concerns the computation of the
pairwise distances between clusters, by involving mea-
sures Ĵ (cf. (8)) for CB-PCE and Ĵfast (cf. (24)) for
FCB-PCE; this step takes O(K2 |E|2 |D| |F|) and
O(K2 |E|2 (|D| + |F|)) for CB-PCE and FCB-PCE,

respectively, because computing Ĵ (resp. Ĵfast) is
O(|D| |F|) (resp. O(|D| + |F|)) (cf. Sect. 3.2.2), and
the clusters to be compared to each other areO(K |E|);

2. meta-clustering : it concerns the clustering of the
O(K |E|) clusters of all the solutions in the ensemble;
assuming to employ a clustering algorithm which is at
most quadratic w.r.t. the size of the dataset to be par-
titioned, this step takes O(K2 |E|2) for both CB-PCE
and FCB-PCE;

3. post-processing : it concerns the assignment of objects
and features to the metaclusters, and is exactly the

2[23] deals with hard projective clusters; however, the rea-
soning therein involved can be easily extended to a soft case.



Table 1: Computational complexities

total online offline

MOEA-PCE O(ItK2|E|(|D|+ |F|)) O(ItK2|E|(|D|+ |F|)) —
EM-PCE O(K|E||D||F|) O(IK|D||F|) O(K|E||D||F|)
CB-PCE O(K2|E|2|D||F|) O(K|E|(K|E|+ |D|+ |F|)) O(K2|E|2|D||F|)
FCB-PCE O(K2|E|2(|D|+ |F|)) O(K|E|(K|E|+ |D|+ |F|)) O(K2|E|2(|D|+ |F|))

same for both CB-PCE and FCB-PCE. According to
(12) and (22), both the object and the feature assign-
ments need to look up all the clusters in each meta-
cluster only once; thus, for each object and for each
feature, the needed step costs O(K|E|). Accordingly,
performing this step for all objects and features leads
to a total cost of O(K|E| (|D| + |F|)) for the entire
post-processing step.

It can be noted that the first step is an offline phase, i.e., a
phase to be performed only once in case of a multi-run exe-
cution, whereas the second and third are online steps. Thus,
as summarized in Table 1 (where we also report the com-
plexities of the earlier MOEA-PCE and EM-PCE methods
defined in [16]3), we can finally state that:

• the offline, online, and total (i.e., offline + online)
complexities of CB-PCE are O(K2 |E|2 |D| |F|),
O(K|E|(K|E| + |D| + |F|)), and O(K2 |E|2 |D| |F|),
respectively;

• the offline, online, and total (i.e., offline + online)
complexities of FCB-PCE are O(K2 |E|2 (|D|+ |F|)),
O(K|E|(K|E|+ |D|+ |F|)), and O(K2 |E|2 (|D|+ |F|)),
respectively.

Interpretation of the complexity results.
Let us now provide an insight for the comparison between

the (total) complexities derived above. For the sake of read-
ability, we hereinafter omit the suffix“-PCE”from the names
of the various PCE algorithms. We denote with r(a1, a2) the
ratio between the complexities of the PCE algorithms a1 and
a2. Clearly, a ratio smaller (resp. greater) than 1 means that
the complexity of a1 is smaller (resp. greater) than that of
a2. Our main observations are summarized in the following.

• As expected, FCB-PCE is always faster than CB-PCE,
as it holds that r(FCB,CB) = (|D|+|F|)/(|D||F|) ≤ 1,
∀ |D|, |F| > 1.

• CB-PCE:

– it holds that r(CB,EM) = K |E| > 1; thus, CB-
PCE is always slower than EM-PCE;

– the ratio r(CB,MOEA) is equal to
(|E| |D| |F|)/(I t (|D| + |F|)). This
implies that r(CB,MOEA) < 1 if
(2 |D| |F|)/(|D| + |F|) < 2 I t/|E|, i.e.,
as (|D| + |F|)/2 ≥ (2 |D| |F|)/(|D| + |F|), that
r(CB,MOEA) < 1 if |D| + |F| < 4 I t/|E|. The
latter condition is true only in a small number
of real cases; as an example, considering the
numerical values for I, t and |E| suggested in [16]

3In Table 1, I denotes the number of iterations to conver-
gence (for MOEA-PCE and EM-PCE), whereas t is the pop-
ulation size (for MOEA-PCE only) [16].

