
Accurate and Fast Similarity Detection
in Time Series

Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, Sergio Greco

DEIS, University of Calabria
e-mail: {fgullo,gponti,tagarelli,greco}@deis.unical.it

Abstract. This paper addresses the problem of similarity detection in
time series from both an effectiveness and efficiency viewpoint. A main
motivation underlying our work is that, as we experimentally proved,
no state-of-the-art method has capabilities for both fast and accurate
similarity detection in time series. Viewed in this respect, we propose
DSA (Derivative time series Segment Approximation), a representation
model for time series that suitably combines the notions of derivative es-
timation, segmentation and segment approximation to support effective
and efficient similarity detection. Experiments conducted in a hierarchi-
cal clustering framework show that DSA based similarity detection is
as good or better than both the most accurate and the fastest methods
among the competing ones.

1 Introduction

A time series, or time sequence, T is a list of (real) numeric values upon which a
total order based on timestamps is defined. The traditional form T = [(x1, t1), . . . ,
(xn, tn)] can be rewritten as T = [x1, . . . , xn] when, as usual, a fixed sampling pe-
riod is assumed. Significant amounts of time series data are naturally available on
several sources of different domains, such as speech recognition, biomedical mea-
surement, financial and market data analysis, telecommunication and telemetry,
sensor networking, motion tracking, and meteorology.

In recent years, all of these application domains have raised the demand
for suitable solutions to the problem of identifying similarities among time se-
ries data. Addressing such a problem is significant for different tasks, such as
indexing and query processing, change detection, rule discovery, and classifica-
tion/clustering. In this context, the basic approach is dynamic time warping,
and the most relevant methods are its extensions, possibly including techniques
borrowed from string matching based on edit distance. Also, high dimensionality
of time series has raised the demand for dimensionality reduction techniques to
improve the efficiency of similarity searches.

The main contribution of this paper is twofold. At a first stage, we reviewed
the state-of-the-art in time series data management focusing on existing solutions
for two major issues, namely similarity detection and dimensionality reduction.
Our empirical study pointed out that no existing technique can be used to per-
form high accuracy similarity detection while maintaining low the computational

effort. This finding led us to devise a representation scheme for time series that
is able to support both effective and efficient similarity detection.

Within this view, we propose DSA – Derivative time series Segment Approx-
imation, a time series representation model based on an original combination
of the notions of derivative estimation, segmentation and segment approxima-
tion. DSA allows for modelling time series into a concise yet feature-rich repre-
sentation, thus enabling fast and accurate time series matching and similarity
detection.

Experimental results conducted in a hierarchical clustering framework show
that DSA-based time series similarity detection is as good or better than both
the most accurate and the fastest methods among the competing ones, thus
guaranteeing the best trade-off between effectiveness and efficiency.

2 Related Work

2.1 Similarity detection

Similarity detection in time series in principle should meet the following require-
ments: handling local time shifting, high efficiency in computation, low sensi-
tivity to noise, and support for indexing. The Euclidean distance (L2), initially
used in [1], is fast to compute and is a metric, but it is unable to deal with
noisy sequences and sequences with different lengths or shifted in the time axis.
Superior approaches are based on warping the time axis and on string matching
measures.

Warping the time axis allows to achieve the best alignment between data
points of two time series. The Dynamic Time Warping (DTW) algorithm has long
been known in speech recognition [2], then was introduced to the data mining
community as an effective solution to the sensitivity of the Euclidean distance
to small distortions (i.e. fluctuations or phase shifts) in the time axis [3]. Given
two sequences T1 and T2, DTW performs a non-linear mapping of one sequence
to another by minimizing the total distance between them. Initially, a (|T1| ×
|T2|)-matrix is built to contain the squared Euclidean distances between T1’s
points and T2’s points. To find the best alignment between the two sequences,
a warping path (i.e. a sequence of matrix elements) is computed in such a way
that: it starts and ends in diagonally opposite corner cells of the matrix, all
elements in the path are contiguous and monotonically spaced in time, and the
total cumulative distance is minimized. The optimal path is retrieved by using
a dynamic programming algorithm, whose complexity is O(|T1| × |T2|).

