
Clustering XML Documents:
a Distributed Collaborative Approach

(Extended Abstract)

Sergio Greco, Francesco Gullo, Giovanni Ponti,
Andrea Tagarelli, and Giuseppe Agapito

Dept. of Electronics, Computer and Systems Sciences, University of Calabria, Italy
email: {greco,fgullo,gponti,tagarelli,agapito}@deis.unical.it

Abstract. This paper addresses the problem of clustering of XML documents
in a distributed collaborative framework. XML documents are first decomposed
based on semantically cohesive subtrees, then modeled as transactional data. A
distributed centroid-based partitional clustering algorithm is developed to per-
form in a collaborative fashion. This algorithm is designed to allow each peer in
the network to compute a local clustering solution over its own data and to ex-
change its cluster centroids with other peers. Experimental results are provided
on real-world collections of XML documents with a varying number of peers.

1 Introduction

The increasing availability of heterogeneous XML informative sources has raised a
number of issues concerning how to represent and manage semistructured data. The
variety of application scenarios within XML is used makes XML information sources
exhibit not only different structures and contents but also different ways to semantically
annotate the data. In this context, a challenge is inferring semantics from XML doc-
uments according to the available syntactic information, namely structure and content
features.

The clustering problem finds in text databases a fruitful research area. Since today
semistructured text data has become more prevalent on the Web, and XML is the de-
facto standard for such data, clustering XML documents has increasingly attracted great
attention. A major issue in XML document clustering is the definition of a representa-
tion model that has to be well-suited to handle both structure and content information
in XML data. Representing semistructured data has been traditionally addressed by la-
beled rooted trees. Consequently, dealing with such data has leveraged results from
research on tree matching, including a number of algorithms for computing tree edit
distances (e.g., [12]). Since the complexity issues relating to edit distances, summariza-
tion models have also been proposed to concisely represent XML data while preserving
some structural relationships between XML elements (e.g., [11, 4, 13]). In our earlier
works [15, 16], we originally introduced an XML representation model that allows for
mapping XML document trees into transactional data.

Another problem with managing collections of XML documents is that often the
size of such data is huge and inherently distributed, therefore classical centralized ap-
proaches may be not efficient. Traditional clustering techniques assume data is memory-

resident, but this assumption does not hold in many large scale systems. One of the ear-
liest studies on distributed data mining is proposed in [10], where a cooperative agent-
based architecture is defined. The problem of document clustering in a distributed peer-
to-peer network has been addressed recently. For instance, in [5], the significance of
centroid-based partitional clustering like k-Means is leveraged as an efficient approach
to distributed clustering of documents. In [8], a collaborative approach to distributed
clustering of plain-text documents is presented. The individual local clustering solutions
are improved exploiting the distributed environment on the basis of recommendations
exchanged by the various peers.

Our proposal is focused on the development of a distributed framework for effi-
ciently clustering XML documents [7]. The distributed environment consists of a peer-
to-peer network where each node in the network has access to a portion of the whole
document collection and communicates with all the other nodes to perform a clustering
task in a collaborative fashion. The proposed framework is based on an approach to
modeling and clustering XML documents by structure and content [16]. XML docu-
ments are treated as transactions of items embedding structure and content information.
We resort to the well-known paradigm of centroid-based partitional clustering [9] to
conceive our distributed, transactional clustering algorithm. Each node yields a local
clustering solution (i.e., a partition of its own set of XML data). For each local cluster,
the corresponding (local) centroid is computed and sent to nodes that are in charge of
computing the “global” centroids. The collaborative clustering strategy of the proposed
algorithm is very close to the one proposed in [8]. However, to the best of our knowl-
edge, the method presented in this work addresses for the first time the problem of
clustering XML documents in a distributed network taking into account both structure
and content information.

We conducted experiments on two large, real-world collections of XML documents.
Results have shown that, although the final clustering accuracy is typically reduced w.r.t.
the centralized case, the parallelism due to a relatively small number of collaborating
nodes in the network leads to a drastic reduction of the overall runtime needed for the
clustering task.

2 Background on XML Data Modeling

Our approach to modeling XML documents consists of two main steps. The first step
is to decompose each document into a number of smaller subtrees that are conceived
to be cohesive according to the underlying semantics of the original document. In our
approach, this is accomplished by resorting to the notion of tree tuple. The second step
performs a mapping of the obtained tree tuples to transactional data, where each item
represents a combination of XML structure and content information.