(i.e., 200, 30 and 200, respectively), CB-PCE
is faster than MOEA-PCE if |D| + |F| < 120,
i.e., when the input dataset is very small and/or
low-dimensional. For this purpose, CB-PCE can
be recognized as in practice always slower than
MOEA-PCE.

• FCB-PCE:

– it holds that the ratio r(FCB,EM) =
(K |E| (|D| + |F|))/(|D| |F|) is greater than
1 if (2 |D| |F|)/(|D| + |F|) < 2 K |E|, which
essentially means that FCB-PCE is slower
than EM-PCE if |D| + |F| < 4 K |E|, as
(|D| + |F|)/2 ≥ (2 |D| |F|)/(|D| + |F|). Thus,
for large and/or high-dimensional datasets
(i.e., for datasets having |D| and |F| such
that |D| + |F| > 4 K |E|) FCB-PCE may be
faster than EM-PCE, whereas for small and/or
low-dimensional datasets may not;

– r(FCB,MOEA) = |E|/(I t); assuming to set t
equal to 15% of the ensemble size |E| as suggested
in [16], it holds that r(FCB,MOEA) = 20/(3 I).
Thus, as it typically holds that I � 7 (e.g., in [16]
I = 200), r(FCB,MOEA) is always smaller than
1 and, therefore, FCB-PCE is always faster than
MOEA-PCE.

To summarize, we can state that CB-PCE is the slowest
method. FCB-PCE is faster than MOEA-PCE, whereas,
compared to EM-PCE, it is faster (resp. slower) for
large (resp. small) and/or high-dimensional (resp. low-
dimensional) datasets.

4. EXPERIMENTAL EVALUATION
We conducted an experimental evaluation to assess the ac-

curacy and efficiency of the consensus clusterings obtained
by the proposed CB-PCE and FCB-PCE. The comparison
also involved the previous existing PCE algorithms (i.e.,
MOEA-PCE and EM-PCE) [16] as baseline methods.4

4.1 Evaluation methodology
Following [16], we used eight benchmark datasets from the

UCI Machine Learning Repository [27], namely Iris, Wine,
Glass, Ecoli, Yeast, Segmentation, Abalone and Letter, and
two time-series datasets from the UCR Time Series Clas-
sification/Clustering Page [33], namely Tracedata and Con-
trolChart. Table 2 reports the main characteristics of the
datasets; the interested reader is referred to [27, 33] for a
description of the datasets.

4Experiments were conducted on a quad-core platform Intel
Pentium IV 3GHz with 4GB memory and running Microsoft
WinXP Pro.



Table 2: Datasets used in the experiments

dataset objects attributes classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Segmentation 2,310 19 7
Abalone 4,124 7 17
Letter 7,648 16 10
Tracedata 200 275 4
ControlChart 600 60 6

4.1.1 Ensemble generation
We generated ensembles as suggested in [16]. In particu-

lar, for each set of experiments and dataset we considered
20 different ensembles; all results we present in the following
refer to averages over these ensembles. Ensemble generation
was carried out by running the LAC projective clustering al-
gorithm [30], in which the diversity of the solutions was en-
sured by randomly choosing the initial centroids and varying
the parameter h; here we recall that this parameter controls
the incentive for clustering on more features depending on
the strength of the local correlation of data. To test the
ability of the proposed algorithms to deal with soft clus-
tering solutions and with solutions having equally weighted
feature-to-cluster assignments, we generated each ensem-
ble E as a composition of four equal-sized subsets, denoted
as E1 (hard data clustering, feature-to-cluster assignments
unequally weighted), E2 (hard data clustering, feature-to-
cluster assignments equally weighted), E3 (soft data clus-
tering, feature-to-cluster assignments unequally weighted),
and E4 (soft data clustering, feature-to-cluster assignments
equally weighted).

4.1.2 Setting of the PCE algorithms
We set the parameters of MOEA-PCE and EM-PCE as

reported in [16]. In particular, as far as MOEA-PCE, the
population size (t) was set equal to 15% of the ensemble size
and the number I of maximum iterations equal to 200. The
random noise needed for the mutation step was obtained via
Monte Carlo sampling on a standard Gaussian distribution.
Regarding EM-PCE, the parameter α was set equal to 2; this
value also represented the optimal value for the parameters
α and β of our CB-PCE and FCB-PCE.

