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Abstract—In recent years, there has been a growing interest
in clustering uncertain objects. In contrast to traditional,
“sharp” data representation models, uncertain objects are
modeled as probability distributions defined over uncertainty
regions. In this context, a major issue is related to the
poor efficiency of existing algorithms, which is mainly due
to expensive computation of the distance between uncertain
objects.

In this work, we extend our earlier work [16] in which
a novel formulation to the problem of clustering uncertain
objects is defined based on the minimization of the variance of
the mixture models that represent the clusters being discovered.
Analytical properties about the computation of variance for
cluster mixture models are derived and exploited by a par-
titional clustering algorithm, called MMVar. This algorithm
achieves high efficiency since it does not need to employ any
distance measure between uncertain objects when computing
local minima of the objective function at the basis of the
proposed formulation. Experiments have shown that MMVar is
scalable and outperforms state-of-the-art algorithms in terms
of efficiency, while achieving better average performance in
terms of accuracy.

I. INTRODUCTION

Uncertainty in data naturally arises from a variety of
real-world phenomena, such as implicit randomness in a
process of data generation/acquisition, imprecision in physi-
cal measurements, and data staling [1]. For instance, sen-
sor measurements may be imprecise at a certain degree
due to the presence of various noisy factors (e.g., signal
noise, instrumental errors, wireless transmission) [9], [11].
Another example is given by data representing moving
objects, which continuously change their location so that
the exact positional information at a given time instant
may be unavailable [33]. In data integration, uncertainty
can arise for several reasons, such as the approximation
assumptions on the semantic mappings between the data
sources and the mediated schema, poor knowledge about
what the exact mappings are, or the transformation between
keyword queries and a set of candidate structured queries [4],
[10]. The biomedical research domain abounds of examples
of data inherently affected by uncertainty. As an example,
in the context of gene expression microarray data [31],
handling the so-called probe-level uncertainty represents a

key aspect that enables more expressive data representation
and more accurate processing [25], [26]. Further examples
of uncertain data come from distributed applications, privacy
preserving data mining, and forecasting or other statistical
techniques used to generate data attributes [3].

In general, uncertainty can be considered at table, tuple
or attribute level [32], and is formally specified by fuzzy
models [12], evidence-oriented models [24], or probabilistic
models [30]. This work focuses on data containing attribute-
level uncertainty modeled according to probabilistic models.
In particular, we are interested in probabilistic represen-
tations that make use of probability distributions aimed
at describing the likelihood that any given object appears
at each position in a multidimensional domain region [7],
[15], [19], [22], [23]. Probabilistic models may in principle
involve alternative ways of representing uncertainty, such as
exploiting some statistical properties (e.g., error percentage
or deviation from an expected value); however, although
these properties provide a concise information about an
uncertain set of values, probability distributions offer a more
accurate representation. We hereinafter refer to data objects
described in terms of probability distributions defined over
multidimensional domain regions as uncertain objects (cf.
Fig. 2).

Dealing with uncertain objects has raised several issues in
data mining and knowledge discovery. In order to produce
meaningful results, algorithms for mining uncertain objects
should carefully take into account uncertainty. Consider for
instance a scenario of similarity detection in the simple
uncertain dataset depicted in Fig. 1, where, for simplicity,
uncertain objects are represented in terms of their domain
regions only, as the reasoning holds regardless of any
specific probability distribution. The “true” representation of
each uncertain object (black circles in Fig. 1(a)) corresponds
to a point within its domain region and can be in general
far away from its “observed” representation (black circles
in Fig. 1(b)). Thus, considering only the observed repre-
sentations may lead to discover groups of similar objects
(i.e., {o′1, o′2}, {o′′1 , o′′′1 }, {o′′2 , o′′′2 } in Fig. 1(b) that are
substantially different from the ideal ones which would
be identified by considering the true representations (i.e.,
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Figure 1. Similarity detection in an uncertain dataset: (a) true representations of objects and their desired grouping, (b) observed representations which
may lead to unexpected groupings, (c) desired grouping identified by considering the object uncertainty (domain regions).

{o′1, o′′1 , o′′′1 }, {o′2, o′′2 , o′′′2 } in Fig. 1(a). Instead, taking into
account in a proper way uncertainty, i.e., considering the
whole domain regions (and pdfs) of the uncertain objects,
may help to recognize the correct grouping (Fig. 1(c)).

Among data mining tasks, clustering uncertain objects
has been attracting increasing interest in recent years [7],
[15], [17], [19], [22], [23], [27]. There are two main issues
that make clustering uncertain objects a very challenging
problem. First, existing algorithms require some notion
of distance between uncertain objects, whose definition is
usually a non-trivial task. Indeed, existing approaches fall
into two main categories, which have both some weaknesses
in their own. The first approach consists in computing the
distance between aggregated values extracted from the prob-
ability distributions of the uncertain objects (e.g., expected
values), and has a complexity linear w.r.t. the number S of
statistical samples used for representing distributions. The
second approach involves the computation of the so-called
expected distance (ED) between distributions [15], which
aims to exploit the whole information available from the
distributions and works in O(S2). Though pretty efficient,
the first approach (i.e., distance between aggregated values)
has clearly an accuracy issue, since all the information
available from the distributions is collapsed into a single,
representative numerical value. Conversely, the ED-based
approach is more accurate but also inefficient.

A further, more critical issue concerns the efficiency of

existing algorithms. This is partially related to the need
for a distance measure between uncertain objects discussed
above, since the use of a slow measure clearly leads to
poor efficiency. However, more generally, it intrinsically
depends on the specific formulations at the basis of existing
algorithms, which constrain such heuristics to continuously
execute critical operations, such as access to the samples
of distributions (needed, e.g., for integral approximations)
and/or the computation of distances between uncertain ob-
jects.

In this paper, we extend a novel formulation to the
problem of clustering uncertain objects, which was previ-
ously introduced in our earlier work [16]. In the attempt of
overcoming the above discussed issues, the key idea is to
take into account the mixture model of the set of random
variables representing the uncertain objects within a cluster
in order to define a clustering objective criterion based on the
minimization of the variance of the cluster mixture models.
Such a criterion is designed to fulfil efficiency and accuracy
requirements. High-quality clusters can in fact be discovered
since the compactness of a set (cluster) of uncertain objects
increases as the variance of the cluster mixture models
decreases. At the same time, the proposed criterion enables
the definition of a fast heuristic that does not require any
distance measure between uncertain objects.

Within this view, the main contributions of this work
can be summarized as follows. We revise a recently pre-



sented formulation to the problem of clustering uncertain
objects [16], which essentially relies on the minimization
of the variance of the mixture models that represent the
clusters of uncertain objects to be discovered. In particu-
lar, we provide further theoretical insights by analytically
investigating relations between the computation of mixture
models and their variances, and consequently deriving some
properties of the objective function at the basis of the
proposed formulation. In this regard, we come up with
the MMVar algorithm, whose definition improves upon the
algorithm firstly introduced in [16]. The MMVar algorithm
proposed here shares with the early algorithm in [16] the
nice capability of being at the same time effective, as it is
able to discover local minima of the proposed objective func-
tion, as well as very efficient, as it does not need any distance
measure between uncertain objects. Moreover, the proposed
MMVar aims to mitigate one of the major weaknesses of
the early algorithm, i.e., the initialization phase. In [16], in
fact, the initialization was simply based on either a random
procedure or an external clustering algorithm operating on
the “deterministic” versions of the uncertain objects. Here,
we define an incremental clustering step to initialize a k-
way clustering solution, which can lead to initializations
that better reflect the semantics of the proposed objective
function and, therefore, may significantly help the proposed
algorithm to reach local minima closer to global minima.
We have conducted an extensive experimental evaluation on
both benchmark and real datasets to assess our MMVar in
terms of accuracy, efficiency and scalability. Compared to
prominent state-of-the-art algorithms, MMVar revealed to
be always faster and on average more accurate, particularly
achieving the best maximum accuracy in more than half
cases we have considered and being generally better than
its early counterpart in [16]. Moreover, MMVar has shown
to scale linearly with the dataset size, also offering better
scalability than the fastest competing method.

The rest of the paper is organized as follows. Section II
briefly describes the state-of-the-art in clustering uncertain
objects. Section III provides the notion of uncertain object
used throughout the paper. Section IV discusses our proposal
in detail. Experimental settings and clustering results are
presented in Section V, and Section VI concludes the paper.
In Appendix, proofs of main theoretical results are finally
reported.

II. RELATED WORK

We briefly review the main state-of-the-art algorithms for
clustering uncertain objects. Table I summarizes the com-
putational complexities of prominent methods, according to
the following notation: n is the size of the input set of
uncertain objects, m is the dimensionality of the uncertain
objects (i.e., number of features), k is the desired number
of clusters, I is the number of iterations to convergence
required by partitional clustering algorithms, and S denotes

the number of statistically independent samples employed
for representing probability distributions.