Tree tuple resembles the notion of tuple in relational databases, i.e., a function as-
signing each attribute with a value from the corresponding domain. This notion has also
been proposed to extend functional dependencies to the XML setting [1, 6]. Given an
XML tree XT , an XML tree tuple τ derived from XT is a maximal subtree of XT such
that, for each path p in XT , the size of the answer (i.e., the set of nodes resulting from
the application of p to τ) is not greater than 1 [16]. We denote with T XT and T the set

of tree tuples that can be derived from any given tree XT and from the collection XT ,
respectively.

Given a set I = {e1, . . . , em} of distinct categorical values, or items, a transactional
database is a multi-set of transactions tr ⊆ I. In our setting, the item domain is built
over all the leaf elements in a given collection of XML tree tuples. A transaction is
then modeled with the set of items associated to the leaf elements of a specific tree
tuple. The intuition behind such a model lies mainly on the definition of XML tree
tuple itself: each path applied to a tree tuple yields a unique answer, thus each item in
a transaction indicates information on a concept that is distinct from that of other items
in the same transaction.

3 Collaborative Clustering of XML Documents in a P2P Network

In this section, we describe how XML tree tuples modeled as transactions can be com-
pared to each other [15, 16] and clustered by applying a collaborative centroid-based
partitional algorithm suitably designed for a distributed, P2P environment.

3.1 XML tree tuple item similarity
As discussed in the previous section, XML features are represented by tree tuple items.
To compare XML data in our transactional domain, we define a measure of similarity
between tree tuple items according to their structure and content features.

Let ei and ej be two tree tuple items. The tree tuple item similarity function is
defined as

sim(ei, ej) = f × simS(ei, ej) + (1− f)× simC(ei, ej),

where simS (resp. simC) denotes the structural (resp. content) similarity between the
items, and f ∈ [0..1] is a factor that tunes the influence of the structural part to the
overall similarity.

Since the combination of structure and content information characterizes an XML
tree tuple item, it is advisable to take tolerance on computing similarity between XML
tree tuple items. For this purpose, we introduce a similarity threshold that represents the
minimum similarity value for considering two XML tree tuple items as similar. Given
a real value γ ∈ [0..1], two XML tree tuple items ei and ej are said to be γ-matched if
sim(ei, ej) ≥ γ.

Similarity by Structure. Structural similarity between two tree tuple items ei and ej
is evaluated by comparing their respective tag paths. Given any two tags t and t′, the
Dirichlet function (δ) is applied in such a way that δ(t, t′) is equal to one if the tags
match, otherwise δ(t, t′) is equal to zero.

Let ei and ej be XML tree tuple items, pi= ti1 .ti2tin and pj= tj1 .tj2tjm
be their respective tag paths. The structural similarity between ei and ej is defined as

simS(ei, ej) =
1

n+m

(∑
t∈pi

sim(t, pj) +
∑
t∈pj

sim(t, pi)

)

such that, for each tih ∈ pi sim(tih , pj) = avg tjk∈pj

{
1

1+|h−k| × δ(tih , tjk)

}

Similarity by Content. Content features are generated from the texts associated to
XML tree tuple items. We refer to a textual content unit (for short, TCU) as the pre-
processed text of a tree tuple item. Text preprocessing is accomplished by means of
language-specific operations such as lexical analysis, removal of stopwords and word
stemming [3].

Two statistical criteria are typically considered for measuring syntactic relevance of
terms, namely term density in a given text, and term rarity in the text collection. The
popular tf .idf weighting function [3] takes both criteria into account. However, our
XML transactional domain requires a more refined and structured modeling of term
relevance, which is able to consider the term occurrences with respect to a context that
includes TCUs, tree tuples and original document trees suitably.

