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Abstract
Signed graphs model interactions among users, where nodes represent individuals and edges are labeled
as positive for friendly relationships and negative for antagonistic ones. The 2-Polarized-Communities
(2pc) problem aims to identify two disjoint polarized communities in a signed network so as to satisfy
three conditions: the majority of intra-community edges should be positive, the majority of inter-
community edges should be negative, and the ratio of edges satisfying these conditions to the number of
nodes in the communities should be maximized. Existing 2pc methods suffer from two key limitations:
(𝑖) they rely on a single optimal solution to a continuous relaxation of the problem, later rounded to
obtain the final pair of polarized communities, and (𝑖𝑖) the standard 2pc objective function does not
impose any constraints on the balance between community sizes.

In this paper, we discuss a method that addresses both limitations and introduce two key contributions:
(i) a Graph Neural Network-based approach that systematically explores multiple suboptimal solutions
to the relaxed 2pc problem, selecting the one that yields the best 2pc solution after rounding; and (ii)
a generalization of the 2pc objective function which explicitly encourages size-balanced communities.
Extensive experiments on real-world and synthetic signed graphs have shown the high accuracy of
our approach, its superiority over existing methods, and the effectiveness of 𝛾-polarity in producing
high-quality, well-balanced polarized communities.
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1. Introduction

The widespread use of modern social media has created a huge amount of online social inter-
actions, fostered the formation of communities [1, 2, 3, 4] and facilitating discussions about a
variety of topics. Users establish positive relationships such as friendships, agreements, and
trust, as well as negative relationships such as foes, disagreements, and distrusts. The existence
of such mixed interactions has led to an ever-growing polarization phenomenon, i.e., a division
of the set of users into groups with opposite view on controversial topics (e.g., politics, religion).

Signed graphs are graphs whose edges are assigned either a positive or a negative label,
denoting whether the interaction depicted by an edge is friendly or antagonistic, respectively [5].
Signed graphs are used to model a variety of data and study numerous (social) phenomena, such
as emergence of polarized discussions in social media, or analysis of trust/distrust in review
platforms [6, 7, 8, 9, 10]. Bonchi et al. [11] defined the 2-Polarized-Communities (for short,
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2pc) problem on signed graphs, aiming to find two subsets of nodes, generally referred to as
communities, such that there are (R1) mostly positive edges within each community and (R2)
mostly negative edges between the two communities, and (R3) the subgraph induced by these
two communities is as much dense as possible. Also, the two communities are required to
be non-overlapping, but they do not necessarily need to cover the entire node set. The rationale
of the latter is to comply the most with real-world situations, where polarized communities
are concealed within a body of other graph nodes which do not (yet) have a strongly formed
opinion, and, as such, they are neutral in terms of polarization.

Motivation. The above R1–R3 requirements for the 2pc problem are jointly pursued by
maximizing a single objective function, termed polarity. Maximizing polarity is NP-hard [11],
but a continuous relaxation of that problem is solvable in polynomial time. Existing methods
rely on rounding (i.e., discretizing) the optimal solution of the relaxed problem, but this approach
has two key limitations. First, deriving a solution to 2pc starting from the optimal solution of
the relaxed problem may be limiting in terms of polarity as suboptimal solutions to the relaxed
problem can lead to better solutions to 2pc after rounding. Second, polarity maximization does
not require or foster size-balanced communities, often leading to one dominant and one nearly
empty group, even when naturally balanced polarized communities exist. Identifying such
balanced groups is crucial across various domains, from social media and politics to market
research, as it fosters constructive debates, reduces echo chambers, and identifies harmful
situations. Thus, methods that can detect balanced polarized communities are needed.