DTW can handle time series with local time shifting and different lengths,
although it is not a metric, unlike the Euclidean distance. Pruning techniques
proposing computationally cheap lower bounds (e.g. [4–7]) have been defined to
make DTW able to support indexing. In particular, the lower bounding measure
proposed in [4] has been extensively used in several application contexts (e.g. [8–
12]). This measure uses a bounding envelope that encloses one of two series being
compared and is defined by an upper bound sequence U and a lower bound se-
quence L. In general, such bound sequences are defined depending on the specific

domain. A similar lower bounding measure, named FTW (Fast search method
for dynamic Time Warping), has been recently proposed in [7]. FTW approx-
imates DTW for purposes of query processing (i.e. efficient k-nearest neighbor
and range queries) and leverages the inability of exact DTW for long sequences,
due to its quadratic complexity. For this purpose, FTW proposes to estimate the
time warping distance by using a lower bounding distance measure on a coarse
and compact version of the original sequences.

A major disadvantage of DTW is that it tends to produce “singularities”,
that are alignments of a single point in a sequence with multiple points of another
sequence. This phenomenon becomes undesirable when unexpected singularities
are produced. An effective variant of DTW able to reduce the phenomenon of
singularities is Derivative Dynamic Time Warping (DDTW) [13]. The novelty of
DDTW is that local derivatives of data points are estimated to capture infor-
mation on slopes and trends in the sequences and find the correct warping.

An alternative approach to time series similarity detection is based on string
matching measures. LCSS (Longest Common SubSequence) [14] is a variant of
the edit distance that uses the length of the longest common subsequence of
two sequences to define the distance between them. LCSS can handle time series
with noise, but suffers from large-grained similarity.

A more refined measure based on edit distance is EDR (Edit Distance with
Real sequences) [15], which performs the same distance quantization of LCSS
(parametric with respect to a certain tolerance threshold) to remove noisy effects.
In contrast to LCSS, EDR penalises the gaps between two matched subsequences
according to the lengths of gaps. Unlike LCSS and EDR, ERP (Edit distance
with Real Penalty) [16] is a metric and still supports local time shifting. ERP
can be seen as a variant of EDR and DTW, although it does not require a noise-
tolerance threshold like EDR, and does not replicate previous data points to add
a gap like DTW. However, ERP shares with EDR and DTW the computational
upper bound.

2.2 Dimensionality reduction

In order to improve the efficiency in time series data management, many research
works have focused on dimensionality reduction to obtain a higher-level data
representation. Typically, the goal is to approximate a (continuous) time series
either with a piecewise discontinuous function or a low-order continuous function.

The first category includes Discrete Wavelet Transform (DWT) [17, 18], Piece-
wise Aggregate Approximation (PAA) [19, 20], and Adaptive Piecewise Constant
Approximation (APCA) [21]. Using DWT, a time series is represented as a finite
length, fast decaying oscillating waveform (mother wavelet), which is scaled and
translated to match the original series. Unlike the continuous version of wavelet
transform, the mother wavelet in DWT is discretely sampled.

PAA transforms a time series of n points in a new one composed by p seg-
ments (with p ¿ n). All these segments have size equal to n/p. A segment is
represented by a coefficient, which is the mean value of the data points falling

within the segment. Like PAA, APCA approximates a time series with a se-
quence of segments, each represented by the mean value of data points falling
within it. A major difference is that APCA identifies segments of variable length.
The O(n log n) APCA algorithm is able to produce high-quality approximation
by resorting to well-known solutions from the wavelet domain.

Dimensionality reduction techniques can be combined with existing similarity
measures, in order to improve the computational cost in similarity searches. In
particular, the use of DTW on the coefficients obtained by segmentation of time
series has been investigated [22, 20].

Approaches that approximate a time series with a continuous polynomial in-
clude Discrete Fourier Transforms (DFT) [23, 24], splines, non-linear regression,
and Chebyshev polynomials [25]. A very desirable requirement is the minimax
approximation, i.e. an approximation that minimises the maximum deviation
from the original data points. Although the optimal minimax polynomial is dif-
ficult to compute, it has been demonstrated that the Chebyshev approximation
is very close to this polynomial and can be easily computed [26].

3 Derivative Time Series Segment Approximation

In this section we present a method for modelling time series into a compact
representation, which suitably synthesizes the significant variations in the time
series profile. The method is called DSA (Derivative time series Segment Ap-
proximation), as it intuitively segments the derivative version of a time series
before of approximating it into a high level representation.