4.1.3 Assessment criteria
We assessed the quality of a consensus clustering C using

both an external and an internal validity approach; specif-
ically, we carried out two evaluation stages, the first based
on the similarity of C w.r.t. a reference classification and the
second based on the average similarity w.r.t. the solutions
in the input ensemble E .

Similarity w.r.t. the reference classification.
We denote with C̃ a reference classification, where the

object-based representations ΓC̃ of each projective cluster

C̃ within C̃ are provided along with D (the selected datasets
are all available with a reference classification), whereas the

feature-based representations ∆C̃,f , ∀C̃ ∈ C̃, ∀f ∈ F , are

computed as suggested in [30]:

∆C̃,f =
exp

(
−U(C̃, f)/h

)
∑
f ′∈F exp

(
−U(C̃, f ′)/h

)
where the LAC’s parameter h was set equal to 0.2 and:

U(Ĉ, f̂) =

(∑
~o∈D

ΓĈ,~o

)−1 ∑
~o∈D

ΓĈ,~o
(
c(Ĉ, f̂)− of̂

)2

c(Ĉ, f̂) =

(∑
~o∈D

ΓĈ,~o

)−1 ∑
~o∈D

ΓĈ,~o × of̂

with of̂ denoting the f̂ -th feature value of object ~o.

Similarity between C and C̃ was computed in terms of
the Normalized Mutual Information, by taking into account
their object-based (NMIo) representations, feature-based
representations (NMIf ), or both (NMIof ), and by adapting
the original definition given in [28] to handle soft solutions.
Here we report the formal definition of NMIof , NMIo and
NMIf can be derived in a similar way:

NMIof (C, C̃) =

∑
C∈C

∑
C̃∈C̃

a(C,C̃)

T (C,C̃)
× log

(
|D|2×a(C,C̃)

T (C,C̃)×b(C)×b(C̃)

)
√
H(C)×H(C̃)

where

a(C′, C′′) =
∑
~o∈D

∑
f∈F

ΓC′,~o ∆C′,f ΓC′′,~o ∆C′′,f

b(Ĉ) =
∑
~o∈D

∑
f∈F

ΓĈ,~o ∆Ĉ,f H(Ĉ) = −
∑
Ĉ∈Ĉ

b(Ĉ)
|D| log b(Ĉ)

|D|

T (C′, C′′) =
∑
~o∈D

∑
f∈F

( ∑
C′∈C′

ΓC′,~o ∆C′,f

)( ∑
C′′∈C′′

ΓC′′,~o ∆C′′,f

)
We now explain the rationale of this evaluation stage. Let

us consider NMIof , where analogous considerations hold
for NMIo and NMIf . Since no additional information is
provided along with any given input projective ensemble
E—the reference classifications associated to the benchmark
datasets are indeed exploited only for testing purposes—
randomly extracting a projective solution from E is the only
fair way to proceed in case no PCE method is used. Within
this view, in order to establish the validity of a projective
consensus C computed by any PCE algorithm, we compare
the results achieved by C w.r.t. those obtained by any pro-
jective clustering randomly chosen from E . Such a compari-
son can be performed according to the following expression,
which aims to compute the “expected difference” between
the results by C and those by E :

Θof (C, E , C̃) =
∑
Ĉ∈E

(
NMIof (C, C̃)−NMIof (Ĉ, C̃)

)
Pr(Ĉ)

where Pr(Ĉ) is the probability of randomly choosing Ĉ from
E . Since no prior knowledge is provided along with E , we can
assume a uniform distribution for the probabilities Pr(Ĉ),
i.e., Pr(Ĉ) = |E|−1, ∀Ĉ ∈ E . Computing Θof hence becomes

equal to computing the similarity between C and C̃ minus



Table 3: Evaluation w.r.t. the reference classification

Θof Θo Θf
MOEA- EM- CB- FCB- MOEA- EM- CB- FCB- MOEA- EM- CB- FCB-

data PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE

Iris +.146 +.168 +.218 +.185 +.319 +.228 +.309 +.297 +.198 -.095 +.139 +.117
Wine +.136 +.083 +.275 +.224 +.201 +.130 +.272 +.253 +.152 +.030 +.211 +.206
Glass +.105 +.162 +.158 +.157 +.092 +.134 +.180 +.167 +.048 +.060 +.001 +.009
Ecoli +.164 +.086 +.211 +.232 +.245 +.125 +.223 +.213 +.042 +.042 +.023 +.017
Yeast +.049 +.021 +.092 +.095 +.090 +.066 +.113 +.110 +.006 +.090 +.102 +.010