Formally, given a collection of XML trees XT , let wj be an index term in a TCU
ui, which belongs to a tree tuple τ ∈ T extracted from a tree XT ∈ XT . The ttf .itf
(Tree tuple Term Frequency - Inverse Tree tuple Frequency) weight of wj in ui with
respect to τ is defined as

ttf .itf (wj , ui|τ) = tf (wj , ui)× exp

(
nj,τ

Nτ

)
× nj,XT

NXT
× ln

(
NT

nj,T

)
where tf (wj , ui) is the number of occurrences of wj in ui, nj,τ is the number of TCUs
in τ that contain wj , Nτ is the number of TCUs in τ , nj,XT is the number of TCUs in
XT that contain wj , NXT is the number of TCUs in XT , nj,T is the number of TCUs
in T that contain wj , NT is the number of TCUs in T . Using the ttf .itf weighting
function, the relevance of a term increases with the term frequency within the local
TCU, with the term popularity across the TCUs of the local tree tuple (transaction)
and the TCUs of the local document tree, and with the term rarity across the whole
collection of TCUs.

Content similarity between any two tree tuple items is measured by comparing their
respective TCUs. Given a collection of XML tree tuples T , any TCU ui is modeled
with a vector ui whose j-th component corresponds to an index term wj and contains
the ttf .itf relevance weight. The size of each TCU vector is equal to the size of the
collection vocabulary, i.e., the set of index terms extracted from all TCUs in T . The
well-known cosine similarity [14] is used to measure the similarity between TCU vec-
tors.

3.2 The CXK-means clustering algorithm

XML tree tuples modeled as transactions can be efficiently clustered by applying a par-
titional algorithm devised for the XML transactional domain. In [15, 16], we developed
a centroid-based partitional clustering algorithm, which is essentially a variant of the
k-Means algorithm for the XML transactional domain. Two major aspects in the XML
transactional clustering algorithm are (i) the notion of proximity used to compare XML
transactions and (ii) the notion of cluster centroid.

In generic transactional domains, a widely used proximity measure is the Jaccard
coefficient. However, computing exact intersection between XML transactions is not
effective, since XML tree tuple items may share structural or content information to
a certain degree even though they are not identical. For this purpose, the notion of

standard intersection between sets of items is enhanced with one able to capture even
minimal similarities from content and structure features of XML elements.

Let tr1 and tr2 be two transactions, and γ ∈ [0..1] be a similarity threshold. The
set of γ-shared items between tr1 and tr2 is defined as

matchγ(tr1, tr2) = matchγ(tr1 → tr2) ∪ matchγ(tr2 → tr1),

where matchγ(tr i → tr j) = {e ∈ tr i | ∃eh ∈ tr j , sim(e, eh) ≥ γ,@e′ ∈ tr i,
sim(e′, eh) > sim(e, eh)}.

The set of γ-shared items resembles the intersection between transactions at a de-
gree greater than or equal to a similarity threshold γ. This notion of (enhanced) inter-
section is also at the basis of the following similarity function.

Let tr1 and tr2 be two transactions, and γ ∈ [0..1] be a similarity threshold. The
XML transaction similarity function between tr1 and tr2 is defined as

simγ
J(tr1, tr2) =

|matchγ(tr1, tr2)|
|tr1 ∪ tr2|

In the following, we provide a summary of the main characteristics of our CXK-
means algorithm. Formal details about the scheme of this algorithm can be found in [7].

Data objects are distributed over m nodes and each communicate with all other
nodes sending “local” representatives and receiving “global” representatives. Each node
Ni is in charge of computing local clusters Ci

1, . . . , C
i
k and local representatives ci1, . . . ,

cik, but also a subset of the global representatives cmi−1 , . . . , cmi (using the local repre-
sentatives computed by all nodes). The local representative of a cluster C is computed
by starting from the set of γ-shared items among all the transactions within C. More
precisely, for each transaction in C, the union of the γ-shared item sets with respect
to all the other transactions in C is obtained. Then, a raw representative is computed
by selecting the items from these union sets with the highest frequency: the raw repre-
sentative, however, may not have the form of a tree tuple, as some items therein may
refer to the same path but with different answers. We define a function that is applied
to a set of items and, for each subset I = {ei1, . . . , eik} of items sharing the same
path p, yields one item that has p as path and the concatenation of the contents of
items in I as its content. Finally, a greedy heuristic refines the current representative by
iteratively adding the remaining most frequent items until the sum of pair-wise similar-
ities between transactions and representative cannot be further maximized. The global
representative of a cluster C is computed by considering the m local representatives
c1, . . . , cm. The only difference with respect to the computation of the local cluster is
that in the computation of the structural rank associated with an item e we consider the
rank associated with each item (instead of the number of items) having a γ-matching.
Tree tuples selected as initial cluster centroids are constrained to come from different
XML documents, in order to favor the construction of clusters with low inter-similarity.
The termination criterion in CXK-means requires the quality of the resulting cluster
partition is maximized. An alternative, less expensive exit criterion consists in check-
ing whether clusters are stable, that is checking whether cluster centroids in the current
iteration are not changed with respect to the previous iteration.