Let T = [x1, . . . , xn] be a time series, where the timestamp associated to x1

is assumed to be zero. DSA computes in O(n) a new sequence τ of p values,
with p ¿ n, in three main steps: (i) derivative estimation, (ii) segmentation,
and (iii) segment approximation.

3.1 Derivative estimation

Given a time series T = [x1, . . . , xn], the derivative estimation step yields a
sequence Ṫ = [ẋ1, . . . , ẋn], whose elements ẋi are first derivative estimates. A
simple derivative estimation model, exploited in [13] and hereinafter referred to
as DDTW model, is the following:

ẋi =

ẋi+1 if i = 1
1
2 [(xi − xi−1) + 1

2 (xi+1 − xi1)] if i ∈ [2..n-1]
ẋi1 if i = n.

This estimation model computes for each point (except the first and the last one
in the series) the mean value between the slope of the line from the left neighbor
to the point and the slope of the line from the left neighbor to the right neighbor.

We slightly modify the above model by considering also the slope of the line
from the point to the right neighbor; this modification leads to an algebraic
simplification producing an expression which is equivalent to consider only the

slope of the line from the left neighbor to the right neighbor. Neighbors are also
considered when computing the derivatives of the first and last points:

ẋi =

xi+1 − xi if i = 1
1
2 (xi+1 − xi1) if i ∈ [2..n-1]
xi − xi1 if i = n.

As experimentally founded, our derivative estimation model surprisingly gives
approximation errors lower than the DDTW model.

3.2 Segmentation

The segmentation of a time series of length n consists in identifying p− 1 points
(p ¿ n) to partition it into p contiguous subsequences of points, i.e. segments,
having similar features.

In our approach, the novel idea is that the segmentation is computed on
derivative versions of time series. In particular, the derivative time series Ṫ =
[ẋ1, . . . , ẋn] is transformed into a sequence SṪ = [s1, . . . , sp] of variable-length
segments si = [si,1, . . . , si,ki

] = [ẋi1 , . . . , ẋiki
], such that:

– s1,1 = ẋ1,
– sp,kp = ẋn,
– for each i ∈ [1..p-1], si,ki immediately precedes si+1,1 in the time axis.

The critical aspect in segmentation is to determine the segment delimiters.
Our approach falls into the sliding windows category: a segment is grown until
it exceeds an error threshold, and the process repeats starting from the next
point not yet considered. The key idea in our method is simply to break a series
according to the first point such that the absolute difference between it and the
mean of the previous points is above a certain threshold; this point becomes the
anchor for the next segment to be identified in the rest of the series.

Formally, let µ(si) denote the average of the points in a potential segment si,
defined as µ(si) = 1

ki

∑ki

j=1 ẋij . The sequence si, for each i ∈ [1..p-1], is identified
as a segment if and only if |µ([si,1, . . . , si,j]) − si,j+1| ≤ ε, for all j ∈ [1..ki−1],
and |µ([si,1, . . . , si,ki])− si+1,1| > ε.

Intuitively, this condition allows for aggregating subsequent data points hav-
ing very close derivatives. In such a way, the growth segment represents a sub-
sequence of points with a specific trend.

Parameter ε can be estimated in principle by considering an index of dis-
persion of the (derivative) data points within the same sequence around the
respective mean value. Estimating ε might be accomplished based on one of
three different contexts: globally to a given collection of time series, globally to
a given time series, or locally to a given time series.

Given a dataset of N time series, the first way of computing ε may lead to
the following definition: ε = 1

N

∑N
k=1

|Ṫk|
maxN

i=1{|Ṫi|}σ
2(Ṫk) where σ2(Ṫk) denotes

the variance over the points in the k-th derivative series. The normalisation of
the lengths is significant if the assumption of equally-sized series does not hold.
The above definition can be adequate for the purpose provided that the time

series of a collection are quite equally sized. This cannot necessarily hold in
some real domains (e.g. sensor network measurements) in which the time series
generated may have varying lengths.

An opposite solution consists in estimating threshold ε locally to each time
series, and in particular as function of the segment si which is currently be-
ing identified, that is, e.g. ε(si) = σ2(si). However, although intuitively more
accurate, this way of computing ε might be expensive.

A good trade-off between a collection-global and a series-local computation of
ε is represented by the definition of a series-global computation: ε(Ṫi) = σ2(Ṫi).
We hereinafter refer to that as the definition of ε adopted in the DSA model.