Segmentation +.137 +.144 +.148 +.141 +.102 +.206 +.194 +.185 +.075 +.079 +.098 +.150
Abalone +.116 +.111 +.134 +.130 +.141 +.116 +.185 +.182 +.093 +.092 +.123 +.120
Letter +.111 +.107 +.141 +.134 +.146 +.122 +.188 +.185 +.092 +.097 +.131 +.124
Trace +.097 +.019 +.125 +.140 +.032 +.026 +.154 +.132 -.007 +.114 +.112 +.115

ControlChart +.091 +.204 +.345 +.276 +.050 +.011 +.027 +.051 +.233 +.416 +.287 +.283
min +.049 +.019 +.092 +.095 +.032 +.011 +.027 +.051 -.007 -.095 +.001 +.009
max +.164 +.204 +.345 +.276 +.319 +.228 +.309 +.297 +.233 +.416 +.287 +.283
avg +.115 +.110 +.185 +.171 +.142 +.116 +.185 +.178 +.093 +.093 +.123 +.122

the average similarity between C̃ and the solutions within E ,
as proved by the following:

Θof (C, E , C̃) =
∑
Ĉ∈E

(
NMIof (C, C̃)−NMIof (Ĉ, C̃)

)
Pr(Ĉ) =

= NMIof (C, C̃)−
∑
Ĉ∈E

NMIof (Ĉ, C̃)× |E|−1 =

= NMIof (C, C̃)− avgĈ∈ENMIof (Ĉ, C̃) (25)

Θo and Θf can be defined analogously. The larger Θof , Θo

and Θf , the better the quality of C.

Similarity w.r.t. the ensemble solutions.
The goal of this evaluation stage was to assess how well

a consensus clustering complies with the solutions in the
input ensemble. For this purpose, we evaluated the average
similarity NMIof (C, E) = avgC′∈ENMIof (C, C′) between the
consensus clustering C and the solutions in the ensemble E
(NMIo and NMIf are defined analogously). To improve the
readability of the results, we normalize NMIof , NMIo and
NMIf by dividing them by the average pairwise similarity
of the solutions in the ensemble. Formally, we define the
ratios (coefficients of variation) Υof , Υo, and Υf :

Υof (C, E) = NMIof (C, E)/avgC′,C′′∈ENMIof (C′, C′′) (26)

Υo and Υf are defined similarly. The larger these quantities
are, the better the quality of C is.

4.2 Results

4.2.1 Accuracy
For each algorithm, dataset and ensemble, we performed

50 different runs. We reported average clustering results
obtained by CB-PCE and FCB-PCE, as well as by the early
MOEA-PCE and EM-PCE in Tables 3 and 4.

Evaluation w.r.t. the reference classification.
Both CB-PCE and FCB-PCE achieved higher Θof re-

sults (first 4-column groups in Table 3) than MOEA-PCE
on all datasets. In particular, CB-PCE obtained an aver-
age improvement of 0.070, with a maximum gain of 0.254
(ControlChart), whereas FCB-PCE obtained an average im-
provement of 0.056, with a maximum of 0.185 (ControlChart
again). EM-PCE was on average less accurate than MOEA-
PCE; thus, the average gains of CB-PCE and FCB-PCE
w.r.t. EM-PCE were higher than those achieved w.r.t.

MOEA-PCE (0.075 and 0.061, respectively). Comparing the
two proposed CB-PCE and FCB-PCE, the former achieved
higher quality on nearly all datasets (all but Ecoli, Yeast and
Trace), with an average gain of about 0.014 and peaks on
ControlChart (0.069) and Wine (0.051). The higher perfor-
mance of CB-PCE vs. FCB-PCE confirms one of the major
claims of this work (cf. Sect. 3.2.2).

The superior performance of CB-PCE and FCB-PCE
w.r.t. the early MOEA-PCE and EM-PCE was also con-
firmed in terms of object-based (Θo) and feature-based (Θf )
representations. In particular, CB-PCE achieved average
Θo equal to 0.185 and average improvements w.r.t. MOEA-
PCE and EM-PCE of 0.043 and 0.069, respectively. Also,
CB-PCE outperformed MOEA-PCE (resp. EM-PCE) on
seven (resp. eight) out of ten datasets. As far as FCB-
PCE, the average Θo was 0.178, with average gains w.r.t.
MOEA-PCE and EM-PCE equal to 0.036 and 0.062, respec-
tively. FCB-PCE performed better than MOEA-PCE and
EM-PCE on eight and nine out of ten datasets, respectively.

