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Abstract. In recent years there has been a growing interest in clustering uncer-
tain data. In contrast to traditional, “sharp” data representation models, uncertain
data objects can be represented in terms of an uncertainty region over which a
probability density function (pdf) is defined. In this context, the focus has been
mainly on partitional and density-based approaches, whereas hierarchical clus-
tering schemes have drawn less attention.
We propose a centroid-linkage-based agglomerative hierarchical algorithm for
clustering uncertain objects, named U-AHC. The cluster merging criterion is
based on an information-theoretic measure to compute the distance between clus-
ter prototypes. These prototypes are represented as mixture densities that summa-
rize the pdfs of all the uncertain objects in the clusters. Experiments have shown
that our method outperforms state-of-the-art clustering algorithms.

1 Introduction

Handling uncertainty in data management has been requiring more and more impor-
tance in a wide range of application contexts. Indeed, data uncertainty naturally arises
from, e.g., implicit randomness in a process of data generation/acquisition, imprecision
in physical measurements, and data staling. In general, uncertainty can be considered
at table, tuple or attribute level, and is usually specified by fuzzy models, evidence-
oriented models, or probabilistic models [14].

In this paper, we focus on data containing attribute-level uncertainty, which can be
recognized in several application domains such as, e.g., biomedical measurement, fi-
nancial and market data analysis, sensor networking, motion tracking, meteorological
forecasting. We hereinafter refer to attribute-level uncertain data as uncertain objects.
An uncertain object is usually represented by means of probability density functions
(pdfs), which describe the probability that the object appears at any position in a mul-
tidimensional space [7, 3], rather than by a traditional vectorial form of deterministic
values.

Dealing with uncertain objects has raised several issues in data management and
knowledge discovery. In particular, organizing uncertain objects is challenging due to
the intrinsic difficulty underlying the various notions of uncertainty. As a consequence
to this challenge, clustering uncertain objects has been attracting increasing interest in
recent years (e.g., [8, 7, 3, 12, 13]). While most existing algorithms for clustering uncer-
tain data differ on the clustering strategy and the cluster model, the adopted notions of



distance between uncertain objects come into two main approaches: computing the dis-
tance between aggregated values (e.g., expected values) extracted from the pdfs of the
uncertain objects, or directly comparing the whole pdfs. However, both approaches have
some drawbacks in their own: the first approach, as stated in, e.g., [6], has an accuracy
issue, whereas the second one suffers from slow integration estimations and/or oper-
ations quadratic w.r.t. the size of the sample lists commonly used to approximate the
pdfs of the uncertain objects. Moreover, traditional measures for comparing pdfs, such
as the Ali-Silvey class of information-theoretic distance measures [1], cannot be used
to directly define distances for uncertain objects. Indeed, these information-theoretic
measures require that the pdfs come from random variables defined over a common
event space, i.e., common domain region; unfortunately, the domain regions of the pdfs
associated to the uncertain objects usually do not have wide intersections.

In this paper, we propose a centroid-linkage-based agglomerative hierarchical algo-
rithm for clustering uncertain objects, named U-AHC.1 To the best of our knowledge,
the proposed algorithm represents the first agglomerative hierarchical approach to the
problem of clustering uncertain objects. In U-AHC, the cluster merging step is accom-
plished by a centroid-linkage criterion [11] which has the following main features: i)
the cluster prototypes (i.e., cluster centroids) are computed as mixture densities that
summarize the pdfs of all the objects in the clusters, and ii) the pair of closest clus-
ters is chosen according to an information-theoretic measure that computes the distance
between the cluster prototypes.

The centroid-linkage-based criterion does not require a notion of distance between
the objects to be clustered, unlike other traditional linkage criteria in agglomerative
hierarchical clustering. This allows us to avoid defining a notion of distance between
uncertain objects, which is crucial in uncertainty similarity detection; instead, the adop-
tion of cluster prototypes as mixture densities enables our algorithm to be equipped with
a notion of information-theoretic distance measure that exploits an advantageous char-
acteristic of the cluster prototypes: the overlaps between the cluster prototypes’ domain
regions are generally larger than the overlaps between the individual objects’ regions.