dataset # of clusters # of nodes F-measure
(avg)

1 0.593
3 0.523

IEEE 8 5 0.485
7 0.421
9 0.376
1 0.764
3 0.702

DBLP 6 5 0.662
7 0.612
9 0.547

Table 1. Clustering results
with f ∈ [0..0.3] (content-
driven similarity)

dataset # of clusters # of nodes F-measure
(avg)

1 0.564
3 0.497

IEEE 14 5 0.451
7 0.404
9 0.356
1 0.772
3 0.721

DBLP 16 5 0.676
7 0.614
9 0.558

Table 2. Clustering re-
sults with f ∈ [0.4..0.6]
(structure/content-driven
similarity)

dataset # of clusters # of nodes F-measure
(avg)

1 0.618
3 0.542

IEEE 2 5 0.497
7 0.433
9 0.386
1 0.988
3 0.934

DBLP 4 5 0.882
7 0.819
9 0.716

Table 3. Clustering results
with f ∈ [0.7..1] (structure-
driven similarity)

4 Experimental Evaluation

Evaluation methodology and assessment criteria. We assessed the proposed frame-
work in performing clustering according to structure, content, or both information. We
hereinafter refer to these kinds of solutions as structure-driven, content-driven, and
structure/content-driven clustering, respectively. The three types of clustering corre-
spond to different settings of the parameters f and γ, which control the XML transac-
tion similarity function. We varied f within [0..1] with step 0.1, and γ within [0.5..1)
with step 0.05. To assess the impact of the network size on the clustering task in terms
of both effectiveness and efficiency, we performed experiments by varying the number
of nodes in the network from 1 to 19. Data objects were equally partitioned over the
nodes. To evaluate the quality of clustering solutions for the datasets, we exploited the
availability of reference classifications for XML documents. The objective was to eval-
uate how well a clustering fits a predefined scheme of known classes (natural clusters).
For this purpose, we resorted to the well-known F-measure, which is defined as the
harmonic mean of precision and recall [2].

Data description We used two real word document collections for the evaluation that
are particularly suited for each of the three types of clustering. The IEEE data set refers
to the IEEE collection version 2.2, that has been used as a benchmark in the INEX doc-
ument mining track 2008.1 IEEE consists of 4,874 articles originally published in 23
different IEEE journals from 2002 to 2004. We kept most of the logical structure ele-
ments and removed the stylistic markups.In our XML transactional domain, the IEEE
collection has 211,909 transactions and 135,869 items.The second evaluation data set
is a subset of the DBLP archive,2 a digital bibliography on computer science that con-
tains citations on journal articles, conference papers, books, book chapters, and theses.
DBLP is comprised of 3,000 documents which correspond to 5,884 transactions and
8,231 items.

Results Tables 1–3 show the average clustering performance obtained on the various
data sets by CXK-means varying the number of nodes and the type of clustering set-
ting (i.e., structure-, content-, and structure/content-driven clustering); for the sake of

1 http://www.inex.otago.ac.nz/data/documentcollection.asp
2 http://dblp.uni-trier.de/xml/

Fig. 1. Clustering time performances on IEEE varying the number of nodes and the dataset size

presentation, here results are shown for a maximum number of nodes equal to 9. Re-
sults refer to multiple (10) runs of the algorithm and were measured by averaging the
F-measure scores over the range of f values specific of the clustering setting. As far
as parameter γ, the best setting was found to be close to high values (typically above
0.85), for each dataset and type of clustering [16].

As it is reasonable to expect, the centralized case (i.e., one node) led to an upper
bound in terms of clustering quality for the collaborative approach. While our focus
is not on the evaluation of the centralized case—the interested reader can find details
in [16]— we observed how clustering accuracy decreases as the number of nodes in-
creases, regardless of the dataset and the type of clustering. This can be explained since
a higher number of nodes corresponds to a lower distribution ratio of the transactions
over the nodes; as a consequence, each node produces, at each step of the distributed al-
gorithm, a local clustering solution over a too small portion of data, which cannot really
represent the final overall solution. However, this performance degradation remained
relatively acceptable for a distributed environment.