One of the earliest attempts to solve the problem of
clustering uncertain objects is the partitional algorithm UK-
means [7], which is an adaptation of the popular K-means
to the context of uncertain objects. UK-means relies on the
expected distance between uncertain objects and (determin-
istic) cluster centroids, at each iteration. Since this is an
expensive computation (the cost of the integral approxima-
tion based on S is not negligible), the complexity of UK-
means is O(I S knm). In order to improve the efficiency of
the basic UK-means, [27] and [21] propose some pruning
techniques to avoid the calculation of redundant object-to-
centroid distances, based on the computation of bounding-
boxes and Voronoi diagrams, respectively. However, such
techniques do not guarantee an asymptotic complexity gain
w.r.t. the basic UK-means. In [23], the CK-means algorithm
is proposed as a variant of UK-means that exploits the
moment of inertia of rigid bodies in order to reduce the
execution time for computing object-to-centroid distances.
CK-means essentially comprises two steps: in the first one
(offline phase), the distances between each object and its
mass center are computed in O(S n m), whereas the second
step performs a classic partitional relocation scheme; in this
step, the distances computed in the first step are exploited
to obtain a K-means-like strategy working in O(I k n m).

UK-means and CK-means suffer from an accuracy issue.
Indeed, cluster centroids are computed as deterministic ob-
jects using the expected values of the pdfs of the clustered
objects. In [15], the UK-medoids algorithm is proposed to
overcome the above issue. It employs distance functions
properly defined for uncertain objects that are pre-computed
offline in O(S2 n2 m); these distances are then employed
in a classic K-medoids scheme working in O(I n2).

The works in [8], [14] focus on the uncertain K-center
problem, which is exploited during the execution of sev-
eral well-known partitional uncertain object clustering algo-
rithms. In particular, [8] shows a variety of different bicri-
teria approximation algorithms, which are however unable
to preserve the number of centers. [14] overcomes that
limitation by providing true approximation algorithms for
a wider class of K-center-based problems.

Other recent works aim to address the high dimensionality
in uncertain data by focusing on the problems of subspace
clustering [18] and projected (or projective) clustering [2]
over uncertain objects. The authors in [35] propose an
approach based on the well-known possible world scenario,
where a clustering solution is derived from each possible
world, and the various solutions are eventually aggregated
to form a unique clustering by employing standard methods
for clustering aggregation [13].

Density-based approaches to clustering uncertain objects
have been defined in [19], [22]. In [22], the FDBSCAN
is proposed as a fuzzy version of the popular DBSCAN,



Table I
COMPUTATIONAL COMPLEXITIES OF MAIN STATE-OF-THE-ART ALGORITHMS FOR CLUSTERING UNCERTAIN OBJECTS

algorithm total online offline
UK-means O(I S k n m) O(I S k n m) —
CK-means O(n m (I k + S)) O(I k n m) O(S n m)

UK-medoids O(n2(I + S2 m)) O(I n2) O(S2 n2 m)
FDBSCAN O(S2 n2 m) O(S2 n2 m) —
FOPTICS O(S n2 m) O(S n2 m) —

UAHC O(n2(S m + logn)) O(n2(S m + logn)) —

mainly based on the use of fuzzy distance functions to
compute the core object and reachability probabilities. The
authors propose an MBR-based heuristic that reduces the
number of distances to be computed from O(S2 n2) to
a minimum O(n2). Unfortunately, the pruning power of
the proposed strategy is not ensured in general; therefore,
the computational complexity of FDBSCAN in the worst
case is O(S2 n2 m). A similar approach is presented in
FOPTICS [19]. Like the well-known density-based cluster-
ing algorithm OPTICS, FOPTICS produces an augmented
ordering of the objects based on the novel notion of
fuzzy object reachability-distance. By exploiting proper data
structures (i.e., core object arrays and reachability lists),
FOPTICS can be executed in O(S n2 m).

The augmented ordering outputted by FOPTICS makes
that method falling into the category of hierarchical clus-
tering algorithms as well. Another hierarchical method,
i.e., UAHC, is proposed in [17]. UAHC exploits a cluster
merging criterion based on an information-theoretic measure
to compute the distance between cluster prototypes. The
complexity of UAHC is O(n2(S m+ log n)).

III. MODELING UNCERTAINTY

Uncertain objects are typically represented according to
multivariate or univariate uncertainty models [15]. In a
multivariate uncertainty model, an uncertain object is defined
in terms of an m-dimensional region and a multivariate pdf,
which stores the probability that the exact representation
of the object coincides with any multidimensional point in
the region. In a univariate uncertainty model, any uncertain
object has, for each of its m attributes, an interval and a
univariate pdf that assigns a probability value to each point
within the interval.

Although any uncertain object can be represented accord-
ing to either model depending on the specific application
context, the univariate model can be considered as a par-
ticular case of the multivariate one. In fact, a univariate
uncertain object o can be treated as multivariate by either
(i) explicitly transforming o into a multivariate object, pro-
vided that the conditional pdfs are known in advance or
specific statistical assumptions can be made (e.g., statistical
independence), or (ii) considering each attribute of o as
a 1-dimensional multivariate object, in order to apply the
functions/definitions/models designed for the multivariate

case, and then exploiting simple methods for combining the
results obtained for all attributes into a single one. For this
reason, in the rest of the paper we will focus on the most
general case of multivariate uncertainty modeling, whose
formal definition is provided next.

Definition 1 (multivariate uncertain object): A
multivariate uncertain object o is a pair (R, f), where
R ⊆ <m is the m-dimensional region in which o is defined
and f : <m → <+

0 is the probability density function of o
at each point ~x ∈ <m, such that:

f(~x) = 0, ∀~x ∈ <m \ R (1)

f(~x) > 0, ∀~x ∈ R (2)

The above definition refers to the most general case of
uncertain objects modeled as continuous random variables
and described by pdfs. Nevertheless, this definition also
includes the case where uncertain objects are represented by
discrete probability mass functions, as well as the case where
the pdfs are approximated by a set of statistical samples. For
the sake of brevity, we hereinafter refer to the continuous
uncertainty model, as the corresponding discrete version can
be trivially obtained by replacing integrals with sums.

The expected value (~µ), second order moment (~µ2), and
variance (~σ 2) vectors of any given uncertain object o =
(R, f) are defined as follows:

~µ(o) =

∫
~x∈R

~x f(~x) d~x (3)

~µ2(o) =

∫
~x∈R

~x 2f(~x) d~x (4)

~σ 2(o) =

∫
~x∈R

(~x− ~µ(o))
2
f(~x) d~x = ~µ2(o)− ~µ 2(o) (5)

Each j-th component (j ∈ [1..m]) of the ~µ, ~µ2 and ~σ2

vectors is as follows:

µj(o) =

∫
~x∈R

xj f(~x) d~x (µ2)j(o) =

∫
~x∈R

xj
2f(~x) d~x (6)
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Figure 2. Uncertain prototype variance and cluster compactness: (a) compact set of objects and (b) its low-variance uncertain prototype, (c) less compact
set of objects and (d) its higher-variance uncertain prototype.

(σ 2)j(o)=

∫
~x∈R

(xj − µj(o))
2
f(~x) d~x = (µ2)j(o)−µ2

j (o) (7)

Furthermore, given any vector ~σ 2 of variances, the “global”
variance expressed in terms of a single numerical value is
defined as the sum of variances along each dimension:

σ2(o)=‖~σ 2(o)‖1 =

m∑
j=1

(σ2)j =

∫
~x∈R

‖~x− ~µ(o)‖2f(~x) d~x (8)

Note that if f is either a discrete probability mass function
or approximated by a set S of statistical samples, (3) and
(4) can be rewritten as follows:

~µ(o) =

∑
~y∈S

f(~y)

−1∑
~y∈S

~y f(~y) (9)

~µ2(o) =

∑
~y∈S

f(~y)

−1∑
~y∈S

~y 2f(~y) (10)

IV. CLUSTERING UNCERTAIN OBJECTS VIA CLUSTER
VARIANCE MINIMIZATION

A key notion in the proposed formulation to the problem
of clustering uncertain objects is that of uncertain prototype
(or simply prototype) of a set of uncertain objects. Any
uncertain prototype is defined as the mixture model of the
random variables representing the objects in a given set.

Definition 2: The uncertain prototype PC of any given
set C of uncertain objects is a pair (RC , fC), where

RC =
⋃

o=(R,f)∈C

R (11)

fC(~x) =
1

|C|
∑

o=(R,f)∈C

f(~x) (12)

It can be noted that any uncertain prototype defined as
reported above is an uncertain object according to Def. 1.

Fact 1: The uncertain prototype PC = (RC , fC) of any
set C of uncertain objects is a multivariate uncertain object
satisfying Def. 1.