We have conducted experiments in order to assess accuracy of our algorithm, and
to compare it to state-of-the-art methods for clustering uncertain data. Experimental
results have shown that our U-AHC outperforms existing algorithms up to about 20%.

2 Related work

One of the earliest attempts to solve the problem of clustering uncertain data is the
partitional algorithm UK-means [3], which is an adaptation of the popular K-means
designed for handling uncertain objects. UK-means suffers from an expensive compu-
tation of the expected distances (EDs) between uncertain objects and cluster centroids,
which is repeated at each iteration of the algorithm. In order to improve the UK-means
efficiency, pruning techniques have been developed to avoid the computation of redun-
dant EDs [12]. Such techniques make use of lower- and upper-bounds ad-hoc defined
for each ED to be calculated. In [13], the CK-means is proposed as a variant of UK-

1 An extended version of this paper appeared in proc. of IEEE Int. Conf. on Data Mining (ICDM)
2008, pp. 821-826. Pisa, Italy.



means that exploits the moment of inertia of rigid bodies in order to reduce the execution
time needed for computing EDs.

Density-based approaches have been also proposed for clustering uncertain objects.
In [7], the fuzzy version of the popular DBSCAN, FDBSCAN, uses fuzzy distance
functions to compute the core object and reachability probabilities, which are at the
basis of the density-based clustering strategy of the algorithm. A similar approach is
presented in [8], which describes the FOPTICS algorithm. Like the well-known hierar-
chical density-based clustering algorithm OPTICS, FOPTICS produces an augmented
ordering of the objects based on the notion of fuzzy object reachability-distance; this
ordering can be eventually used to derive a cluster hierarchy.

In contrast to the majority of algorithms for clustering uncertain objects which are
based on partitional or density-based schemes, it should be noted that there is relatively
poor research on hierarchical clustering of uncertain data. Moreover, our U-AHC pro-
duces a cluster hierarchy, unlike FOPTICS which outputs a reachability plot. Another
important remark is that U-AHC does not require any input parameter, such as, e.g.,
a threshold for the neighbor distance or the minimum number of points in the object
neighborhoods.

3 Clustering uncertain objects

Representing uncertain objects is traditionally accomplished by using two types of mod-
els, namely multivariate uncertainty and univariate uncertainty models.

Definition 1 (multivariate uncertain object) A multivariate uncertain object o is a
pair (R, f), where R = [l1, u1]× · · · × [lm, um] is the m-dimensional region in which
o is defined and f : <m → <+

0 is the probability density function of o at each point
x ∈ R, such that:∫

x∈R

f(x)dx = 1 and
∫

x∈<m\R

f(x)dx = 0

Definition 2 (univariate uncertain object) A univariate uncertain object o is a tuple
(a(1), . . . , a(m)). Each attribute a(h) is a pair (I(h), f (h)), for each h ∈ [1..m], where
I(h) = [l(h), u(h)] is the interval of definition of a(h), and f (h) : < → <+

0 is the
probability density function that assigns a probability value to each x ∈ I(h), such
that: ∫

x∈I(h)

f (h)(x)dx = 1 and
∫

x∈<\I(h)

f (h)(x)dx = 0

3.1 Uncertain prototype

We introduce the notion of uncertain prototype as a new uncertain object computed
from a set of uncertain objects, which summarizes the features of all the objects in the
set. Basically, an uncertain prototype is represented by mixture densities from the pdfs
associated to each object in the set to be summarized.



Definition 3 (multivariate uncertain prototype) Let C = {o1, ..., on} be a set of mul-
tivariate uncertain objects, where oi = (Ri, fi), Ri = [li1 , ui1 ] × . . . × [lim , uim ], for
each i ∈ [1..n]. The multivariate uncertain prototype of C is a multivariate uncertain
object PC = (RC , fC), where

RC=
[

min
i∈[1..n]

li1 , max
i∈[1..n]

ui1

]
×· · ·×

[
min

i∈[1..n]
lim , max

i∈[1..n]
uim

]
, fC(x)=

1
n

n∑

i=1

fi(x)