While the main dimensionality reduction methods (Chebyshev polynomials,
PAA and APCA) require in input the number of segments or coefficients which
have to be identified, DSA does not need any input parameter. This is an im-
portant advantage of our method.

3.3 Segment approximation

All individual segments of a derivative time series are approximated with a
synthetic information capturing their respective main features. More precisely,
each segment si is mapped to a pair formed by the timestamp ti of the last
point (ẋiki

) of si and an angle that explains the average slope of the portion of
time series bounded by si. This is mathematically expressed by the notion of
arctangent applied to the mean of the (derivative) points in each segment.

Given a segmented derivative time series SṪ = [s1, . . . , sp], a sequence τ =
[(α1, t1), . . . , (αp, tp)] is computed, where

αi = arctan(µ(si)), for i ∈ [1..p],

ti =
{

ki i = 1
ti−1 + ki i ∈ [2..p].

4 Experiments

Experiment devised to assess both effectiveness and efficiency of the previously
presented methods, including our DSA, in a clustering framework. Specifically,
we tested LCSS, EDR, ERP DTW, DDTW and FTW directly as distance mea-
sures. Moreover, in order to include Chebyshev, PAA, APCA and our DSA in
the comparative evaluation of distance measures, we chose to apply DTW over
the sequences computed by each approximation scheme. The goal of the evalu-
ation was to demonstrate the superiority of DSA to achieve fast and accurate
similarity detection of time series in comparison with competing methods.

Input parameters required by LCSS, EDR, ERP, FTW and Chebyshev have
been chosen as suggested in their respective works: constant gap for ERP has
been set to 0, time interval for FTW has been set to 4, number of coefficients for
Chebyshev has been set to 20 and the matching thresholds for LCSS and EDR
have been assumed to be equal to 1

4 max{σ(Ti)} and min{σ(Ti)}, for all Ti in the
target dataset, respectively. As concerns PAA and APCA, since no indication
about how to set the number of segments (p) is provided in their respective

works, we chose p as follows: for effectiveness evaluation, p was set as the number
of segments produced by DSA, in order to evaluate accuracy reached at the
same compression level; instead, for efficiency evaluation, we firstly measured
effectiveness for different compression levels by varying p and, finally, chose p
according to the best trade-off between accuracy and computational time.

4.1 Data description

We selected well-known datasets in the time series domain according to two main
aspects: heterogeneity of the series profiles and significance of the series lengths.
Table 1 summarises the main characteristics of the datasets, which are mostly
available at http://www.cis.temple.edu/:latecki/TestData/TS Koegh/.

dataset size classes time steps

GunX 200 2 150
Trace 200 4 275

ControlChart 600 6 60
CBF 300 3 128

Twopat 800 4 128

Table 1. Main characteristics of the test datasets

GunX comes from the video surveillance domain, whereas Trace simulates sig-
nals representing instrumentation failures. In CBF, each class is characterized by
a specific pattern, namely a plateau (C), an increasing ramp followed by a sharp
decrease (B), a sharp increase followed by a decreasing ramp (F). ControlChart
contains synthetically generated control charts which are classified into 6 classes.
In Twopat, two different patterns (upward step and downward step) are used to
define the classes.

4.2 Clustering method and quality measures

In our work the choice of a clustering scheme is functional to a comparative eval-
uation of methods for similarity detection. In this paper we employ a traditional
agglomerative hierarchical clustering (AHC) algorithm [27] into our clustering
framework.

Since the availability of reference classifications for the test datasets, the
desired number of clusters at a hierarchy level is used as AHC termination crite-
rion. Also, evaluating clustering effectiveness can be accomplished by adopting
an external validity criterion; we use the well-known F-measure (ranging within
[0..1]), which is defined in terms of classic Information Retrieval notions’ pre-
cision and recall [28]. The objective is to assess how well a clustering fits a
predefined scheme of known classes (natural clusters).