Defining uncertain prototypes as mixture models has a
number of crucial advantages. First, it allows for maintaining
information about the uncertainty of the objects to be
summarized, which makes the probabilistic representation
particularly accurate. This contrasts with other definitions
of prototypes (or centroids) of uncertain objects, which
collapse all the information about uncertainty into a single,
representative numerical value, like that exploited by UK-
means and CK-means algorithms (cf. Section II). Also,
computing the mixture model of a set of random variables
is fast as it can be performed in linear time w.r.t. the size of
that set. Finally, more importantly, focusing on statistical
properties of the uncertain prototypes defined as mixture
models enables the definition of an effective criterion to
properly formulate clustering of uncertain objects.

In this respect, an interesting remark about the variance
of mixture models can be drawn based on the following
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Figure 3. Impact of variance on the object uncertainty: (a) set of low-variance objects and (b) its low-variance uncertain prototype implying low
uncertainty, (a) set of higher-variance objects and (b) its higher-variance uncertain prototype implying higher uncertainty, though the closeness between the
object expected values.

intuition: the lower the variance of the mixture model (i.e.,
uncertain prototype) of a set of uncertain objects, the higher
the compactness of that set, i.e., the higher the probability
that the set is a high-quality cluster. This concept is graph-
ically depicted in Fig. 2, where two sets of 2-dimensional
uncertain objects are shown ((a) and (c)), along with their
corresponding uncertain prototypes ((b) and (d)). It is easy
to observe that the set in Fig. 2-(a) should be recognized as a
better cluster than the set on Fig. 2-(c), as the compactness of
the former is clearly higher. This remark is confirmed if one
takes care of the variance of the uncertain prototypes that
describe the two sets. Indeed, the variance of the prototype
of the first set (Fig. 2-(b)) is clearly lower than the variance
of the other prototype (Fig. 2-(d)), as the values of the pdf
depicted in Fig. 2-(b) are close to the expected value more
than those of the pdf in Fig. 2-(d).

Moreover, it should be noted that the variance of the
mixture model of a set of uncertain objects is strictly related
to the uncertainty of those objects; thus, it allows for taking
into account uncertainty carefully, increasing the probability
of achieving higher accuracy in a clustering process. This
intuition is supported by the example illustrated in Fig. 3,
where two pairs of uncertain objects along with their cor-
responding mixture models are depicted (Fig. 3(a)-(b) and
Fig. 3(c)-(d), respectively). For both pairs of objects, the
distance between their expected values is very small, while
the variance of the objects in Fig. 3(c) is much larger than
the variance of the objects in Fig. 3(a). If the uncertainty of
the objects is not taken into account, i.e., if one considers
the expected values only, both pairs would represent good
clusters. Nevertheless, the difference in the variances implies

that the uncertainty of the objects in Fig. 3(c) is greater than
that of objects Fig. 3(a), as for the former pair of objects the
“spreading” of values w.r.t. the expected value is larger; thus,
even if the distance between the corresponding expected
values is the same, the objects in Fig. 3(a) should represent
a higher-quality cluster than the objects in Fig. 3(c). It easy
to see that considering the variance of the mixture models
of the two pairs allows for correctly discriminating between
the two cases; indeed, the variance of the mixture model in
Fig. 3(b) is evidently smaller than that of the mixture model
in Fig. 3(d).

Based on the above considerations, we propose to formu-
late the problem of clustering uncertain objects by minimiz-
ing the variance of the uncertain prototypes of the clusters to
be identified. Formally, given a set D of uncertain objects,
the objective is to find a partition of D that minimizes the
following objective function:

J(C) =
∑
C∈C

σ2(PC) (13)

where σ2(PC) is the variance of the prototype PC of cluster
C, which is computed according to (8).

A. The MMVar Algorithm

We show next some analytical properties about the com-
putation of the variance of mixture models. Such properties
are at the basis of the MMvar heuristic proposed in this
work.

Lemma 1: Let C be a set of uncertain objects, where each
o ∈ C is a pair (R, f), and PC be the uncertain prototype of



C. The expected value ~µ(PC) and the second order moment
~µ2(PC) of prototype PC are as follows:

~µ(PC) =
1

|C|
∑
o∈C

~µ(o)

~µ2(PC) =
1

|C|
∑
o∈C

~µ2(o)

Lemma 2: Let PC be the uncertain prototype of any set
C of uncertain objects, C ′ (resp. C ′′) be the set defined
by deleting (resp. adding) object o′ (resp. o′′) from (resp.
to) C, i.e., C ′ = C \ {o′}, C ′′ = C ∪ {o′′}. The expected
values ~µ(PC′), ~µ(PC′′) and second order moments ~µ2(PC′),
~µ2(PC′′) of prototypes PC′ , PC′′ of sets C ′, C ′′ are as
follows:

~µ(PC′) =
|C| × ~µ(PC)− ~µ(o′)

|C| − 1

~µ2(PC′) =
|C| × ~µ2(PC)− ~µ2(o′)

|C| − 1

~µ(PC′′) =
|C| × ~µ(PC) + ~µ(o′′)

|C|+ 1

~µ2(PC′′) =
|C| × ~µ2(PC) + ~µ2(o′′)

|C|+ 1

Proposition 1: Let D be a set of m-dimensional uncertain
objects, C be a partition of D, PC be the prototype of
any cluster C ∈ C, and ~µ(PC), ~µ2(PC) and σ2(PC) =
‖~µ2(PC) − ~µ2(PC)‖1 the expected value, second order
moment and variance of PC , respectively. Let us consider a
new partition C′ of D obtained from C by moving an object
o from cluster C ∈ C to cluster Ĉ ∈ C; it holds that the value
JC,Ĉ(C) of the objective function J for the new partition C′
is the following:

JC,Ĉ(C)=J(C)−(σ2(PC)+σ2(PĈ))+(σ2(PC′)+σ2(PĈ′))
(14)

where
C ′ = C \ {o} Ĉ ′ = Ĉ ∪ {o}

σ2(PC′) = ‖~µ2(PC′)− ~µ2(PC′)‖1

σ2(PĈ′) = ‖~µ2(PĈ′)− ~µ
2(PĈ′)‖1

and
~µ(PC′) =

|C| × ~µ(PC)− ~µ(o)

|C| − 1

~µ2(PC′) =
|C| × ~µ2(PC)− ~µ2(o)

|C| − 1

~µ(PĈ′) =
|Ĉ| × ~µ(PĈ) + ~µ(o)

|Ĉ|+ 1

Algorithm 1 MMVar
Input: A set D of uncertain objects; k = sup(N), or k ≤ |D| as

a user-specified parameter (i.e., number of output clusters).
Output: A partition C of D.

1: compute ~µ(o), ~µ2(o), ∀o ∈ D {(3)–(4), (9)–(10)}
2: select o∗ ∈ D, randomly or by a predefined criterion
3: C ← {{o∗}}
4: repeat
5: for all o ∈ D do
6: if o is not assigned to any cluster yet then
7: if |C| < k then
8: C ← {o}, C ← C ∪ {C}
9: compute ~µ(PC), ~µ2(PC) {Lemma 1}

10: else
11: select C ∈ C, randomly or by a predefined criterion
12: C ← C ∪ {o}
13: recompute ~µ(PC), ~µ2(PC) {Lemma 2}
14: end if
15: V ← J(C) {(13)}
16: end if
17: C∗ ← argminĈ JC,Ĉ(C), with o ∈ C {(14)}
18: if C∗ 6= C ∧ (|C| > 1 ∨ k = sup(N)) then
19: V ← JC,C∗(C) {(14)}
20: recompute C: move o from C to C∗, and remove C

from C in case C = ∅
21: recompute ~µ(PC), ~µ2(PC), ~µ(PC∗), ~µ2(PC∗)

{Lemma 2}
22: end if
23: end for
24: until no o ∈ D is relocated

~µ2(PĈ′) =
|Ĉ| × ~µ2(PĈ) + ~µ2(o)

|Ĉ|+ 1

Proposition 1 hence states that, given any partition C of
D and any other partition C′ obtained from C by moving
a single object from a cluster to another one, the value of
the objective function J for C′ can be computed in O(m)
from J(C) according to (14). This result puts the basis
for our proposed heuristic algorithm, called MMVar, whose
major feature lies in the capability of efficiently finding
local minima of function J , without requiring any distance
measure between uncertain objects.

The outline of MMVar is reported in Alg. 1. MMVar
can either automatically discover the number of clusters or,
alternatively, can be constrained to form a user-specified
number of clusters. In the former case, k should be set
to sup(N). To exploit the result of Proposition 1, MMVar
only needs to maintain expected values and second order
moments of the objects within D (i.e., vectors ~µ(o) and
~µ2(o)) and of the prototypes that are identified at each
iteration (i.e., vectors ~µ(PC) and ~µ2(PC)). Expected values
and second order moments are computed according to either
the exact (cf. (3)-(4)) or approximated (cf. (9)-(10)) formulas
(Line 1).

