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ABSTRACT

In this workshop report, we give a summary of the Multi-
Clust workshop held in Chicago in conjunction with KDD
2013. We provide an overview on the history of this work-
shop series and the general topics covered. Furthermore,
we provide summaries of the invited talks and of the con-
tributed papers.

1. INTRODUCTION

Multiple views and data sources require clustering tech-
niques capable of providing several distinct analyses of the
data. The cross-disciplinary research topic on multiple clus-
tering has thus received significant attention in recent years.
However, since it is relatively young, important research
challenges remain. Specifically, we observe an emerging in-
terest in discovering multiple clustering solutions from very
high dimensional and complex databases. Detecting alter-
natives while avoiding redundancy is a key challenge for
multiple clustering solutions. Toward this goal, important
research issues include: how to define redundancy among
clusterings; whether existing algorithms can be modified to
accommodate the finding of multiple solutions; how many
solutions should be extracted; how to select among far too
many possible solutions; how to evaluate and visualize re-
sults; and eventually how to most effectively help the data
analysts in finding what they are looking for. Recent work

tackles this problem by looking for non-redundant, alter-
native, disparate, or orthogonal clusterings. Research in
this area benefits from well-established related areas, such
as ensemble clustering, constraint-based clustering, frequent
pattern mining, theory on result summarization, consensus
mining, and general techniques coping with complex and
high dimensional databases. At the same time, the topic of
multiple clustering solutions has opened novel challenges in
these research fields.

Overall, this cross-disciplinary research endeavor has re-
cently received significant attention from multiple communi-
ties. The MultiClust workshop is a venue to bring together
researchers from the above research areas to discuss issues
in multiple clustering discovery.

MultiClust 2013 was the 4th in a series of workshops. The
first MultiClust workshop was an initiative of Xiaoli Fern,
Tan Davidson, and Jennifer Dy and was held in conjunction
with KDD 2010 [7]. The successful workshop series con-
tinued with the 2nd MultiClust workshop at ECML PKDD
2011 [10] and the 3rd MultiClust workshop at SIAM Data
Mining 2012 [11]. Additionally, an upcoming special issue
of the Machine Learning Journal is dedicated to the Multi-
Clust topics. The aim of this special issue is to establish an
overview of recent research, to increase its visibility, and to
link it to closely related research areas.

Furthermore, in 2012, the 3Clust workshop was held in con-
junction with PAKDD [6]. It had a slightly different per-
spective but is very related to the MultiClust workshop top-
ics. Therefore, the organizers of 3Clust and some organizers
of previous MultiClust workshops teamed up for the 4th



MultiClust workshop at KDD 2013, giving more emphasis
not only on emerging issues in the areas of clustering ensem-
bles, semi-supervised clustering, subspace/projected cluster-
ing, co-clustering, and multi-view clustering, but in partic-
ular on discussing new and insightful connections between
these areas. The vision is to make progress towards a unified
framework that reconciles the different involved variants of
the clustering problem.

2. SUMMARY OF THE WORKSHOP

2.1 Invited Talks

At MultiClust 2013 we had two very inspiring invited talks,
by Michael R. Berthold (University of Konstanz, Germany)
and by Shai Ben-David (University of Waterloo, Canada).

Michael discussed his approach to learning in “Parallel Uni-
verses”, with a focus on the application area of bio-chemical
and medical research (drug discovery). In this area, data ob-
jects are represented in very different, heterogeneous feature
spaces and complex data types such as molecular structures
or sequences, resulting also in different notions of similarity.
Objects that could be similar (and should be clustered) in
one of the representations might be very dissimilar in an-
other representation. At the same time, different data rep-
resentations are of different quality and partly faulty, out-
dated, unreliable or just noisy.