In terms of Θf , both CB-PCE and FCB-PCE were on
average comparable to each other; in fact, they achieved
average Θf equal to 0.123 and 0.122, respectively. The av-
erage improvements obtained by CB-PCE (resp. FCB-PCE)
w.r.t. both MOEA-PCE and EM-PCE were equal to 0.030
(resp. 0.029). Like Θof and Θo, both the proposed CB-PCE
and FCB-PCE performed better than MOEA-PCE and EM-
PCE on the majority of the datasets also in terms of Θf .

Evaluation w.r.t. the ensemble solutions.
Concerning the coefficients of variation due to the consen-

sus clustering w.r.t. the average pairwise similarity of the
input ensemble (Table 4), CB-PCE and FCB-PCE led to
average values respectively equal to 1.110 and 1.108 (Υof ),
1.318 and 1.316 (Υo), 1.049 and 1.030 (Υf ). Particularly, in
the case Υof , CB-PCE improved MOEA-PCE and EM-PCE
by 0.062 and 0.114 on average, respectively, whereas the av-
erage improvements obtained by FCB-PCE w.r.t. MOEA-
PCE and EM-PCE were equal to 0.060 and 0.112, respec-
tively. Also, CB-PCE was able to obtain peaks of improve-
ment up to 0.297 (w.r.t. MOEA-PCE) and 0.454 (w.r.t.
EM-PCE). The maximum gains of FCB-PCE were instead
equal to 0.3 and 0.457 w.r.t. MOEA-PCE and EM-PCE,
respectively. Both CB-PCE and FCB-PCE outperformed
MOEA-PCE and EM-PCE on nearly all datasets. CB-PCE
results were better than those of MOEA-PCE and EM-PCE
on seven and nine out of ten datasets, respectively. As far



Table 4: Evaluation w.r.t. the ensemble solutions

Υof Υo Υf
MOEA- EM- CB- FCB- MOEA- EM- CB- FCB- MOEA- EM- CB- FCB-

data PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE

Iris 1.019 .914 .984 .989 1.025 1.004 1.044 1.039 .953 .906 .986 .977
Wine .993 .960 1.074 1.072 1.060 .991 1.057 1.056 1.018 .952 1.001 1.001
Glass 1.023 .918 1 1.003 1.114 .971 1.064 1.066 .979 .915 1.004 1.004
Ecoli 1.074 1.052 1.058 1.015 1.034 1.023 1.027 1.028 .975 .924 .986 .992
Yeast 1.074 1.050 1.217 1.189 1.189 1.182 1.310 1.297 .960 1.021 1.036 1.037

Segmentation 1.008 .851 1.305 1.308 1.367 1.304 1.788 1.786 .971 .969 1.032 1.013
Abalone 1.044 1.001 1.068 1.071 1.121 1.102 1.208 1.208 .982 .902 .980 .986
Letter 1.040 1.001 1.045 1.088 1.118 1.099 1.277 1.274 .981 .891 1.169 .998
Trace 1.170 1.207 1.196 1.196 1.325 1.501 1.503 1.503 .949 .927 1.062 1.062

ControlChart 1.034 1.006 1.152 1.152 1.162 1.237 1.903 1.903 1.085 .577 1.234 1.234

min .993 .851 .98 .989 1.025 .971 1.027 1.028 .949 .577 .980 .977
max 1.170 1.207 1.305 1.308 1.367 1.501 1.903 1.903 1.085 1.021 1.234 1.234
avg 1.048 .996 1.110 1.108 1.152 1.141 1.318 1.316 .985 .898 1.049 1.030

Table 5: Execution times (milliseconds)

TOTAL ONLINE OFFLINE
MOEA- EM- CB- FCB- MOEA- EM- CB- FCB- MOEA- EM- CB- FCB-

data PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE PCE

Iris 17,223 55 13,235 906 17,223 53 343 372 – 2 12,892 534
Wine 21,098 184 50,672 993 21,098 153 306 323 – 31 50,366 670
Glass 61,700 281 110,583 3,847 61,700 239 1,713 1,713 – 42 108,870 2,134
Ecoli 94,762 488 137,270 4,911 94,762 427 1,643 1,689 – 61 135,627 3,222
Yeast 1,310,263 1,477 2,218,128 56,704 1,310,263 477 12,159 12,157 – 1,000 2,205,969 44,547