The main cycle of the algorithm (Lines 4–24) is in
charge of iteratively process all objects within D, until



no decrement in the objective function has been observed.
We can distinguish two phases: the initialization phase and
the refinement of the clustering produced at the previous
iteration. The initialization phase consists in an incremental
scheme where the initial cluster of any single object is
chosen in a greedy fashion according to the assignments
already performed for the objects that have been processed
earlier. The selection of the first object to allocate (Line
2) is either randomly performed or based on any other
procedure provided that it guarantees linearity with the
number of objects—one reasonable choice is to select o∗

whose variance is closest to the average variance per object
(i.e., σ2(o∗) ≈ avgo∈Dσ

2(o)). The initial cluster C of any
(unclustered) object o is chosen in two steps. First, C is
initialized either as a singleton cluster containing o (Lines
7–9) or as a cluster among the ones already existing (Lines
10–13), depending whether the desired number of clusters
k has been already reached or not. In case of an existing
cluster is chosen as C, this choice could be made either
randomly or according to a specific criterion (Line 11)—
for instance, select C ∈ C such that σ2(PC) ≥ σ2(o), i.e.,
choose a cluster for which the insertion of an object will not
increase the variance of the cluster prototype. Afterwards,
the choice of C is refined by looking at the best cluster for o
given the cluster assignments of the objects processed before
o (Lines 18–23). Note that the initialization step based on
an incremental procedure represents a point of difference
between this formulation of MMVar and the earlier one
presented in [16], in which the clustering initialization was
devised either as a random generation or as the output of an
external clustering algorithm.

After the initialization phase, a refinement step is carried
out, where objects are relocated until cluster stability (Line
24) is reached. Note that once all objects have been clus-
tered, the only steps of the main cycle actually performed
are the ones in Lines 17–22, while Lines 6–16 are entirely
skipped. At any iteration of the refinement phase, for each
object o ∈ D, the cluster C∗ is discovered (Line 17) as
the one leading to the maximum decrease in the objective
function J if o is moved to it. C∗ is discovered by applying
(14) to the current partition C; note that (14) is computed
by taking into account the value V of the objective function
J for the current partition C. If C∗ does not coincide with
the cluster C to which o currently belongs (i.e., there exists
at least one cluster but C such that function J decreases
if o is moved to it), o is moved to C∗ and both the new
value V of function J and the expected values and second
order moments of the prototypes of clusters C and C∗ are
recomputed, according to (14) and Lemma 2, respectively
(Lines 18-22). Note that, if k = sup(N), i.e., if MMvar is
required to discover the number of clusters by itself, the best
move for any object o might imply that the cluster where
o originally belongs to becomes empty. If this happens, the
empty cluster is removed and the number of output clusters

changes accordingly, as required (Line 20).
The proposed MMVar can be proved to converge to a

local optimum of the objective function therein involved,
and work linearly w.r.t. both the size of the input dataset and
the dimensionality of the input uncertain objects, as shown
in the following.

Proposition 2: The MMVar algorithm converges to a lo-
cal minimum of function J defined in (13) in a finite number
of steps.

Proposition 3: Given a set D of n m-dimensional uncer-
tain objects, the number k of output clusters, the number
S of statistical samples used for representing the uncertain
objects, and denoting by I the number of iterations to
convergence, the computational complexity of the MMVar
algorithm (Alg. 1) is O(n m (I k + S)).

Note that the MMVar computational complexity reduces
to O(I k n m) when the moments of the various uncertain
objects may be computed according to some closed-form
expression in O(m); it typically happens in a wide number
of real cases. Thus, looking at Table I, it is easy to note that
the complexity of the proposed MMVar algorithm is at worst
equal to and very often (far) lower than that of any other
prominent algorithm for clustering uncertain objects; such
a result proves a major claim of this work, which concerns
the efficiency in solving the problem of clustering uncertain
objects.

V. EXPERIMENTAL EVALUATION

The proposed MMVar algorithm was evaluated in
performing effective and efficient clustering of uncer-
tain objects. The experimental evaluation was also con-
ducted to compare MMVar with existing partitional al-
gorithms, i.e., UK-means (UKM), CK-means (CKM),
and UK-medoids (UKmed), density-based algorithms, i.e.,
FDBSCAN (FDB) and FOPTICS (FOPT), and the hier-
archical algorithm UAHC. We also compare the MMVar
algorithm proposed in this work with its early version
defined in [16]. In the following, we discuss the evaluation
methodology used in this work, whereas in Section V-B,
we present the main experimental results from accuracy,
efficiency and scalability viewpoints.

A. Experimental methodology

1) Datasets: Experiments were carried out on benchmark
and real datasets. We selected eight benchmark datasets
from [5], whose main characteristics are summarized in
Table II-(a). Iris contains measurements on different iris
plants. Wine refers to results of a chemical analysis on
Italian wines derived from three different cultivars. In Glass,
each glass instance is described by the values of its chemical
components. Ecoli contains data on the Escherichia Coli
bacterium, which are identified with values coming from



Table II
DATASETS USED IN THE EXPERIMENTS

(a) Benchmark datasets
dataset # objects # attributes # classes

Iris 150 4 3
Wine 178 13 3

Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10

Image 2,310 19 7
Abalone 4,124 7 17

Letter 7,648 16 10
KDDCup99 4,000,000 42 23

(b) Real datasets
dataset # objects # attributes

Neuroblastoma 22,282 14
Leukaemia 22,690 21

different analysis techniques. Yeast objects describe main
features and localization of various proteins. Image con-
tains objects that were randomly drawn from a database of
seven outdoor images; the images (3x3 regions) were hand-
segmented to create a classification for each pixel. Abalone
describes different types of abalone shells. Letter contains
character images corresponding to the capital letters in the
English alphabet,

As regards real data, we used datasets that describe
gene expressions in biological tissues. These datasets were
generated by microarray analysis, which is a technique
widely used in genomics to enable detection of the ex-
pression levels of thousands of genes simultaneously [31].
We collected two microarray datasets available from [6],
namely Neuroblastoma and Laukaemia, each describing
the expressions of about 22,000 genes in cancer tissues
(Table II-(b)). In particular, the Leukaemia dataset describes
the transformation process of leukaemia stem cells initiated
by MLL-AF9 fusion gene, while Neuroblastoma contains
expression-based screening results for neuroblastoma dif-
ferentiation. We recall that the genomics and, in general,
biomedical domains are examplary real-life scenarios of data
uncertainty (cf. Introduction).

Moreover, specifically for the scalability study, we used
a very large dataset (4 million objects, last row of Table II-
(a)), which was employed for the KDD Cup ’99 contest and
now available from the UCI repository [5].

2) Cluster Validity Criteria: Quality of clustering solu-
tions was evaluated by means of both external and internal
criteria. External criteria exploit the availability of reference
classifications in order to evaluate how well a clustering fits
a predefined scheme of known classes (natural clusters).
We employ the well-known F-measure (F ) [34], which
ranges within [0, 1] such that higher values correspond to
better quality results. Denoting with C̃ = {C̃1, . . . , C̃h}

a reference classification and with C = {C1, . . . , Ck} a
clustering solution, F-measure is defined as:

F (C, C̃) =
1

|D|

h∑
i=1

|C̃i| max
j∈[1..k]

Fij

where

Fij =
2 Pij Rij

Pij +Rij
Pij =

|Cj ∩ C̃i|
|Cj |

Rij =
|Cj ∩ C̃i|
|C̃i|

for each i ∈ [1..h], j ∈ [1..k].
We also use two internal cluster validity approaches to

evaluate the quality of the obtained clustering solutions.
The first approach is based on intra-cluster (intra(C)) and
inter-cluster (inter(C)) distances [20] (for a given clustering
solution C) which express cluster cohesiveness and cluster
separation, respectively. Such distance values are finally
combined in a single value Q(C) = inter(C)− intra(C),
such that the lower intra(C) and the higher inter(C), the
better the clustering quality Q(C). Since intra and inter
values are normalized within [0, 1], Q ranges within [−1, 1].
Formally:

intra(C) =
1

|C|
∑
C∈C

2

|C|(|C| − 1)

∑
ou∈C

∑
ov∈C,
u<v

ED(ou, ov)

inter(C)= 2

|C|(|C|−1)

∑
Ci,Cj∈C,

i<j

1

|Ci|×|Cj |
∑

ou∈Ci

∑
ov∈Cj

ED(ou, ov)

where ED denotes the expected distance between any two
uncertain objects [15].