Contributions. In this paper, we discuss our recent advancement [12] in the 2pc problem
that properly addresses the above limitations. Our contributions are twofold. First, to address
the first limitation and leveraging the recent success of Graph Neural Networks (GNNs) in
graph learning tasks [13, 14, 15], we propose a novel GNN-based approach, dubbed Neural2PC,
that systematically explores multiple suboptimal solutions to the relaxed problem, ultimately
selecting the one that yields the best discrete 2pc solution after rounding. Second, to overcome
the second limitation, we define a generalization of the polarity function, named 𝛾-polarity that
is designed to produce polarized communities that, depending on the setting of 𝛾, can be either
more balanced or larger than those yielded by standard polarity.

2. Preliminaries
Let 𝐺 = (𝑉,𝐸+, 𝐸−) be an undirected signed graph, where 𝑉 is a set of nodes, and 𝐸+, 𝐸− ⊆
𝑉 ×𝑉 , 𝐸+∩𝐸− = ∅, are sets of positive and negative edges, respectively. We assign each node in
𝑉 a unique integer ID in 1, . . . , |𝑉 | and use 𝑢 ∈ 𝑉 interchangeably for the node and its position,
simplifying matrix/vector notation. A ∈ {−1, 0, 1}|𝑉 |×|𝑉 | is the signed adjacency matrix of 𝐺,
defined as A[𝑢, 𝑣] = 1 if (𝑢, 𝑣) ∈ 𝐸+, A[𝑢, 𝑣] = −1 if (𝑢, 𝑣) ∈ 𝐸−, and A[𝑢, 𝑣] = 0 otherwise.

Given a signed graph 𝐺 = (𝑉,𝐸+, 𝐸−), the 2-Polarized-Communities [11] problem (for
short, 2pc) finds two disjoint subsets 𝑆1, 𝑆2 ⊆ 𝑉 of nodes such that (R1) there are as many
positive edges and as few negative edges as possible within 𝑆1 and within 𝑆2; (R2) there are
as many negative edges and as few positive edges as possible across 𝑆1 and 𝑆2; and (R3) there
should be a large number of edges complying with (R1) and (R2) within 𝑆1 and 𝑆2 relative to
the total number of nodes in these groups.



𝑆1 and 𝑆2 are regarded as polarized communities, i.e., groups of nodes which are cohesive in
terms of both intra-group positive relationships (edges) and inter-group negative relationships.
Nodes included into neither 𝑆1 nor 𝑆2, denoted as 𝑆0, form the set of neutral nodes. A partition
{𝑆0, 𝑆1, 𝑆2} of 𝑉 can alternatively be represented by a (column) vector x ∈ {−1, 0, 1}|𝑉 |,
whose 𝑢-th coordinate is x𝑢 = 0 if 𝑢 ∈ 𝑆0, x𝑢 = 1 if 𝑢 ∈ 𝑆1, and x𝑢 = −1 if 𝑢 ∈ 𝑆2.

The above R1–R3 requirements are altogether encoded into a single function, termed polarity:

Definition 1 (Polarity [11]). Given a vector x ∈ {−1, 0, 1}|𝑉 | and a matrix A ∈
{−1, 0, 1}|𝑉 |×|𝑉 |, the polarity 𝑝(x,A) of x with respect to A is defined as:

𝑝(x,A) =
x⊤A x

x⊤x
. (1)

The numerator of 𝑝(·, ·) accounts for R1 and R2, while numerator and denominator altogether
model R3. In this regard, note that x⊤x = |𝑆1 ∪ 𝑆2|. The 2pc problem is formulated as follows:

Problem 1 (2pc [11]). Given a signed graph 𝐺 = (𝑉,𝐸+, 𝐸−) with signed adjacency matrix
A, find

x* = argmax
x∈{−1,0,1}|𝑉 |

𝑝(x,A).