Definition 4 (univariate uncertain prototype) Let C = {o1, ..., on} be a set of uni-
variate uncertain objects, where oi = ((I(1)

i , f
(1)
i ), . . . , (I(m)

i , f
(m)
i )), I(h)

i = [l(h)
i , u

(h)
i ],

for each h ∈ [1..m], i ∈ [1..n]. The univariate uncertain prototype of C is a univariate
uncertain object PC = ((I(1)

C , f
(1)
C ), . . . , (I(m)

C , f
(m)
C )) such that, for each h ∈ [1..m]:

I
(h)
C =

[
min

i∈[1..n]
l
(h)
i , max

i∈[1..n]
u

(h)
i

]
, f

(h)
C (x) =

1
n

n∑

i=1

f
(h)
i (x)

3.2 Distance between uncertain prototypes
To define a distance measure between uncertain prototypes, we employ a function that
exploits the full information stored in the pdfs. Two of the most frequently used distance
measures between probability densities are the Kullback-Leibler divergence [10, 9] and
the Chernoff distance [4], which fall into the Ali-Silvey class of information-theoretic
distance measures [1]. However, such distances may be disadvantageous in our setting
for a number of reasons—for instance, the Kullback-Leibler divergence is not symmet-
ric, the Chernoff distance is typically hard to compute, and both measures do not satisfy
the triangle inequality.

Our definition of distance between prototypes exploits a measure based on the Bhat-
tacharyya coefficient [2, 5], which is defined as follows:

ρ(p(x), q(x)) =
∫

x∈<m

√
p(x) q(x) dx (1)

Among the various distance measures that can be defined based on the Bhattacharyya
coefficient [5], in this work we use the following

B(p(x), q(x)) =
√

1− ρ(p(x), q(x)) (2)

which has a number of advantages w.r.t. other Bhattacharyya distances, such as the com-
monly used −log ρ definition. In particular, the Bhattacharyya distance in Equation (2)
obeys the triangle inequality, ranges within the interval [0, 1] and, unlike the Chernoff
distance (which is a more general case), is easier to compute and satisfies the additive
property even if the random variables are not identically distributed.

Definition 5 (multivariate uncertain prototype distance) Given a setD of multivari-
ate uncertain objects, let PCi = (RCi , fCi) and PCj = (RCj , fCj ) be the multivariate
uncertain prototypes of the sets Ci, Cj ⊆ D, respectively. The multivariate uncertain
prototype distance between PCi and PCj is defined as

∆(PCi ,PCj )=γ ∆′(PCi ,PCj ) + (1− γ) ∆′′(PCi ,PCj ) (3)



where

∆′(PCi ,PCj ) = B(fCi , fCj ) , ∆′′(PCi ,PCj ) =
1

Emax(D)
d(E[fCi ], E[fCj ]),

γ =
V(RCi

∩RCj
)

min{V(RCi
),V(RCj

)}
In Definition 5, d is a function that measures the distance between m-dimensional

points (e.g., Euclidean norm), E[f ] denotes the expected value of the pdf f , V(R) is
the hyper-volume of the m-dimensional region R, and Emax is a normalization term,
which is defined as: Emax(D) = maxou,ov∈D d(E[fu], E[fv]). It should be noted that
∆ ranges within [0, 1].

Let us now explain the reasons for introducing ∆′ and ∆′′ in Equation (3). The
Bhattacharyya distance (Equation (2)) compares two pdfs by considering their portions
defined over a common event space (i.e., common domain region). Thus, if the event
spaces of the two pdfs do not have any intersection, the Bhattacharyya distance does not
work, i.e., it is always equal to one. Although these cases are quite infrequent because
of the way uncertain prototypes are defined, we introduce the term ∆′′ in Equation (3)
to discriminate among those cases by considering the distance between the expected
values of the prototype pdfs. We weight the terms ∆′ and ∆′′ by involving the coeffi-
cient γ ∈ [0, 1], which quantifies the importance of ∆′ and ∆′′ in the definition of ∆. In
particular, γ is proportional to the width of the domain region shared between the pro-
totypes to be compared. This definition of γ represents a reasonable choice, since the
larger the portion of the pdfs involved into the Bhattacharyya distance calculation, the
smaller the need for comparing the pdfs by also considering the corresponding expected
values, and vice versa.