4.3 Preprocessing time series

A preliminary step may consists in preprocessing raw time series in order to
dampen the effect due to noise in data and to improve both effectiveness and
efficiency in the clustering task. This is usually accomplished by using some

smoothing models. Moving average represents the simplest family of smoothing
models, as it is a compromise between the mean model and the random walk
model. Given an original series T = [x1, . . . , xn], a centered q-point moving
average recomputes the data points as follows:

xsmoothed

i =

µ([x1, . . . , xi+r]) if i−r ≤ 0
µ([xi−r, . . . , xi+r]) if i−r > 0 and i+r ≤ n
µ([xi−r, . . . , xn]) if i+r > n

where q is the smoothing degree (i.e. the maximum width of the moving average)
and r = (q−1)/2 denotes the maximum number of back and forward points con-
sidered for smoothing the i-th point. The centered q-point version considers both
previous and next observations around a center, unlike simple moving average,
although it still treats these points equally.

More refined models, such as exponential smoothing models, compute the
weighted average of past observations with more weight given to the more re-
cent values and decreasing weights for earlier values. The formula for simple
exponential smoothing is as follows:

xsmoothed

i =
{

xi if i = 1
wxi + (1− w)xsmoothed

i−1 if i > 1

where w is a smoothing weight with values in [0..1].

4.4 Effectiveness evaluation

In this section we aimed at checking the ability of DSA and the competing meth-
ods in producing high-quality clustering. To accomplish this, we explored how
clustering results can be influenced by choosing different alternatives for data
preprocessing and setting the parameters therein involved. Then, we compared
DSA with the competing methods according to their respective best settings.

Tuning preprocessing parameters. We employed two schemes of prepro-
cessing, based on centered moving average and simple exponential smoothing.
In the first case, we had to set the smoothing degree q(= 2r+1), whereas in case
of exponential smoothing we tried different values for the smoothing weight w.
In particular, q was set to typical values, i.e. 5 and 9, and w was varied within
[0..1] by a 0.1 step. We performed multiple iterations of smoothing (up to 5)
in order to handle possibly excessive noise. On the other hand, we also tried to
not perform any smoothing operation in order to prevent unnecessary loss of
information for series with very low noise.

We performed tuning tests on DSA as well as on the competing methods. For
the sake of brevity, Table 2 summarises the best preprocessing setups for DSA
and the other methods on the selected datasets. Term MA (resp. EXP) stands
for moving average (resp. exponential smoothing) and is followed by the value
set for q (resp. w) and the number of iterations.

DSA vs. competing methods. Table 3 gives a summary of results obtained
by DSA and the competing methods from an accuracy viewpoint. The reported
results correspond to F-measure values obtained by algorithm AHC, and they

GunX Trace ControlChart CBF Twopat

DTW MA q=9 No preproc. EXP w=0.8 EXP w=0.5 EXP w=0.8
it=1 it=1 it=1 it=3

LCSS MA q=5 No preproc. MA q=9 MA q=9 MA q=5
it=1 it=4 it=4 it=1

EDR MA q=9 MA q=5 EXP w=0.5 EXP w=0.8 MA q=5
it=4 it=3 it=2 it=2 it=2

ERP EXP w=0.6 No preproc. MA q=5 EXP w=0.15 EXP w=0.5
it=1 it=1 it=5 it=3

DDTW EXP w=0.1 MA q=9 EXP w=0.2 MA q=9 MA q=9
it=1 it=1 it=3 it=3 it=1

FTW EXP w=0.1 No preproc. EXP w=0.8 EXP w=0.1 EXP w=0.3
it=1 it=1 it=2 it=3

DTW on EXP w=0.2 EXP w=0.9 MA q=5 EXP w=0.5 MA q=9
Chebyshev it=1 it=1 it=4 it=2 it=5

DTW on EXP w=0.5 EXP w=0.1 EXP w=0.6 EXP w=0.6 EXP w=0.8
PAA it=1 it=1 it=4 it=2 it=5

DTW on MA q=9 MA q=9 MA q=9 MA q=5 MA q=9
APCA it=3 it=1 it=2 it=3 it=4

DTW on EXP w=0.3 MA q=9 EXP w=0.5 EXP w=0.3 EXP w=0.3
DSA it=3 it=4 it=5 it=3 it=3

Table 2. Summary of best preprocessing setups

LCSS EDR ERP DTW DDTW FTW DTW on DTW on DTW on DTW on
Chebyshev PAA APCA DSA

GunX 0.60 0.68 0.67 0.67 0.64 0.67 0.67 0.66 0.64 0.68
Trace 0.36 0.58 0.77 0.75 1 0.77 0.65 0.77 0.74 1

ControlChart 0.66 0.83 0.81 0.86 0.86 0.83 0.80 0.86 0.71 0.86
CBF 0.66 0.84 0.65 0.72 0.99 0.67 0.69 0.72 0.82 0.99

Twopat 0.39 0.41 0.39 0.81 1 0.49 0.45 0.66 0.72 1

Table 3. Summary of best clustering quality results

refer to the best preprocessing setups respectively chosen for each similarity
method on each dataset (see Table 2).