Relaxing node-to-community assignments to be in [−1, 1] results in the following problem:

Problem 2 (2PC-relaxed [11]). Given a signed graph 𝐺 = (𝑉,𝐸+, 𝐸−) with signed adja-
cency matrix A, find

z* = argmax
z∈[−1,1]|𝑉 |

𝑝(z,A),

where polarity 𝑝(z,A) = z⊤A z/z⊤z of a vector z ∈ [−1, 1]|𝑉 | is defined as in Definition 1.
State of the art in 2pc. 2pc is shown to be NP-hard, while 2PC-relaxed can be solved in
polynomial time by finding the eigenvector of the signed adjacency matrix corresponding to
the largest eigenvalue [11]. Bonchi et al. [11] exploit the latter to devise two approximation
algorithms for 2pc. The first (deterministic) algorithm simply rounds the optimal solution z* to
2PC-relaxed as x*

𝑢 = sgn(z*𝑢), for all 𝑢 ∈ 𝑉 , where sgn(·) is the sign function. The second
(randomized) algorithm sets, for all 𝑢 ∈ 𝑉 , x*

𝑢 = sgn(z*𝑢) if a Bernoulli experiment with success
probability |z*𝑢| succeeds, otherwise x*

𝑢 = 0.

3. Related Work

Representation learning for signed graphs. Graph representation learning is the problem of
assigning elements of a graph (e.g., nodes, edges, subgraphs) to numerical vectors (embeddings)
such that the similarity between those elements in the graph is preserved in the embedding
space. This field spans shallow methods, which optimize specific criteria (e.g., 𝑑-hop reachability,
random-walk co-occurrence) and deep approaches based on graph neural networks (GNNs) [16,
14]. Representation learning has been studied for signed graphs as well, both undirected [17, 18,
19, 20, 21] and directed [22, 23]. In this work, we regard signed graph representation learning
as a building block of the proposed framework. Note that our approach is versatile w.r.t. the
choice of graph representation learning model.



Figure 1: Overview of the Neural2PC approach [12].

Clustering signed graphs has also received attention in the literature [24, 25, 26, 27, 28].
However, those methods require every node to be part of an output cluster, hence they are not
designed to detect neutral nodes and left them out of evaluation, unlike our approach. Also,
signed graph clustering methods optimize criteria other than polarity.

4. The Neural2PC approach

Overview. Unlike existing methods [11] which find the optimal solution z* to 2PC-relaxed
(Problem 2) directly, we let a neural-network model 𝑓𝜃 – with parameters 𝜃 – produce a set
{z𝑒 | 𝑒 = 1, . . . , 𝑒𝑚𝑎𝑥} of feasible solutions to 2PC-relaxed during multiple epochs 1, . . . , 𝑒𝑚𝑎𝑥

of training. All the various z𝑒 are rounded in order to yield feasible discrete solutions x𝑒 to 2pc.
The best (in terms of polarity, Definition 1) of such x𝑒 solutions is the definitive output.

The rationale of our approach is that it allows for exploring a variety of suboptimal solutions
to 2PC-relaxed. This favors obtaining ultimate discrete solutions (after rounding) which exhibit
higher polarity than the one derived by rounding the optimal solution to 2PC-relaxed. The
goal is to find the model parameters 𝜃 that maximize the polarity of the (relaxed) solutions
computed via 𝑓𝜃 (or, equivalently, minimize a loss defined based on the negative polarity). As
parameter learning goes on, it is expected to get a deeper exploration of the space of relaxed
solutions, and hence a higher likelihood of getting an effective discrete solution after rounding.

The proposed neural approach is named Neural2PC. A graphical illustration of its main
components is shown in Figure 1. Next, we delve into its technical details.