The second internal criterion is the Silhouette index [28].
This criterion is still based on the comparison of cluster
tightness and separation, which are however calculated as
the “silhouette width” for each object, average silhouette
width for each cluster, and overall average silhouette width
for the whole dataset. Formally, the Silhouette index S(o, C)
of an object o ∈ C is:

S(o, C) =
b(o, C)− a(o, C)

max{a(o, C), b(o, C)}

where a(o, C) denotes the average distance between o and
each other object in C, b(o, C) denotes the minimum average
distance between o and the objects in the other clusters. The
Silhouette S(C) of a cluster C ∈ C is defined as S(C) =
|C|−1

∑
o∈C S(o, C). Finally, the global Silhouette S(C) of

the whole clustering solution C is computed as:

S(C) =
1

|C|
∑
C∈C

S(C)

Since S(o, C) ranges within [−1, 1], S(C) and S(C) range
in the same interval as well. Like Q, larger overall average
silhouette indicates better clustering.



Table III
ACCURACY RESULTS ON BENCHMARK DATASETS: EXTERNAL EVALUATION

F-measure (Θ ∈ [−1, 1])
data pdf UKM CKM UKmed FDB FOPT UAHC MMVar [16] MMVar

U -.062 .028 .023 -.102 .005 .032 .073 .021
Iris N -.010 .013 .010 -.063 .044 -.009 .030 -.011

B -.249 -.380 -.045 -.383 .023 -.339 -.012 -.012
U -.179 .047 .175 -.179 .174 .254 .151 .134

Wine N -.184 .024 -.085 -.185 .030 .076 .039 .092
B -.208 -.127 -.104 -.208 .006 -.015 -.212 -.179
U -.066 -.053 -.048 -.430 -.120 .008 -.107 .010

Glass N -.025 .012 -.070 -.040 -.136 .176 .035 .141
B -.231 -.302 .009 -.334 -.182 -.150 .181 .183
U .199 .332 .223 -.136 .023 .088 .324 .286

Ecoli N .131 .272 .045 .061 .015 .047 .286 .286
B -.160 -.303 -.034 -.383 -.239 -.179 -.017 -.017
U .220 .279 .315 -.085 .252 .182 .340 .339

Yeast N .159 .145 -.035 .079 -.001 .167 .398 .404
B -.098 -.201 -.055 -.311 -.195 -.109 .211 .211
U .278 .274 .241 -.283 -.113 .046 .071 .215

Image N .122 .132 -.061 -.251 -.081 .127 .028 .220
B -.024 -.204 .087 -.307 -.137 -.020 .144 .230
U .120 .092 .379 -.092 .291 .084 .539 .545

Abalone N .034 -.031 .009 .095 -.039 .059 .138 .180
B .080 -.084 .025 -.182 .315 .013 .496 .496
U .008 .113 .237 -.338 -.201 .026 .165 .191

Letter N -.076 -.082 -.039 -.340 -.203 .037 .127 .213
B -.202 -.399 .033 -.431 -.294 -.041 .033 .132
U .065 .139 .193 -.206 .039 .090 .195 .218

avg. score N .019 .061 -.028 -.081 -.046 .085 .135 .191
B -.137 -.250 -.011 -.317 -.088 -.105 .103 .131

overall avg. score -.018 -.017 .051 -.201 -.032 .023 .144 .180
overall avg. gain +.198 +.197 +.129 +.381 +.212 +.203 +.036 —

3) Uncertainty generation in benchmark datasets: We
synthetically generated uncertainty in benchmark datasets,
as they originally contain deterministic values; conversely,
this was not necessary for real microarray datasets since they
inherently have probe-level uncertainty, which can easily be
modeled in the form of Normal pdfs according to the multi-
mgMOS method [25].1 According to an approach already
employed by previous works [7], we developed the follow-
ing uncertainty generation strategy. Given a (deterministic)
benchmark dataset D, we firstly generated a pdf f~w for
each (deterministic) point ~w within D. In particular, we
considered the Uniform, Normal and Binomial distributions,
as they are commonly encountered in real uncertain data
scenarios [1]. Every f~w was defined in such a way that its
expected value corresponded exactly to ~w (i.e., ~µ(f~w) = ~w),
whereas all other parameters (such as the width of the
intervals of the Uniform pdfs or the standard deviation of
the Normal pdfs) were randomly chosen. We exploited the
pdfs f~w to simulate what actually happens in typical real
contexts for uncertain data, like the one depicted in Fig. 1.
Thus, we focused on two evaluation cases:

1) the clustering task is performed by considering only
the observed (i.e., non-uncertain) representations of

1We used the Bioconductor package PUMA (Propagating Uncertainty in Microar-
ray Analysis) available at http://www.bioinf.manchester.ac.uk/resources/puma/

the various data objects;
2) the clustering task is performed by involving an un-

certainty model.
The ultimate goal was to assess whether the results obtained
in Case 2 are better than those obtained in Case 1.

In Case 1, we generated a perturbed dataset D′ from
D by adding to each point ~w ∈ D random noise sampled
from its assigned pdf f~w according to the classic Monte
Carlo and Markov Chain Monte Carlo methods.2 As a
result, D′ still contains deterministic data, which can be
interpreted as observed representations of the input uncertain
objects. In our evaluation, each of the selected clustering
methods was carried out on D′ so that it produced an output
clustering solution denoted by C′. A score F (C′, C̃) was
hence obtained by comparing the output clustering C′ to
the reference classification of D (denoted by C̃) by means
of the F-measure cluster validity criterion.

In Case 2, when uncertainty is taken into account, we
further created an uncertain dataset D′′ from D which is the
one designed to contain uncertain objects. In particular, for
each ~w ∈ D, we derived an uncertain object o = (R, f) in
such a way that f = f~w, while R was defined as the region
containing most of the area (e.g., 95%) of f~w. Again, we run
each of the selected clustering methods on D′′ as well, in

2We used the SSJ library (http://www.iro.umontreal.ca/∼simardr/ssj/)



order to obtain a clustering solution C′′ and a score F (C′′, C̃).
Finally, we compared the scores obtained in Case 1

and Case 2, respectively, by computing Θ(C′, C′′, C̃) =
F (C′′, C̃) − F (C′, C̃); the higher Θ, the better the quality
of C′′ w.r.t. C′, and, therefore, the better the performance
of the clustering method when the uncertainty is taken into
account w.r.t. the case where no uncertainty is employed.
Note that Θ ranges within [−1, 1].

4) Setup of the clustering methods: We derived the lists
of samples from the pdfs by employing the classic Monte
Carlo and Markov Chain Monte Carlo sampling methods.
To avoid that results were biased by random chance (due
to non-deterministic operations, such as computing initial
centroids/medoids/partitions), all accuracy and efficiency
measurements for each of the algorithms were averaged over
50 runs.

We performed a tuning phase for parameters ε (i.e.,
the threshold for the distance of the neighbors of any
object) and µ (i.e., the minimum number of points within
the neighborhood of any object) required by the density-
based approaches FDBSCAN and FOPTICS. We set these
parameters to the values that allowed each method to achieve
the best accuracy results.

For UAHC and FOPTICS, we considered the partitions
obtained by cutting the dendrogram to the desired number of
output clusters. For FOPTICS, we initially derived a cluster
hierarchy by means of the procedure described in [29].

B. Results

1) Accuracy on Benchmark Datasets: Tables III-IV show
accuracy results on benchmark datasets for Uniform (U),
Normal (N), and Binomial (B) distributions, in terms of
external (Θ) and internal (Q) cluster validity criteria, re-
spectively. In both tables, we also report, for each method,
(i) the score for each type of pdf averaged over all datasets
(for short, average score), (ii) the score averaged over all
datasets and pdfs (for short, overall average score), and (iii)
the overall average gain of our MMVar computed as the
difference between the overall average score of MMvar and
the overall average scores of the other algorithms.

The overall average scores and gains in terms of both Θ
and Q, show that the proposed MMVar was more accurate
than any other competing method, including the earlier
MMVar [16]. In particular, the maximum gains were equal
to 0.381 Θ and 0.215 Q, both obtained with respect to FDB;
the latter revealed to be the least accurate method, probably
because of negative effects that rely on the difficulty in
setting parameters ε and µ. Among the competitors, with the
exception of the earlier MMVar, UKmed achieved the best
results in terms of Θ (gap from MMVar equal to 0.129),
whereas the best performing methods in terms of Q were
FOPT and UKmed (gap from MMVar equal to 0.155 and
0.158, respectively). UAHC overall performance (gaps from
MMVar of 0.203 Θ and 0.195 Q) was closer to that of

UKM and CKM than to the performance of density-based
algorithms. UKM and CKM were comparable to each other
in terms of Θ, and performed better than UAHC and the
density-based methods; however, for the internal evaluation,
CKM obtained the second worst overall average accuracy
(gap from MMVar equal to 0.203). As concerns the compar-
ison between the two versions of MMVar, although always
better than the other competing methods, the earlier MMVar
obtained lower performance than the current MMVar, with
overall average gaps of 0.036 Θ and 0.022 Q.