Definition 6 (univariate uncertain prototype distance) Given a set D of univariate
uncertain objects, let PCi = ((I(1)

Ci
, f

(1)
Ci

), . . . , (I(m)
Ci

, f
(m)
Ci

)) and PCj = ((I(1)
Cj

, f
(1)
Cj

),

. . . , (I(m)
Cj

, f
(m)
Cj

)) be the univariate uncertain prototypes of the sets Ci, Cj ⊆ D, re-
spectively. The univariate uncertain prototype distance between PCi and PCj is defined
as

∆(PCi ,PCj ) = fdist(δ(1), . . . , δ(m)) (4)

where

δ(h) = γ(h) B(f (h)
Ci

, f
(h)
Cj

) + (1− γ(h))
( 1

E
(h)
max(D)

∣∣∣E
[
f

(h)
Ci

]
− E

[
f

(h)
Cj

]∣∣∣
)

and

γ(h) =
V(I(h)

Ci
∩ I

(h)
Cj

)

min{V(I(h)
Ci

),V(I(h)
Cj

)}
, E(h)

max(D) = max
ou,ov∈D

|E[f (h)
u ]− E[f (h)

v ]|

for each h ∈ [1..m].

In Equation (4), fdist : <m → < is a function that computes a scalar value from the
components of an m-dimensional vector. In this work, we define fdist(δ(1), . . . , δ(m)) =

(1/m)
√∑m

h=1 (δ(h))2 .



3.3 The U-AHC algorithm

Algorithm 1 U-AHC
Input: a set of uncertain objects D = {o1, . . . , on}
Output: a set of partitions D
1: C ← {{o1}, . . . , {on}}
2: D ← {C}
3: repeat
4: let Ci, Cj be the pair of clusters in C such that 1

2
(∆(PCi∪Cj ,PCi) + ∆(PCi∪Cj ,PCj )) is

minimum
5: C ← {C ∈ C : C 6= Ci, C 6= Cj} ∪ {Ci ∪ Cj}
6: D ← D ∪ {C}
7: until |C| = 1
8: return D

Algorithm 1 outlines our AHC-based algorithm for clustering uncertain objects,
named U-AHC. Given a dataset D of n uncertain objects, the algorithm follows the
classic AHC scheme to produce a hierarchy of clusters D. The merge score used to
decide for the pair of clusters to be merged at each step of the U-AHC algorithm (Line
4) employs the notions of distance between uncertain prototypes (Definitions 5-6). In
particular, for any pair of clusters Ci, Cj belonging to the current clustering C, we com-
pute the prototype of the cluster given by the union of the objects in Ci and Cj , and
evaluate the uncertain distances between this prototype and the prototypes of Ci and Cj .
We use the mean of these distances as a merge score, since intuitively the smaller these
distances, the smaller the error of merging Ci and Cj to form a new cluster.

4 Experimental evaluation
We evaluated effectiveness of the U-AHC algorithm in clustering uncertain data. The
experimental evaluation was also conducted to give a comparison of U-AHC with ex-
isting K-means based algorithms (i.e., UK-means and CK-means) and density-based
algorithms (i.e., FDBSCAN and FOPTICS).

4.1 Evaluation methodology
Datasets. We used benchmark datasets available from the UCI Machine Learning
Repository.2 For the main experiments, we selected four datasets with real-value at-
tributes, namely Iris, Wine, Glass, and Ecoli.

Table 1 shows the main characteristics of the datasets. Iris contains measurements
on different iris plants. Wine describes results of a chemical analysis of Italian wines
derived from three different cultivars. In Glass, each glass instance is described by
the values of its chemical components. Ecoli contains data on the Escherichia Coli
bacterium, which are identified with values coming from different analysis techniques.

All the selected datasets were originally created to contain deterministic values. We
synthetically generated uncertainty in the data, obtaining both univariate and multivari-
ate uncertain objects as follows. For each univariate object o, we produced the uncertain
interval I(h) and the pdf f (h) defined over I(h), for each attribute a(h), with h ∈ [1..m].