Learning (or clustering) in parallel universes is similar but
also different in some crucial aspects from related ap-
proaches to clustering. If the data objects are represented
in a high-dimensional but essentially homogeneous, numeric
feature space, we have a global similarity measure that can
be used for clustering. For multiple feature spaces of het-
erogeneous nature, many notions of similarity would be re-
quired. This is different from feature selection for clustering,
where one would choose the most informative or useful sub-
set of attributes. For a specific subset, there is usually no
interpretation possible. Feature selection approaches select
a subset of features from one, large universe and serve as
preprocessing for subsequent learning algorithms. Similarly,
projected clustering or subspace clustering selects subsets of
features for each cluster however not as a preprocessing but
as an integral step of the clustering procedure. Nevertheless,
the features of the complete feature space are thought to
belong to the same universe and the projected clustering or
subspace clustering algorithm works on this complete, single
feature space to select appropriate subsets. For clustering
in parallel universes, different subsets of features are sepa-
rated semantically from each other by their different nature
in the first place. The most similar notion is multi-view or
multi-represented learning; the idea there, however, is that
the same concept can be learned in different representations
and, especially in the setting of co-learning, the learning
process in one representation can help or guide the learning
process in another representation. In multi-instance learn-
ing, finally, the same object can have different representa-
tions in the same feature space, for example, a molecule can
have different 3D confirmations.

For the specific approach of learning in parallel universes,
Michael discussed some example approaches. Fuzzy cu-
Means [13] is an adaptation from the fuzzy k-means family
to the setting of parallel universes, where representations in
some universes can be completely noisy. For the example of

neighborgram clustering [5], Michael demonstrated the pos-
sibilities for the domain scientist to understand decisions of
the algorithm and gain insights by an illustrative view of the
results.

The other invited talk by Shai was focused on the gap be-
tween theory and practice in clustering. Although clustering
is one of the most widely used tools in data analysis and ex-
ploration, it is not clear a priori what a good clustering is for
a dataset. For many datasets, different clustering solutions
can be equally meaningful. How to turn clustering in an
actually well-defined task depends on the application, i.e.,
the domain expert can add some bias, expressing domain
knowledge. How to formalize such a bias is the motivat-
ing question for the points Shai was taking in his talk [14;
1; 2]. In particular, he discussed (1) general properties of
the input-output functionality of clustering paradigms, (2)
quality measures for clusterings, and (3) measures for the
clusterability of data.

1. In general terms, if we consider functions that take as
input a dissimilarity function over some domain S (or,
alternatively, a matrix of pairwise “distances” between
points in the domain), and provide as output a par-
tition of S, we would like to have properties that can
distinguish “clustering” functions from other functions
that output partitions. The ideal theory would de-
fine sets of properties to distinguish major clustering
paradigms from each other. This could even work hier-
archically. Shai showed examples of sets of properties
defining single-linkage clustering, and sets of proper-
ties defining linkage clustering.

2. A different approach for defining clustering paradigms
is given by measures of clustering quality. These can
also be analyzed with an axiomatic approach. Shai
names the properties “scale invariance”, “consistency”,
“richness”, and “isomorphism invariance” as a consis-
tent set of properties and names many clustering qual-

ity measures that satisfy these axioms.

3. Finally, clusterability can be seen as applying cluster-
ing quality measures on optimal clustering solutions
for a dataset.

As can be seen, the two invited talks covered very different
perspectives, Michael taking a perspective from his practical
application, Shai sharing thoughts from a theoretical point
of view. This broadness of aspects is a good reflection of the
scope of the MultiClust workshop series.

2.2 Research Papers

The contribution by Li et al. [9] discusses an approach to
multi-view clustering based on a Markov Chain Monte Carlo
sampling of relevant subspaces. A subspace is a subset of
input features, and is considered to be a state of a Markov
chain. The neighbors of a given state in the chain are the
immediate subsets (one feature removed) and supersets (one
feature added). The search in the chain is driven by the as-
sessed quality of the clustering structure in the correspond-
ing subspaces. Furthermore, in order to facilitate the discov-
ery of diverse views of the data, the search is biased in favor
of those subspaces that are dissimilar from the previously
detected ones.



Clusters in subspaces are detected using the Mean Shift al-
gorithm, which is based on a non-parametric kernel density
estimation approach. The quality of a subspace is measured
in terms of the density of the clusters discovered therein.
A weighting term, measuring the similarity with previously
detected subspaces, is added to the density function, with
the effect of favoring the sampling of subspaces dissimilar
from one another. Two sampling processes are investigated:
simulated annealing and greedy local search.