Segmentation 1,250,732 11,465 6,692,111 47,095 1,250,732 8,496 6,095 5,126 – 2,969 6,686,016 41,969
Abalone 13,245,313 34,000 19,870,218 527,406 13,245,313 12,922 107,547 90,078 – 21,078 19,762,671 437,328
Letter 7,765,750 54,641 26,934,327 271,064 7,765,750 28,766 15,593 15,610 – 25,875 26,918,734 255,454
Trace 86,179 4,880 2,589,899 3,731 86,179 3,224 836 840 – 1,656 2,589,063 2,891

ControlChart 291,856 2,313 3,383,936 12,439 291,856 735 2,717 2,783 – 1,578 3,381,219 9,656

as FCB-PCE, it was superior to MOEA-PCE and EM-PCE
on seven and eight out of ten datasets, respectively. Υo and
Υf results followed similar trends as Υof .

CB-PCE was still predominant on FCB-PCE, even if the
difference between the two methods is less evident than the
evaluation w.r.t. the reference classification. The average
gains of CB-PCE w.r.t. FCB-PCE were 0.002 (Υof ), 0.002
(Υo), and 0.019 (Υf ).

4.2.2 Efficiency
Table 5 reports on the runtimes of the proposed algo-

rithms CB-PCE and FCB-PCE, along with those of the early
MOEA-PCE and EM-PCE. The reported times (expressed
in milliseconds) are organized to distinguish between the on-
line and offline phases.

The total runtimes confirm the theoretical considerations
made in Sect. 3.2.3. Indeed, FCB-PCE is always faster than
CB-PCE (from 2 to 3 orders of magnitude) and MOEA-
PCE (1-2 orders), as well as CB-PCE is always slower than
EM-PCE (2-3 orders) and slower than MOEA-PCE (up to
2 orders) on all datasets but Iris. The latter observation
fully complies with the analysis of the relative performance
between CB-PCE and MOEA-PCE: CB-PCE is generally
outperformed by MOEA-PCE, except for the datasets hav-
ing small size and/or low dimensionality, like Iris.

FCB-PCE would appear generally slower than EM-PCE.
However, as stated in Sect. 3.2.3, the relative performance
of the two methods mostly depends on the size |D| of the
dataset and the dimensionality |F| of the data objects within
D and the number K of clusters; in particular, the larger
|D| + |F| and/or the smaller K, the better relative perfor-
mance of FCB-PCE w.r.t. EM-PCE.

As a final remark, we note that the runtimes of the pro-
posed CB-PCE and FCB-PCE were roughly similar to each
other in the online phase. As expected, the difference be-
tween the two methods depends only on their offline phases,
which are influenced by the adoption of the measures Ĵ and
Ĵfast (cf. (8) and (24)).

5. CONCLUSION
Recent advance in data clustering resulted in the intro-

duction of a new problem, called projective clustering en-
sembles (PCE), whose goal is to derive a robust projective
consensus clustering from an ensemble of projective cluster-
ing solutions. PCE has been originally formulated as a two-
objective or a single-objective optimization problem, and re-
lated heuristics have been developed focusing either on effec-
tiveness or efficiency aspects. In this paper we addressed the
main issues in existing PCE methods: none of them exploits
approaches commonly adopted for solving the clustering en-
semble problem, thus missing a wealth of experience gained
by the majority of clustering ensemble methods. More im-
portantly, the two-objective PCE is not capable of treating
the object-to-cluster and the feature-to-cluster assignments
as interrelated. We defined an alternative formulation of
PCE as a new single-objective problem in which the objec-
tive function is able to take into account the object- and
feature-based cluster representations as a whole in a notion
of distance for projective clustering solutions. We developed
two heuristics of such a new formulation, namely CB-PCE
and FCB-PCE, which follow the cluster-based approach to
the clustering ensembles problem. Experiments on bench-
mark datasets have shown that the proposed algorithms out-



perform in accuracy the early PCE methods, and FCB-PCE
is faster than the early two-objective PCE.