2 http://archive.ics.uci.edu/ml/



Table 1. Datasets used in the experiments

dataset objects attributes classes
Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5

Table 2. Accuracy results (F-measure) for uni-
variate models

dataset pdf UK-means CK-means FDBSCAN FOPTICS U-AHC
Uniform 0.93 0.92 0.92 0.92 0.93

Iris Normal 0.84 0.85 0.90 0.90 0.92
Gamma 0.60 0.50 0.79 0.77 0.87
Uniform 0.75 0.76 0.65 0.68 1

Wine Normal 0.70 0.71 0.77 0.76 0.89
Gamma 0.67 0.58 0.64 0.64 0.73
Uniform 0.55 0.69 0.43 0.47 0.81

Glass Normal 0.58 0.55 0.60 0.61 0.83
Gamma 0.46 0.51 0.62 0.64 0.92
Uniform 0.39 0.40 0.48 0.51 0.79

Ecoli Normal 0.73 0.74 0.68 0.68 0.83
Gamma 0.48 0.41 0.47 0.47 0.83

avg. score 0.64 0.635 0.663 0.67 0.863
avg. gain 22.25% 22.75% 20% 19.17% –

The interval I(h) was randomly chosen as a subinterval within [minoh
, maxoh

], where
minoh

(resp. maxoh
) is the minimum (resp. maximum) deterministic value of the h-th

attribute, over all the objects belonging to the same ideal class of o. As concerns f (h),
we considered Uniform, Normal and Gamma pdfs. We set the parameters of Normal
and Gamma pdfs in such a way that their mode corresponded to the deterministic value
of the h-th attribute of object o.

For multivariate objects o, the uncertainty region R was defined as the product of
the intervals randomly generated for each attribute of o. For the sake of brevity, we shall
present results obtained using univariate models, nevertheless the relative performances
of the algorithms were confirmed in the multivariate settings.

Clustering validity criteria. To assess the quality of clustering solutions we exploited
the availability of reference classifications for the datasets. The objective was to evaluate
how well a clustering fits a predefined scheme of known classes (natural clusters). To
this purpose, we resorted to the well-known F-measure [15] (ranging within [0, 1]),
which is defined as the harmonic mean of the total precision and recall values, which
in turn are computed by averaging over the classes the values of precision and recall
obtained for each pair cluster-class.

4.2 Results

Table 2 summarizes the F-measure results obtained by U-AHC and the other methods
on the various datasets, for the univariate models. In the table, the last two rows contain,
respectively, the average F-measure score obtained by each method and the average
percentage gain (in terms of quality) of U-AHC in relation to each method.

Overall, U-AHC outperformed the other methods with average gains from 19%
(FOPTICS) to about 23% (CK-means). Looking at the performances on each dataset,
U-AHC achieved the following maximum quality improvements (i.e., gains w.r.t. the
relative worst methods): from 1% (Iris) to 40% (Ecoli), for Binomial pdfs; from 8%
(Iris) to 28% (Glass), for Normal pdfs; from 15% (Wine) to 46% (Glass), for Gamma
pdfs. Also, U-AHC achieved the following minimum quality improvements (i.e., gains
w.r.t. the relative best methods): from 0% (Iris) to 28% (Ecoli), for Binomial pdfs;
from 2% (Iris) to 22% (Glass), for Normal pdfs; from 6% (Wine) to 35% (Ecoli), for
Gamma pdfs.



As far as the competing methods, we observed the better performance of the two
density-based algorithms w.r.t. the K-means based algorithms, which is about 3%. It
should be also noted that FOPTICS and FDBSCAN behaved closely each other, as
well as UK-means and CK-means; actually, this was not surprising since the two cou-
ples of algorithms relatively employ similar clustering schemes.

5 Conclusion
We have studied the problem of clustering uncertain data and proposed U-AHC, a
centroid-linkage-based agglomerative hierarchical algorithm. According to univariate
and multivariate uncertainty models, we have introduced a notion of uncertain (clus-
ter) prototype which is based on mixture densities from the pdfs associated to the ob-
jects belonging to a cluster. The cluster merging criterion in U-AHC exploits a new
information-theoretic-based distance between uncertain prototypes. Our U-AHC has
shown to outperform other existing methods in terms of accuracy, regardless of the
choice of uncertainty density function. Also, from an efficiency viewpoint, U-AHC
performs comparably to density-based clustering algorithms.
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