Table 3 shows that DSA fares as good as DDTW, which turns out to be
mostly the best performing method among the remaining ones. Notice also
the relative better performance of DDTW against FTW, Chebyshev, PAA and
APCA. EDR and ERP perform similarly and both outperform LCSS. Yet,
DDTW behaves as good or far better than DTW on all datasets but GunX,
whose 2-class series have trends very similar but shifted in the time axis. The 2-
class composition of this dataset is probably a reason why clustering results are
relatively poor for all methods, suggesting that AHC fails in distinctly separating
the two classes of series. We can also observe that DSA drastically outperforms
the other dimensionality reduction techniques (Chebyshev, PAA and APCA).

4.5 Efficiency evaluation

We present here the time performances of DSA based clustering, and a compar-
ison with respect to DTW, DDTW, FTW, Chebyshev, PAA and APCA based
clustering. We left string matching based approaches out of the presentation
since they turned out to be significantly slower than the other methods.1

1
Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB memory and running
on Microsoft Windows XP Pro.

DTW DDTW FTW DTW on DTW on DTW on DTW on
Chebyshev PAA APCA DSA

GunX 280,078 330,281 64,500 12,328 56,124 117,125 62,281
Trace 947,516 1,420,969 163,347 42,860 200,684 181,750 87,719

ControlChart 559,063 478,235 82,656 147,984 163,249 226,016 104,875
CBF 643,797 573,547 56,766 36,203 152,462 199,265 155,968

Twopat 5,068,859 5,959,391 946,484 315,906 1,260,537 1,630,344 356,609

Table 4. Summary of best time performances

Table 4 reports the time performances (in milliseconds) on each dataset, us-
ing setups as in Table 2. As we expected, DTW and DDTW are drastically
outperformed by the other measures, while APCA is slower than FTW, Cheby-
shev, PAA and DSA. DSA is comparable to FTW and PAA on all datasets but
in Trace and Twopat, in which DSA is faster: this is particularly significant since
Twopat and Trace are the largest datasets among the competing ones regards
to the number of series and the mean series length, respectively. Chebyshev is
found as the faster method; this is mainly due to the choice done for the num-
ber of coefficients (20). Nevertheless, DSA remains comparable while achieving
drastically higher accuracy.

We also carried out experiments to test the time performances by varying
the dataset size. Each dataset was sampled in portions with size 10%, 25%, 50%,
and 100%; then, for each dataset and for each method, we carried out one run
of AHC over each of these portions. Figure 1 shows that the advantage of DSA
over DTW and DDTW absolutely increases with the dataset size.

Finally, we evaluated the effect of dimensionality reduction due to the seg-
mentation performed by DSA. Experiments showed that DSA reduces the series
lengths from 54% up to 77%, with noteworthy advantages in time performance.

5 Conclusion

The presented work originally arises from our review of the state-of-the-art of
similarity detection in time series, and from the finding that no existing method
is able to provide both high effectiveness and efficiency. This prompted us to de-
vise a solution to the identified challenge by combining the notions of derivative
estimation and segmentation into a concise yet feature-rich representation model,
called DSA (Derivative time series Segment Approximation). Experiments high-
light that DSA-based time series similarity detection is as good or better than
both the most accurate and the fastest methods among the competing ones, thus
guaranteeing the best trade-off between effectiveness and efficiency.

We are currently working on making DSA able to deal with amplitude trans-
lation and scaling, which may be significant in some application domains. More-
over, we shall provide the beneficial of DSA in summarising sets of time series
to compute cluster prototypes that enable high cluster compactness and sepa-
ration. Finally, we would like to extend DSA for multidimensional time series
(i.e. moving object trajectories), to which many research work has recently paid
attention.