Neural model. Our 𝑓𝜃 model takes as input a signed graph 𝐺 = (𝑉,𝐸+, 𝐸−), and a matrix
H0 ∈ R|𝑉 |×𝑑𝐼 containing a 𝑑𝐼-dimensional (real-valued) vector of features for every node. If
such features are not available, H0 can be initialized by considering structural information
derived from 𝐺 [17]. The first block of 𝑓𝜃 is a (𝑚-layer) signed GNN [17, 18, 19, 20, 21]
sgnn(·), with parameters 𝜃sgnn. sgnn(·) properly processes 𝐺’s topology and (possibly) node
features H0, and outputs a matrix H ∈ R|𝑉 |×𝑑𝐻 = [h𝑢 ∈ R𝑑𝐻 ]𝑢∈𝑉 containing a hidden vector
representation h𝑢 of every node 𝑢 ∈ 𝑉 . This operation can be described as H = sgnn(𝐺,H0).
Then, vector representations produced by sgnn(·) feed into fully-connected neural-network
linear layers nn(·), with parameters 𝜃nn. Ultimately, a tanh activation function is used to cast
the (node-to-community assignment) scores for every node to the desired [−1, 1] range (cf.
Problem 2). This operation can be written as z = tanh(nn(H)). As a result, the overall 𝑓𝜃



model, with parameters 𝜃 = {𝜃sgnn, 𝜃nn}, is as follows:

𝑓𝜃(𝐺,H0) = tanh(nn(sgnn(𝐺,H0))), (2)

Loss function. To optimize model parameters 𝜃, we employ a loss function ℒ2PC defined as a
combination of (the negative of) polarity 𝑝(·, ·) and a regularization term. The latter enforces the
model produce continuous scores that are as close as possible to the ultimately desired discrete
{−1, 0, 1} scores. Specifically, we define the regularization term as the || · ||2 L2-norm of a vector
𝜌 ∈ R|𝑉 |, whose entries 𝜌[𝑢], for all 𝑢 ∈ 𝑉 , are set to the difference min{|z[𝑢]|, 1 − |z[𝑢]|}
between z[𝑢] and the closest valid discrete score. The intuition is that minimizing the norm of
𝜌 (together with the other loss component) is expected to produce the desired effect of yielding
output continuous z scores not too far from the valid discrete ones.

Given z = 𝑓𝜃(𝐺,H0), the signed adjacency matrix A of 𝐺, and a hyperparameter 𝜆 ∈ R
which weighs the importance of the regularization term, the ℒ2PC loss function is defined as:

ℒ2PC(z,A, 𝜆) = −𝑝(z,A) + 𝜆||𝜌||22 (3)

Rounding. To round a continuous solution z ∈ [−1, 1]|𝑉 | onto a valid discrete x ∈
{−1, 0, 1}|𝑉 | solution to 2pc, we borrow the procedure adopted by Bonchi et al. [11]. Specifically,
given a threshold 𝜏 ∈ [0, 1], for all 𝑢 ∈ 𝑉 , x[𝑢] = sgn(z[𝑢]) if |𝑧[𝑢]| ≥ 𝜏 , x[𝑢] = 0 otherwise.
Let 𝑍𝑖 = {⌈z[𝑢]⌋𝑖 | 𝑢 ∈ 𝑉 } be a set of candidate thresholds, where ⌈·⌋𝑖 denotes approximating
a real number at the 𝑖-th decimal digit (we use 𝑖 = 3). In order to avoid sticking to a single 𝜏 ,
we follow [11], and try all the thresholds 𝜏 ∈ 𝑍𝑖. Given a threshold 𝜏 ∈ 𝑍𝑖, we yield a discrete
solution x𝜏 as follows: ∀𝑢 ∈ 𝑉, x𝜏 [𝑢] = sgn(z[𝑢]) if |z[𝑢]| ≥ 𝜏 ; 0 otherwise. The final solution
corresponds to the discrete solution with highest polarity:

round(z) = argmax
x∈{x𝜏 | 𝜏∈𝑍𝑖}

𝑝(x,A). (4)

Algorithm. The algorithm we employ to produce a solution to 2pc simply consists in optimizing
the 𝜃 = {𝜃sgnn, 𝜃nn} parameters of the 𝑓𝜃 neural model end-to-end, via standard gradient
descent, for a number 𝑒𝑚𝑎𝑥 of training epochs. Specifically, the algorithm alternates a forward
phase, which produces a continuous solution z given the current 𝜃 parameters, and a backward
phase, where parameters 𝜃 are updated via gradient descent, using the ℒ2PC loss function, with a
certain learning rate 𝛼. The continuous solution z yielded in every epoch is rounded according
to the round(·) procedure described above. The discrete rounded solution with the highest
polarity score out of all the ones produced in the various epochs is ultimately output. Rounding
and evaluating polarity in every epoch is necessary because the best discrete solution’s epoch
is hard to predict in advance.