6. REFERENCES
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Density Connected Clustering with Local Subspace
Preferences. In Proc. ICDM Conf., pages 27–34, 2004.

[6] C. Boulis and M. Ostendorf. Combining Multiple
Clustering Systems. In Proc. PKDD Conf., pages
63–74, 2004.

[7] P. S. Bradley and U. M. Fayyad. Refining Initial
Points for K-Means Clustering. In Proc. ICML Conf.,
pages 91–99, 1998.

[8] L. Chen, Q. Jiang, and S. Wang. A Probability Model
for Projective Clustering on High Dimensional Data.
In Proc. ICDM Conf., pages 755–760, 2008.

[9] F. Chierichetti, R. Kumar, S. Pandey, and
S. Vassilvitskii. Finding the Jaccard Median. In Proc.
SODA Conf., pages 293–311, 2010.

[10] E. Dimitriadou, A. Weingesse, and K. Hornik.
Voting-Merging: An Ensemble Method for Clustering.
In Proc. ICANN Conf., pages 217–224, 2001.

[11] S. Dudoit and J. Fridlyand. Bagging to Improve the
Accuracy of a Clustering Procedure. Bioinformatics,
19(9):1090–1099, 2003.

[12] B. Fischer and J. M. Buhmann. Bagging for
Path-Based Clustering. TPAMI, 25(11):1411–1415,
2003.

[13] A. L. N. Fred. Finding Consistent Clusters in Data
Partitions. In Proc. Int. Workshop on Multiple
Classifier Systems (MCS), pages 309–318, 2001.

[14] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory,
Algorithms, and Applications. ASA-SIAM Series on
Statistics and Applied Probability, 2007.

[15] A. Gionis, H. Mannila, and P. Tsaparas. Clustering
Aggregation. TKDD, 1(1), 2007.

[16] F. Gullo, C. Domeniconi, and A. Tagarelli. Projective
Clustering Ensembles. In Proc. ICDM Conf., pages
794–799, 2009.

[17] F. Gullo, A. Tagarelli, and S. Greco. Diversity-Based
Weighting Schemes for Clustering Ensembles. In Proc.
SDM Conf., pages 437–448, 2009.

[18] A. K. Jain and R. Dubes. Algorithms for Clustering
Data. Prentice-Hall, 1988.

[19] G. Karypis and V. Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comp., 20(1):359–392, 1998.

[20] L. I. Kuncheva, S. T. Hadjitodorov, and L. P.
Todorova. Experimental Comparison of Cluster
Ensemble Methods. In Proc. Int. Conf. on
Information Fusion, pages 1–7, 2006.

[21] R. P. Li and M. Mukaidono. Gaussian clustering
method based on maximum-fuzzy-entropy
interpretation. Fuzzy Sets and Systems,
102(2):253–258, 1999.

[22] N. Nguyen and R. Caruana. Consensus Clustering. In
Proc. ICDM Conf., pages 607–612, 2007.

[23] A. Patrikainen and M. Meila. Comparing subspace
clusterings. TKDE, 18(7):902–916, 2006.

[24] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali. A Monte Carlo algorithm for fast projective
clustering. In Proc. SIGMOD Conf., pages 418–427,
2002.

[25] K. Sequeira and M. Zaki. SCHISM: A New Approach
for Interesting Subspace Mining. In Proc. ICDM
Conf., pages 186–193, 2004.

[26] A. Strehl, J. Ghosh, and R. Mooney. Impact of
Similarity Measures on Web-Page Clustering. In Proc.
of AAAI Workshop on AI for Web Search, pages
58–64, 2000.

[27] A. Asuncion and D. Newman. UCI Machine Learning
Repository, http://archive.ics.uci.edu/ml/.

[28] A. Strehl and J. Ghosh. Cluster Ensembles — A
Knowledge Reuse Framework for Combining Multiple
Partitions. J. Mach. Learn. Res., 3:583–617, 2002.

[29] C. Domeniconi and M. Al-Razgan. Weighted Cluster
Ensembles: Methods and Analysis. TKDD, 2(4), 2009.

[30] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan,
M. Al-Razgan, and D. Papadopoulos. Locally
Adaptive Metrics for Clustering High Dimensional
Data. Data Mining and Knowledge Discovery,
14(1):63–97, 2007.

[31] E. Achtert, C. Böhm, H. Kriegel, P. Kröger, I. Mü
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