(a) GunX (b) Trace

(c) ControlChart (d) CBF

(e) Twopat

Fig. 1. Time performances

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient Similarity Search in Sequence
Databases. In: Proc. FODO Conf. (1993) 69–84

2. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Englewood Cliffs,
N. J. (1993)

3. Berndt, D.J., Clifford, J.: Using Dynamic Time Warping To Find Patterns in Time
Series. In: Proc. AAAI Workshop on Knowledge Discovery in Databases. (1994)
359–370

4. Keogh, E.: Exact Indexing of Dynamic Time Warping. In: Proc. VLDB Conf.
(2002) 406–417

5. Kim, S.W., Park, S., Chu, W.W.: An Indexed-Based Approach for Similarity
Search Supporting Time Warping in Large Sequence Databases. In: Proc. ICDE
Conf. (2001) 607–614

6. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient Retrieval of Similar Time Se-
quences Under Time Warping. In: Proc. ICDE Conf. (1998) 201–208

7. Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: Fast Similarity Search under the
Time Warping Distance. In: Proc. ACM PODS. (2005) 326–337

8. Keogh, E., Palpanas, T., Zordan, V., Gunopulos, D., Cardle, M.: Indexing Large
Human-Motion Databases. In: Proc. VLDB Conf. (2004) 780–791

9. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing Multi-
Dimensional Time-Series with Support for Multiple Distance Measures. In: Proc.
ACM KDD Conf. (2003) 215–225

10. Wei, L., Keogh, E., Herle, H.V., Mafra-Neto, A.: Atomic wedgie: Efficient query
filtering for streaming times series. In: Proc. IEEE ICDM Conf. (2005) 490–497

11. Fung, W., Wong, M.: Efficient Subsequence Matching for Sequences Databases
under Time Warping. In: Proc. IDEAS Conf. (2003) 139–148

12. Keogh, E., Wei, L., Xi, X., Lee, S., Vlachos, M.: LB Keogh Supports Exact In-
dexing of Shapes under Rotation Invariance with Arbitrary Representations and
Distance Measures. In: Proc. VLDB Conf. (2006) 882–893

13. Keogh, E., Pazzani, M.: Dynamic Time Warping with Higher Order Features. In:
Proc. SIAM Int. Conf. on Data Mining. (2001)

14. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering Similar Multidimensional
Trajectories. In: Proc. ICDE Conf. (2002) 673–684

15. Chen, L., Özsu, M.T., Oria, V.: Robust and Fast Similarity Search for Moving
Object Trajectories. In: Proc. ACM SIGMOD Conf. (2005) 491–502

16. Chen, L., Ng, R.: On The Marriage of Lp-norms and Edit Distance. In: Proc.
VLDB Conf. (2004) 792–803

17. Chan, K., Fu, A.: Efficient Time Series Matching by Wavelets. In: Proc. ICDE
Conf. (1999) 126–133

18. Wu, Y., Agrawal, D., Abbadi, A.: A Comparison of DFT and DWT Based Similar-
ity Search in Time-Series Databases. In: Proc. ACM CIKM Conf. (2000) 488–495

19. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality Reduc-
tion for Fast Similarity Search in Large Time Series Databases. Knowledge and
Information Systems 3 (2000) 263–286

20. Keogh, E., Pazzani, M.: Scaling up Dynamic Time Warping for Datamining Ap-
plications. In: Proc. ACM KDD Conf. (2000) 285–289

21. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally Adaptive Dimen-
sionality Reduction for Indexing Large Time Series Databases. In: Proc. ACM
SIGMOD Conf. (2001) 151–162

22. Keogh, E., Pazzani, M.: Scaling up Dynamic Time Warping to Massive Datasets.
In: Proc. PKDD Conf. (1999) 1–11

23. Rafiei, D., Mendelzon, A.O.: Efficient Retrieval of Similar Time Sequences Using
DFT. In: Proc. FODO Conf. (1998)

24. Rafiei, D., Mendelzon, A.: Similarity-based queries for time series data. In: Proc.
ACM SIGMOD Conf. (1997) 13–25

25. Mason, J.C., Handscomb, D.: Chebyshev Polynomials. Chapman & Hall (2003)
26. Cai, Y., Ng, R.: Indexing Spatio-Temporal Trajectories with Chebyshev Polyno-

mials. In: Proc. ACM SIGMOD Conf. (2004) 599–610
27. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall (1988)
28. van Rijsbergen, C.J.: Information Retrieval. Butterworths (1979)