5. Balancing the size of the communities
A known issue with the polarity measure (Definition 1) is its bias toward size-imbalanced com-
munities, sometimes leading to one dominant community and the other empty [11]. To address
this, we propose 𝛾-polarity, a generalized measure that promotes more balanced polarized



communities by adjusting the parameter 𝛾. We define 𝛾-polarity by modifying the denominator
of the polarity measure while keeping the numerator unchanged. Given a node-to-community
assignment vector x ∈ {−1, 0, 1}|𝑉 |, let 𝑠1 =

∑︀
𝑢∈𝑉,x[𝑢]<0 |x[𝑢]| and 𝑠2 =

∑︀
𝑢∈𝑉,x[𝑢]>0 x[𝑢]

be the size of the two communities, with 𝑠𝑚𝑎𝑥 = max{𝑠1, 𝑠2}, 𝑠𝑚𝑖𝑛 = min{𝑠1, 𝑠2}. The
denominator of the polarity measure is x⊤x = 𝑠𝑚𝑎𝑥 + 𝑠𝑚𝑖𝑛, which can be rewritten as
(𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) + 2𝑠𝑚𝑖𝑛. The key idea behind 𝛾-polarity is to weight the size imbalance term
(𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) by a factor 𝛾 > 0, leading to the following definition:

Definition 2 (𝛾-polarity). Given a vector x ∈ {−1, 0, 1}|𝑉 |, a matrix A ∈ {−1, 0, 1}|𝑉 |×|𝑉 |,
and a real number 𝛾 > 0, the 𝛾-polarity 𝑝𝛾(x,A) of x with respect to A is defined as:

𝑝𝛾(x,A) =
x⊤A x

(𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛)𝛾 + 2𝑠𝑚𝑖𝑛
. (5)

For 𝛾 > 1, the size-difference (𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) term is amplified: maximizing 𝑝𝛾 enforces such
a term to be small, encouraging balanced communities. For 𝛾 ∈ (0, 1), the effect is reversed,
while 𝛾 = 1 recovers standard polarity.

The relaxed version of 𝛾-polarity replaces x with a continuous vector z ∈ [−1, 1]|𝑉 | in
Equation (5). It can be integrated into Neural2PC by substituting 𝑝(z,A) with 𝑝𝛾(z,A) in the
ℒ2PC loss (Equation (3)).

6. Experimental Methodology

Evaluation goals. We evaluated Neural2PC and competitors/baselines on (1) real datasets, and
(2) synthetic datasets; (3) impact of different signed GNNs in Neural2PC; (4) runtimes of the
considered methods; (5) an ablation study on the Neural2PC components; (6) effectiveness of
the 𝛾-polarity measure in yielding communities that are both size-balanced and high-quality.

Real datasets. We selected publicly-available real-world signed graphs of varying sizes and
types. Bitcoin [29] (5.9k nodes, 21.5k edges), Epinions [29] (131.6k nodes, 711.2k edges) are
trust-distrust networks. Cloister [30] (18 nodes, 125 edges), Congress [30] (219 nodes, 521 edges),
and HTribes [30] (16 nodes, 58 edges) are social networks. Larger networks include Slashdot [29]
(82.1k nodes, 500.5k edges), a friend-foe network, TwitterRef [31] (10.9k nodes, 251.4k edges), a
stance network, WikiCon [29] (116.7k nodes, 2.03M edges), an edit-conflict network, WikiEle [30]
(7.1k nodes, 100.7k edges), a voting network, and WikiPol [31] (138.6k nodes, 715.9k edges), a
political discussion network.