Figure 1 shows how the time performance in structure/content-driven clustering
varied by by increasing the number of nodes on two subsets of IEEE; similar results
(not shown due to the space limit of this paper) were obtained on DBLP. We observed
that CXK-means takes major advantages w.r.t. a centralized setting in terms of runtime
behavior. However, when the number of nodes grows up, the collaborative clustering
algorithm also needs a higher number of iterations to converge. This fact affects neg-
atively the network traffic (i.e., the centroid exchange) which might not be negligible
anymore. Indeed, as we can see in Figure 1, after a drastic reduction of the runtime
due to the use of just a few nodes, the runtime remains roughly constant for a certain
range, then it starts to slightly increase when the number of nodes becomes significantly
higher.

5 Conclusion

We presented a distributed collaborative framework for clustering XML documents; to
the best of our knowledge, this is the first collaborative approach to clustering XML
documents by structure and content in a distributed P2P environment. We developed a

distributed, centroid-based partitional clustering algorithm, where cluster centroids are
used to describe portions of the document collection and can conveniently be exchanged
with other peers on the network. Each peer yields a local clustering solution over its own
set of XML data, and exchanges the cluster centroids with other nodes. This sort of
recommendation is used to compute global centroids, thus finally obtaining an overall
clustering solution in a collaborative way. Experimental evidence has shown that the
distributed collaborative approach outperforms the corresponding centralized clusterign
setting in terms of runtime behavior, paying a limited loss of accuracy.

References
1. M. Arenas and L. Libkin. A Normal Form for XML Documents. ACM Transactions on

Database Systems, 29(1):195–232, 2004.
2. B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering.

In Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD), pages 16–22,
1999.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press Books.
Addison Wesley, 1999.

4. G. Costa, G. Manco, R. Ortale, and A. Tagarelli. A Tree-based Approach to Clustering XML
Documents by Structure. In Proc. European Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pages 137–148, 2004.

5. M. Eisenhardt, W. Muller, and A. Henrich. Documents by Distributed P2P Clustering. In GI
Jahrestagung (2), pages 286–291, 2003.

6. S. Flesca, F. Furfaro, S. Greco, and E. Zumpano. Repairs and Consistent Answers for XML
Data with Functional Dependencies. In Proc. Int. XML Database Symposium (XSym), pages
238–253, 2003.

7. F. Gullo, G. Ponti, A. Tagarelli, and S. Greco. Collaborative XML Document Clustering. In
Proc. 1th International Workshop on Distributed XML Processing, in conjunction with the
38th IACC Int. Conf. on Parallel Processing (ICPP 2009), 2009.

8. K Hammouda and M. Kamel. Collaborative document clustering. In Proc. SIAM Int. Conf.
on Data Mining (SDM), pages 211–214, 2006.

9. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall advanced refer-
ence series. Prentice-Hall, 1988.

10. R. Kargupta and I. Hanzaoglu andB. Stafford. Distributed data mining using an agent based
architecture. In Proc. European Conf. on Principles and Practice of Knowledge Discovery
in Databases (PKDD), pages 211–214, 1997.

11. W. Lian, D. W. Cheung, N. Mamoulis, and S.-M. Yiu. An Efficient and Scalable Algorithm
for Clustering XML Documents by Structure. IEEE Transactions on Knowledge and Data
Engineering, 16(1):82–96, 2004.

12. A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Documents. In
Proc. ACM SIGMOD Int. Workshop on the Web and Databases (WebDB), pages 61–66,
2002.

13. N. Polyzotis and M. Garofalakis. Structure and Value Synopses for XML Data Graphs. In
Proc. of the Int. Conf. on Very Large Data Bases (VLDB), pages 466–477, 2002.

14. A. Strehl, J. Ghosh, and R. Mooney. Impact of Similarity Measures on Web-page Clustering.
In Proc. AAAI Workshop on AI for Web Search, pages 58–64, 2000.

15. A. Tagarelli and S. Greco. Toward Semantic XML Clustering. In Proc. SIAM Int. Conf. on
Data Mining (SDM), pages 188–199, 2006.

16. A. Tagarelli and S. Greco. Semantic Clustering of XML Documents. ACM Transactions on
Information Systems, 28(1), 2010.