Considering the average scores on single distributions, ac-
curacy of MMVar remained on average higher than those of
all other methods, including the earlier MMVar. Maximum
and minimum average gains over all algorithms except the
earlier MMVar were as follows: 0.424, 0.025 by Uniform,
0.272, 0.106 by Normal, and 0.448, 0.241 by Binomial,
for Θ; 0.34, 0.228 by Uniform, 0.085, 0.035 by Normal,
and 0.218, 0.167 by Binomial, for Q. Moreover, MMVar
improved upon its earlier version up to 0.056 Θ and 0.032
Q, both on Normal pdfs.

Results obtained on the single dataset-by-pdf configura-
tions further confirm the high accuracy obtained by MMVar.
Indeed, according to Θ, MMVar achieved the best absolute
results on 16 out of 24 dataset-by-pdf configurations; for
additional 5 configurations, it remained comparable to the
best method (gap lower than or equal to 0.05). Similarly,
considering Q, MMVar was the best method on 14 con-
figurations and achieved results comparable to the best
ones in additional 2 configurations. Finally, we point out
that MMVar was in general much more accurate than the
method having the lowest computational complexity among
the competitors, which is CKM (cf. Table I). Indeed, MMVar
achieved Θ (resp. Q) results better than those of CKM on
19 (resp. 20) out of 24 dataset-by-pdf configurations.

2) Accuracy on Real Datasets: Table V shows accuracy
results obtained on Neuroblastoma and Leukaemia, and
also summarizes (i) the scores on each dataset by averaging
over the cluster numbers, and (ii) the scores and gains by
averaging over all cluster numbers and datasets (for short,
overall average score). Due to the unavailability of reference
classifications for such datasets, we performed multiple tests
by varying the number of clusters and assessed the results
based on the internal criteria Q and S.

Looking at the Q average scores, MMVar was the best
performing method on both datasets, with improvements of
0.030 on Neuroblastoma and of 0.022 on Leukaemia,
both upon UAHC. Moreover, MMVar achieved the best
overall average performance, with maximum and minimum
gains (over the competing algorithms) of 0.523 (w.r.t. FDB),
and 0.027 (w.r.t. UAHC), respectively. In general, UAHC
(resp. FDB) was found as the best (resp. worst) method,
whereas the performance of FOPT and UKmed significantly
decreased w.r.t. the benchmark datasets. For FDB, in partic-
ular, its results remained constant even varying the number



Table IV
ACCURACY RESULTS ON BENCHMARK DATASETS: INTERNAL EVALUATION

Quality (Q ∈ [−1, 1])
data pdf UKM CKM UKmed FDB FOPT UAHC MMVar [16] MMVar

U .151 .145 .148 .197 .093 .153 .147 .137
Iris N .263 .194 .194 .238 .135 .231 .187 .167

B .118 -.001 .081 -.004 .202 -.001 .692 .716
U -.001 -.002 .012 -.002 .128 -.001 -.001 .004

Wine N -.020 .119 .417 .216 .093 .298 .124 .125
B .000 .011 .114 .000 .001 .000 .011 .012
U .001 .001 .060 -.013 .001 .001 .226 .294

Glass N .057 .062 .041 .042 .006 .142 .008 .079
B .004 .001 .006 -.002 .000 .000 .140 .134
U .101 .031 .187 .000 .449 .008 .592 .591

Ecoli N .141 .060 .029 .086 .284 .127 .151 .240
B .001 .000 .003 .000 .000 .000 .187 .187
U .041 .016 .193 .000 .289 .001 .566 .571

Yeast N .053 .031 .005 .040 .222 .150 .253 .269
B .003 .000 .001 .000 .002 .000 .184 .184
U .000 .000 .000 .000 .000 .000 .725 .736

Image N .065 .074 .010 -.001 .004 .130 .004 .021
B .015 .000 .159 .000 .000 .000 .008 .014
U .040 .025 .071 -.018 .101 .006 .226 .237

Abalone N .103 .055 .031 .086 .054 -.003 .057 .079
B .017 .005 .035 .000 .011 .000 .226 .226
U .022 .006 .044 .000 .000 .054 .279 .319

Letter N .352 .303 .357 -.022 .207 .015 .331 .387
B .000 .000 .000 .000 .000 .013 .147 .261
U .044 .028 .089 .021 .133 .028 .345 .361

avg. score N .127 .112 .136 .086 .126 .136 .139 .171
B .020 .002 .050 -.001 .027 .002 .199 .217

overall avg. score .064 .047 .092 .035 .095 .055 .228 .250
overall avg. gain +.186 +.203 +.158 +.215 +.155 +.195 +.022 —

of output clusters; this is motivated since this method auto-
matically discovers the output clusters, therefore, setting any
specific number does not have any impact on it. Again, our
MMVar generally outperformed CKM: indeed, it was on av-
erage more accurate than CKM on both datasets (with gains
of 0.025 and 0.146), while achieving better results on 14
out of 16 dataset-by-number-of-cluster configurations (i.e.,
all cases but those corresponding to a number of clusters
equal to 2). Moreover, the proposed MMVar outperformed
the earlier version defined in [16] in 12 out of 16 dataset-by-
number-of-cluster configurations, while also achieving better
average accuracy on both Neuroblastoma (0.030 average
gain) and Leukaemia (0.022 average gain).

As far as the Silhouette cluster validity criterion, the
average accuracy gains achieved by MMvar w.r.t. UKM,
CKM, UKmed, and UAHC were even larger than those
observed in terms of the Q scores. Density-based methods
(i.e., FDB and FOPT) achieved instead generally better S
results than Q; this is mainly motivated since the Silhouette
index naturally tends to evaluate as better those clustering
solutions in which clusters are quite dense and noisy objects
are kept isolated, which are the kind of solution typically
discovered by density-based clustering algorithms. However,
our MMVar performed better than both FDB and FOPT
on Laukaemia, while being better/comparable than/to FDB

on three configurations on Neuroblastoma. Again, the
proposed MMVar was on average better than its earlier
version in [16] on both datasets also in terms of S, achieving
an overall average gain of 0.012.

3) Efficiency: We evaluated time performance of our
MMVar and competing algorithms on both benchmark and
real datasets.3 Note that, unlike the accuracy evaluation, we
avoid here to distinguish between the MMVar algorithm
proposed in this work and the earlier version in [16] as the
two algorithms have the same running time.

Figure 4 shows total (i.e., offline plus online) execution
times (milliseconds, logarithmic scale) of all algorithms,
while details about online vs. offline contributions are re-
ported in Table VI; more specifically, Figures 4 (a)–(h) refer
to the results obtained on benchmark datasets for each pdf,
whereas Figure 4 (i) regards the two real datasets. We recall
that we could not vary the pdf for real datasets as the
uncertainty inherently provided along with these datasets
is modeled according to Normal pdfs (cf. Sect. V-A).
Moreover, results here refer to the computationally most
expensive version of our MMVar, where the moments of
the distributions are approximated according to a set of
statistical samples (cf. Sect. IV).

3Experiments were conducted on a quad-core platform Intel Pentium IV
3GHz with 4GB memory and running Microsoft WinXP Pro.



Table V
ACCURACY RESULTS (QUALITY AND SILHOUETTE) ON REAL DATASETS

Quality (Q ∈ [−1, 1]) Silhouette (S ∈ [−1, 1])
data # clusters UKM CKM UKmed FDB FOPT UAHC MMVar [16] MMVar UKM CKM UKmed FDB FOPT UAHC MMVar [16] MMVar

2 .569 .589 .435 -.004 .100 .568 .592 .588 .670 .671 .682 .721 .901 .671 .643 .645
3 .608 .584 .467 -.004 .169 .671 .600 .601 .583 .584 .585 .721 .883 .608 .466 .468
5 .595 .619 .432 -.004 .093 .624 .678 .690 .594 .560 .429 .721 .921 .480 .406 .443

Neuroblast. 10 .068 .066 .048 -.004 .008 .122 .098 .113 .394 .367 .255 .721 .955 .586 .553 .547
15 .598 .622 .444 -.004 .096 .590 .675 .697 .364 .284 .181 .721 .960 .542 .661 .648
20 .609 .599 .473 -.004 .092 .533 .582 .601 .295 .273 .139 .721 .970 .602 .701 .710
25 .646 .567 .409 -.004 .090 .583 .596 .619 .282 .253 .106 .721 .975 .625 .772 .762
30 .472 .527 .433 -.004 .082 .523 .532 .551 .199 .196 .088 .721 .979 .508 .782 .785
2 .207 .266 .221 -.018 .068 .293 .212 .228 .667 .633 .523 .577 .827 .590 .543 .548
3 .392 .316 .256 -.018 .080 .314 .305 .348 .440 .568 .563 .577 .567 .482 .290 .471
5 .451 .372 .245 -.018 .061 .443 .481 .517 .571 .485 .415 .577 .687 .533 .490 .512