Synthetic datasets. We used synthetic signed graphs to test methods in recovering ground-
truth polarized communities, generated by the modified signed stochastic block model (m-
SSBM) [32]. The model has three parameters: the total number of nodes 𝑛, the size 𝑛𝑐 =
|𝑆1| = |𝑆2| of the polarized communities, and a noise parameter 𝜂 ∈ [0, 1], with polarized
communities emerging when 𝜂 ≤ 2/3.

We used different synthetic graphs by varying number of nodes (𝑛), community size 𝑛𝑐, and
𝜂 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. For each configuration, we generated 10 different graphs.

Competing methods. We compared our Neural2PC against state-of-the-art methods for
polarized community detection and relevant baselines from related problems. Our primary



Table 1
Polarity (“pol.”, Def. 1) and solution size (|𝑆1|; |𝑆2|) of the proposed Neural2PC vs. competing methods

on real datasets [12]. Best polarity results in bold, second-best underlined.

method criteria Bitcoin Cloister Congress Epinions HTribes Slashdot TwitterRef WikiCon WikiEle WikiPol

Eigen
pol. 29.52 7.45 6.58 128.72 6.18 79.7 174.1 175.65 71.73 88.44

size 136;2 8;3 28;24 999;18 7;4 233;1 669;4 1993;449 745;3 646;2

R-Eigen
pol. 14.12 6.23 5.38 71.36 5.82 29.21 118.81 99.93 55.91 35.72

size 725;103 14;3 50;50 4057;407 7;4 2827;125 1487;20 9778;3109 1054;67 6838;579

Pivot
pol. 21.65 4.17 3.1 156.38 3.5 61.0 116.25 129.33 37.59 46.52

size 21;19 9;3 6;5 248;5 5;3 283;6 1142;16 368;134 407;7 598;11

Greedy
pol. 29.01 6.11 5.77 170.3 5.5 82.72 173.94 127.96 72.67 90.02
size 140;0 15;3 36;33 269;0 12;4 200;0 685;0 1151;0 730;0 543;0

SPONGE

pol. 8.36 6.11 4.43 7.12 5.5 6.36 28.03 -8.92 15.79 7.79

size 26;2 15;3 115;104 131578;2 12;4 82138;2 8274;2610 116712;5 7113;2 138585;2

BNC

pol. 5.27 1.0 2.75 7.12 -0.5 6.36 41.49 8.92 15.79 7.79

size 5834;47 17;1 216;3 131225;355 10;6 82138;2 10882;2 115730;987 7102;13 138556;31

SSSNet

pol. 9.06 6.93 4.43 73.19 5.0 7.26 41.49 28.56 17.09 7.82

size 713;8 6;3 115;104 953;0 11;5 72915;9225 10864;20 50835;5401 6402;713 132566;6021

Neural2PC

pol. 30.28 7.45 6.64 171.1 6.18 82.25 174.35 187.29 72.17 88.89

size 158;32 8;3 29;24 268;1 7;4 203;0 677;4 1788;559 742;2 618;2

competitors are Eigen and its randomized variant R-Eigen [11], as they address the same 2pc
optimization problem.

We included Pivot, a baseline inspired by a correlation clustering algorithm [33, 34, 35] and
Greedy [11], a method based on a 2-approximation algorithm for densest subgraph [36]. We also
considered the signed graph clustering algorithms BNC [24], SPONGE [25], and SSSNet [26].

Experimental setting. We used SGDNET [18], SNEA [19] and SGNN [17] as GNN models for
our Neural2PC. All signed GNN models were trained on CPUs with uniform settings: node
embeddings size 𝑑𝐻 = 64, 𝑚 = 2 layers, the final embedding of a signed spectral embedding
model [27] as the input feature matrix (𝑑𝐼 = 64) and default values for other parameters. Model
training was carried out with the Adam optimizer for 𝑒𝑚𝑎𝑥 = 300 epochs, using grid search
for the learning rate 𝛼 ∈ {0.01, 0.005, 0.001} and regularization factor 𝜆 ∈ {0.1, 0.01, 0.001}.
Results are averaged over 30 runs.