The preliminary results measuring clustering quality are en-
couraging. Scaling the proposed method to a large dimen-
sionality, and the automatic identification of the number of
views, are interesting open challenges for future directions
the authors plan to pursue.

Babagholami-Mohamadabadi et al. [4] focus on the prob-
lem of distance-metric learning in a semi-supervised comn-
text. The problem consists in learning an appropriate met-
ric distance for an input set of points based on a number
of must-link and/or cannot-link constraints that are defined
over the input points. The main novelty of the approach by
Babagholami-Mohamadabadi et al. is that, unlike most ex-
isting methods, it can profitably take advantage of the data
points that are not involved into any constraints. Based
on this intuition, the authors develop a novel linear metric-
learning method, which they also kernelize so to develop a
non-linear version of the same method. The optimization
strategy relies on the Deterministic Annealing EM (DAEM)
algorithm, which allows for finding a local maximum of the
proposed objective function.

Shiga and Mamitsuka [12] introduce a probabilistic genera-
tive approach to co-clustering that enables the embedding
of auxiliary information. External information associated
to both the rows and columns of the data matrix can be
added and incorporated in the inference process. The pa-
rameters over the row and column clusters are learned via
variational inference using an Expectation Maximization-
style algorithm. The authors test the effectiveness of the
proposed method using a gene expression dataset. They
represent the auxiliary information as graphs that connect
genes (or samples) known to be in the same cluster, accord-
ing to the ground truth. Comparisons against unsupervised
Bayesian co-clustering are in favor to the proposed tech-
nique, showing the positive effect of embedding the external
information. Semi-supervised co-clustering is a relevant ap-
proach in a variety of applications, including text mining
and recommender systems, where information regarding the
users and products allows us to perform prediction for new
users.

Kamishima and Akaho [8] distinguish “Absolute and Rela-
tive Clustering”. This difference is intended to relate to the
relationship between the data set and the clustering result.
In absolute clustering, the decision to cluster two objects
in the same cluster is independent of other objects. In rel-
ative clustering, the decision to cluster two objects in the
same cluster is depending on other objects, i.e., the clus-
tering task as a whole. The authors present several exam-
ples for their intuition. In the discussion, Shai Ben-David
questioned the idea by assuming that the class of absolute
clustering is probably empty. It would seem, however, that
the authors’ distinction can be an original approach to think
about semi-supervised clustering, where pairwise instance-
level constraints indeed specify desired decisions for pairs

of objects independently of the remainder of that data set.
How a (semi-supervised) clustering approach addresses such
constraints would be a different question.

Spectral graph partitioning is the topic addressed in the
short paper by Zheng and Wu [15]. The basic motivation for
this study is to try overcome an accuracy issue in spectral
modularity optimization — the repeated bisection process
performed by a traditional spectral modularity optimiza-
tion algorithm can fail in reaching global optimality due to
its greedy nature. In order to take into account the global
structure information in a graph, the spectral algorithm pro-
posed by Zheng and Wu aims to find better, multisection
divisions of the graph by extending the modularity matrix
to a higher order and making use of orthogonal vectors of
the Hadamard matrix for the representation of group assign-
ments of the vertices in the graph divisions. The modularity
matrix is randomly “inflated” to higher orders through the
Kronecker product, as to coordinate with the orthogonal
vectors. As a result, the graph can be cut into multiple
sections directly. In sparse graphs, the time complexity is
O(K*n?) for a graph of n vertices, where K is the estimated
number of communities.

3. CONCLUSIONS AND OUTLOOK

Clustering is a very traditional data mining task but at the
same time provides many new challenges. The MultiClust
workshop brings together researchers working at different
aspects of the clustering problem with a particular focus on
making use of multiple clustering solutions, envisioning a
unified framework reconciling and integrating the different
aspects of the clustering problem.

A continuation of the MultiClust workshop series is planned
as a Mini-Symposium at SIAM Data Mining (SDM) 2014:
http://uweb.dimes.unical.it/multiclust2014/.
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