Leukaem. 10 .455 .368 .238 -.018 .213 .554 .405 .441 .350 .305 .233 .577 .600 .581 .667 .667
15 .451 .320 .246 -.018 .192 .487 .501 .531 .327 .266 .140 .577 .674 .648 .748 .737
20 .479 .322 .213 -.018 .186 .483 .492 .527 .240 .235 .122 .577 .554 .683 .792 .778
25 .558 .296 .215 -.018 .353 .552 .588 .616 .258 .246 .093 .577 .538 .702 .813 .810
30 .448 .296 .213 -.018 .369 .422 .483 .521 .190 .150 .073 .577 .882 .638 .841 .838

Neuroblastoma avg. score .521 .522 .393 -.004 .091 .527 .544 .557 .423 .399 .308 .721 .943 .578 .623 .626
Leukaemia avg. score .430 .320 .231 -.018 .190 .444 .433 .466 .380 .361 .270 .577 .665 .607 .648 .670

overall avg. score .475 .421 .312 -.011 .141 .485 .489 .512 .401 .380 .289 .649 .805 .592 .636 .648
overall avg. gain +.037 +.091 +.200 +.523 +.371 +.027 +.023 — +.247 +.268 +.359 -.001 -.157 +.056 +.012 —

Table VI
ONLINE VS. OFFLINE EXECUTION TIMES (MILLISECONDS)

UKM CKM UKmed FDB FOPT UAHC MMVar
data pdf online offline online offline online offline online offline online offline online offline online offline

U 226 — 2 16 29 1,468 29 — 375 — 734 — 2 16
Iris N 191 — 3 32 33 2,125 80 — 375 — 5,934 — 1 16

B 1,080 — 2 62 32 5,391 105 — 406 — 4,889 — 1 63
U 369 — 3 31 49 3,718 335 — 672 — 4,640 — 3 16

Wine N 692 — 5 62 50 7,406 623 — 625 — 36,710 — 4 63
B 2,720 — 5 281 52 27,360 309 — 844 — 45,267 — 4 265
U 490 — 7 16 66 3,844 92 — 875 — 5,527 — 3 16

Glass N 764 — 1 62 73 7,500 832 — 765 — 23,399 — 1 47
B 4,633 — 2 219 73 26,047 378 — 937 — 52,866 — 5 203
U 2,869 — 4 15 122 7,344 87 — 1,938 — 10,150 — 7 15

Ecoli N 3,268 — 11 63 143 13,672 1,693 — 1,657 — 74,304 — 6 47
B 5,198 — 5 266 168 48,219 415 — 1,859 — 123,613 — 7 250
U 24,895 — 119 562 2,651 865,984 40,639 — 39,890 — 276,908 — 49 453

Yeast N 26,875 — 98 1,188 2,840 1,775,172 122,207 — 32,563 — 12,064,828 — 66 1,187
B 36,466 — 101 5,062 3,539 6,266,453 12,746 — 33,641 — 4,374,297 — 59 4,766
U 21,453 — 267 78 8,939 165,625 1,784 — 130,625 — 1,602,809 — 142 94

Image N 28,575 — 213 313 8,912 349,578 65,987 — 134,141 — 14,754,456 — 139 313
B 110,452 — 294 1,344 8,850 1,087,203 11,258 — 138,688 — 13,945,281 — 149 1,250
U 113,990 — 825 406 20,568 1,153,672 10,328 — 392,625 — 1,821,687 — 520 265

Abalone N 119,500 — 898 719 25,178 2,140,875 258,498 — 323,172 — 54,930,953 — 543 735
B 143,331 — 656 3,359 26,837 7,472,469 65,135 — 336,765 — 11,758,297 — 323 3,281
U 142,735 — 2,517 1,063 100,112 8,077,735 412,738 — 1,701,250 — 8,310,666 — 741 1,031

Letter N 186,965 — 2,424 8,328 102,553 16,209,734 1,296,300 — 1,696,312 — 124,999,197 — 1,079 3,328
B 393,822 — 2,894 15,328 99,532 62,453,063 566,722 — 1,691,297 — 81,698,317 — 719 14,454

Real datasets Neur. 167,226 — 806 11,956 26,627 3,913,531 216,513 — 402,451 — 6,689,207 — 486 10,577
Leuk. 235,006 — 864 16,800 27,106 5,826,109 203,916 — 489,828 — 25,258,894 — 542 15,381

As we can observe, MMVar was always faster than all
competing algorithms. In particular, with the exception of
CKM, each competing algorithm was at least one order
of magnitude slower than MMVar. Apart CKM, the fastest
method (on average) among the competitors revealed to be
FDB, which was 1–2 orders slower than MMVar. FDB was
in general comparable to or faster than the other density-
based algorithm FOPT (which was, in turn, 1–3 orders
slower than MMVar), even if the computational complexity
of the former (in the worst case) is greater than that of FOPT
(cf. Table I); this indicates that the procedure employed

by FDB for pruning unnecessary distance calculations per-
formed pretty well on the selected datasets. The partitional
UKM was always 2 orders slower than our MMVar; more-
over, with respect to the density-based algorithms, it was
comparable to or slightly faster than FOPT, and comparable
to, one order slower than, or even slightly faster than FDB.
UAHC and UKmed were in general the slowest methods (up
to 5 and 4 orders slower than MMVar, respectively); this
was expected due to the intrinsic complexity of hierarchical
approaches (UAHC) and the (slow) offline computation of
expected distances between every pair of uncertain objects
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Figure 4. Efficiency results: all methods

(UKmed). As a general remark, the relative performances of
the various algorithms were not affected by the form of pdf
(for benchmark datasets). However, we noted that the times
on Uniform were mostly lower than those on Normal and
Binomial, which might be explained by the lower complexity
in performing pdf sampling for Uniform than the other pdfs.

Figure 5 (times in linear scale) highlights a comparison
between MMVar and CKM, which was the fastest competing
method. All plots in the figure show that, though of the same
order of magnitude, MMVar was always faster than CKM,
which has already been recognized as much less accurate
(cf. Sects. V-B1 and V-B2). In general, we note that greater
improvements in the relative performance of MMVar with
respect to CKM corresponded to larger datasets; this fact

emphasizes the high efficiency of the proposed MMVar,
particularly on large datasets. We also involved into this
comparison the “fast” version of MMVar (denoted as F-
MMVar), which exploits well-known closed-form expres-
sions to fastly compute the moments of the distributions
(i.e., without resorting to any pdf sampling); note that it
makes sense to report results achieved by F-MMVar, since
the moments of distributions can be efficiently computed
according to closed-form formulas in most real cases (cf.
Sect. IV). MMVar’s performance gain with respect to CKM
was even more evident by using the fast version F-MMVar;
for most of the benchmark datasets, performance achieved
by F-MMVar corresponded to only a few milliseconds
regardless of the pdf form.
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Figure 5. Efficiency results: CK-means vs. MMVar (and its fast version)

4) Scalability: We finally carried out a scalability study
using the KDD Cup ’99 dataset.4 Figure 6 summarizes
results obtained by MMVar and CKM, for which we varied
the dataset size from 5% to 100% (increment of 5%). Note
that, for each selected subset of the collection, we ensured
that all 23 classes were covered by the objects within the
subset. Thus, the number of clusters was conveniently fixed
to 23 for all the algorithms under consideration.

As it can be noted in the figure, MMVar running times
increased linearly with the dataset size. Moreover, MMVar
exhibited an overall trend which increased more slowly than
the linear trend shown by CKM: for instance, the ratio of

4For this study, we carried out the algorithms on a CentOS 5.5 platform, with Linux
2.6.18 kernel, 64GB memory, 4 Intel(R) Xeon(R) CPU E7330, 2.40GHz quadcore

the MMVar running time to the CKM running time was 0.6
at 50% of the dataset, and 0.76 at 100%. This confirmed the
superiority of MMVar with respect to CKM also in terms of
scalability.

VI. CONCLUSION

We addressed the problem of clustering uncertain objects
by focusing on the minimization of the variance of the
mixture models that represent the clusters to be discovered.
The rationale of the proposed approach is twofold: on the
one hand, it allows for effectively recognizing clusters of
uncertain objects, as the variance of the mixture model
of a set of uncertain objects is inversely proportional to
the compactness of that set; on the other hand, computing
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Figure 6. Scalability on the KDD Cup ’99 dataset

the variance of mixture models can be carried out in a
very efficient way by exploiting some analytical properties.
This led us to the development of a fast heuristic, MMVar,
to compute local optima of the objective function at the
basis of the proposed formulation, which does not require
any distance measure between uncertain objects. Based
on experiments conducted on various benchmark and real
datasets, MMVar turned out to be faster than prominent
state-of-the-art algorithms for clustering uncertain objects,
while achieving better average accuracy in terms of both
external and internal cluster validity criteria.