7. Results

Results on real datasets. Table 1 reports the polarity values, along with the sizes of the two
resulting polarized communities. Concerning Neural2PC, we only report the results obtained
by the best-performing (in terms of polarity) graph representation learning method.

Neural2PC is generally the most competitive in polarity. The exceptions (Slashdot, WikiEle,
WikiPol) occur when Greedy selects an overly dense subgraph as one polarized community,
leaving the other empty—an undesirable outcome. In contrast, our method returns both non-
empty communities with high polarity in WikiEle and WikiPol. Among competitors, Eigen and
R-Eigen, achieve strong polarity, with Eigen outperforming R-Eigen. Pivot as well as BNC and
SPONGE performs poorly, with the latter two often producing very imbalanced communities.
SSSNet performs slightly better but still lags behind.



Results on synthetic datasets. We analyzed the average 𝐹1-scores and polarity scores
over 10 synthetic graphs for each noise level 𝜂, considering varying network sizes (𝑛 ∈
250, 500, 1000, 2000) and community sizes (𝑛𝑐 ∈ 25, 50, 100, 200). Our experiments (results not
shown) revealed that Neural2PC remains robust to increasing noise, consistently outperforming
competitors in both 𝐹1-score and polarity.

Impact of different signed GNNs. We analyzed polarity and community size values yielded
by Neural2PC using different signed GNN models (results not shown). Our experiments revealed
that the polarity of the solutions provided by Neural2PC does not significantly change across
the various GNNs, which indicates robustness of the approach in terms of this main component.

Execution times. The average runtime performance of the methods was measured across the
different runs (results not shown). The learning-based methods, SSSNet and Neural2PC, have
the highest runtimes, primarily due to the number of training epochs (𝑒max = 300). Nonetheless,
Neural2PC ’s per-epoch time is comparable to the fastest methods. Among the other methods,
SPONGE performs best, followed by BNC and Eigen. R-Eigen is slightly slower than Eigen
due to its randomized nature, while Pivot and Greedy are inefficient.

Ablation study. To assess the impact of Neural2PC components, we conducted an ablation
study on two simplified versions of Neural2PC: (i) NN, which removes the sgnn(·) block,
retaining only nn(·), and (ii) Direct, which optimizes the z assignments by minimizing the
ℒ2PC loss via projected gradient descent. For each variant, we measured (results not shown)
polarity, solution size, and execution time. The full Neural2PC is crucial for optimal polarity
across all datasets or at least matching Direct (TwitterRef, WikiEle). However, Direct is less
efficient, requiring significantly more epochs (at least twice as many) than Neural2PC (and NN,
too), as the latter leverages sgnn(·) to assigns more similar scores within communities, reducing
the number of thresholds tested in rounding and improving efficiency. Also, Neural2PC and
Direct yield larger communities than NN. Overall, the outcomes of this ablation study justify
the need for all components of the Neural2PC framework.

𝛾-polarity results. We analyzed the impact of 𝛾 on the size and quality of solutions found by
Neural2PC using the 𝛾-polarity loss. We tested multiple 𝛾 values above 1 (up to 20) and their
reciprocals to explore a symmetric range below 1. Neural2PC consistently achieves (results
not shown) the best 𝛾-polarity. Higher 𝛾 leads to more balanced communities, while lower 𝛾
creates imbalance, sometimes leaving one community empty. Competing methods often yield
highly unbalanced solutions. Overall, 𝛾-polarity proves useful, allowing users to inspect and
select the most suitable communities for their needs.

8. Conclusion
We discussed a recent advancement in 2pc [12], which relies on a GNN-based neural approach
and introduces the notion of 𝛾-polarity to improve the balance in the size of the polarized
communities. Future work includes detecting more than two communities [32], leveraging
clustering ensemble techniques [37, 38] and improving the training efficiency [39].
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