As previously stated, this paper extends our earlier
work [16], presenting theoretical findings for all the key
notions underlying the proposed approach and performing a
thorough experimentation to assess effectiveness, efficiency
and scalability of MMVar, including comparison with state-
of-the-art methods for clustering uncertain objects. The
MMVar approach has the merit of taking into account
the variance of the uncertain objects to model a cluster
prototype, which brings the important benefit of avoiding
the computation of uncertain object distances, and hence
represents a notable advantage of higher accuracy with
respect to existing distance-dependent centroid-based clus-
tering methods for uncertain objects. We believe however
that a purely variance-based notion of uncertain cluster
prototype can still be inadequate to correctly summarize
all cluster structures. Therefore, one direction of research
could be identified in developing uncertain cluster prototypes
in which central tendency and variability of the clustered
objects are both taken into account in the definition of
the cluster mixture models, while still avoiding to compute
costly uncertain object-to-prototype distances.
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APPENDIX

Fact 1: The uncertain prototype PC = (RC , fC) of any
set C of uncertain objects is a multivariate uncertain object
satisfying Def. 1.

Proof: Being C a set of multivariate uncertain objects,
to prove that PC is a multivariate uncertain object, we need
to demonstrate that:

1) fC is a pdf,
2) (1) of Def. 1 holds, and
3) (2) of Def. 1 holds.
Condition 1) is true since fC represents a mixture of

pdfs of the form
∑

o=(R,f)∈C αif(~x), where αi = 1/n.
As concerns condition 2), it results that:∫
~x∈<m\RC

fC(~x)d~x =

∫
~x∈<m\RC

1

|C|
∑

o=(R,f)∈C

f(~x)d~x =

=
1

|C|
∑

o=(R,f)∈C

∫
~x∈<m\RC

f(~x)d~x

As R ⊆ RC , ∀o = (R, f) ∈ C (cf. (11)), it holds that:

1

|C|
∑

o=(R,f)∈C

∫
~x∈<m\RC

f(~x)d~x =

=
1

|C|
∑

o=(R,f)∈C

 ∫
~x∈<m\R

f(~x)d~x −
∫

~x∈RC\R

f(~x)d~x


which is equal to

1

|C|
∑

o=(R,f)∈C

(0− 0) = 0

as, according to (1) of Def. 1, it holds that

f(~x) = 0, ∀~x ∈ <m\R ⇒
∫

~x∈R̂\R

f(~x)d~x = 0, ∀R̂ ⊆ <m

To prove condition 3), it can be straightforwardly noted
that, f(~x) > 0, ∀~x ∈ R (cf. (2)), and f(~x) ≥ 0, ∀~x ∈
<m,∀o = (R, f) ∈ C (as each f is a pdf) clearly imply
that ∑

o=(R,f)∈C

f(~x) > 0, ∀~x ∈
⋃

o=(R,f)∈C

R

accordingly, as RC =
⋃

o=(R,f)∈C Ri (cf. (11)) and |C| >
0, the following holds:

1

|C|
∑

o=(R,f)∈C

f(~x) = fC(~x) > 0, ∀~x ∈ RC

which proves condition 3).

Lemma 1: Let C be a set of uncertain objects, where each
o ∈ C is a pair (R, f), and PC be the uncertain prototype of

C. The expected value ~µ(PC) and the second order moment
~µ2(PC) of prototype PC are as follows:

~µ(PC) =
1

|C|
∑
o∈C

~µ(o)

~µ2(PC) =
1

|C|
∑
o∈C

~µ2(o)

Proof: According to (12) it holds that PC = (RC , fC),
where fC(~x) = |C|−1

∑
o∈C f(~x); thus:

~µ(PC) =

∫
~x∈RC

~x
1

|C|
∑
o∈C

f(~x)d~x =

=
1

|C|
∑
o∈C

∫
~x∈RC

~xf(~x)d~x =

=
1

|C|
∑
o∈C

 ∫
~x∈RC\R

~xf(~x)d~x +

∫
~x∈R

~xf(~x)d~x

(15)

As f(~x) = 0, ∀~x ∈ <m \R for any uncertain object o =
(R, f) (cf. Def. 1), it holds that

∫
~x∈RC\R ~x f(~x) d~x = 0;

therefore, considering again (15), it results that:

~µ(PC) =
1

|C|
∑
o∈C

∫
~x∈R

~x f(~x) d~x =
1

|C|
∑
o∈C

~µ(o)

which proves the first part of the lemma. The second part
~µ2(PC) = |C|−1

∑
o∈C ~µ2(o) may be proved following an

analogous reasoning.

Lemma 2: Let PC be the uncertain prototype of any set
C of uncertain objects, C ′ (resp. C ′′) be the set defined
by deleting (resp. adding) object o′ (resp. o′′) from (resp.
to) C, i.e., C ′ = C \ {o′}, C ′′ = C ∪ {o′′}. The expected
values ~µ(PC′), ~µ(PC′′) and second order moments ~µ2(PC′),
~µ2(PC′′) of prototypes PC′ , PC′′ of sets C ′, C ′′ are as
follows:

~µ(PC′) =
|C| × ~µ(PC)− ~µ(o′)

|C| − 1

~µ2(PC′) =
|C| × ~µ2(PC)− ~µ2(o′)

|C| − 1

~µ(PC′′) =
|C| × ~µ(PC) + ~µ(o′′)

|C|+ 1

~µ2(PC′′) =
|C| × ~µ2(PC) + ~µ2(o′′)

|C|+ 1



Proof: According to Lemma 1, it holds that:

~µ(PC′) =
1

|C ′|
∑
o∈C′

~µ(o) =

=
1

|C| − 1

(∑
o∈C

~µ(o)− ~µ(o′)

)
=

=
|C| × ~µ(PC)− ~µ(o′)

|C| − 1

The remaining statements of the lemma may be proved
similarly.

Proposition 1: Let D be a set of m-dimensional uncertain
objects, C be a partition of D, PC be the prototype of
any cluster C ∈ C, and ~µ(PC), ~µ2(PC) and σ2(PC) =
‖~µ2(PC) − ~µ2(PC)‖1 the expected value, second order
moment and variance of PC , respectively. Let us consider a
new partition C′ of D obtained from C by moving an object
o from cluster C ∈ C to cluster Ĉ ∈ C; it holds that the value
JC,Ĉ(C) of the objective function J for the new partition C′
is the following:

JC,Ĉ(C)=J(C)−(σ2(PC)+σ2(PĈ))+(σ2(PC′)+σ2(PĈ′))
(14)

where
C ′ = C \ {o} Ĉ ′ = Ĉ ∪ {o}

σ2(PC′) = ‖~µ2(PC′)− ~µ2(PC′)‖1
σ2(PĈ′) = ‖~µ2(PĈ′)− ~µ

2(PĈ′)‖1
and

~µ(PC′) =
|C| × ~µ(PC)− ~µ(o)

|C| − 1

~µ2(PC′) =
|C| × ~µ2(PC)− ~µ2(o)

|C| − 1

~µ(PĈ′) =
|Ĉ| × ~µ(PĈ) + ~µ(o)

|Ĉ|+ 1

~µ2(PĈ′) =
|Ĉ| × ~µ2(PĈ) + ~µ2(o)

|Ĉ|+ 1

Proof: The ~µ(PC′), ~µ2(PC′), ~µ(PĈ′) and ~µ2(PĈ′)
expressions follow directly from Lemma 2. This result along
with (8) also implies the correctness of computing σ2(PC′)
and σ2(PĈ′) as ‖~µ2(PC′) − ~µ2(PC′)‖1 and ‖~µ2(PĈ′) −
~µ2(PĈ′)‖1, respectively.

As J(C) is defined in (13) as a sum of variances of the
prototypes of clusters within C, JC,Ĉ(C) can be computed
by “replacing” the variances σ2(PC) and σ2(PĈ) of the
early clusters C, Ĉ with the variances σ2(PC′) and σ2(PĈ′)

of the new formed clusters C ′, Ĉ ′. In this way, it holds
that JC,Ĉ(C) = J(C) − (σ2(PC) + σ2(PĈ)) + (σ2(PC′) +

σ2(PĈ′)), which proves the proposition.

Proposition 2: The MMVar algorithm converges to a lo-
cal minimum of function J defined in (13) in a finite number
of steps.

Proof: Let us denote by V (h) the value J(C(h)), where
C(h) is the clustering computed, for all objects in D, at
the h-th iteration of MMVar. To prove the proposition, it
is sufficient to show that V (h) ≤ V (h−1) at each iteration
h > 1. Indeed, as the function J is bounded below (it is
greater than or equal to zero), if the value of this function
never increases at each iteration h, this would mean that the
algorithm performs a descendent gradient over the function
and necessarily terminates when a local minimum is reached.

At each iteration h, every object is processed and may
in principle be responsible of the update of the current
clustering C(h). For this purpose, we denote by C(h)p the
partition computed at the h-th iteration when p objects
have been processed and by V

(h)
p the corresponding value

J
(
C(h)p

)
(p ∈ [0..n]). For each object op to be processed,

it holds that the current clustering C(h)p is computed as
C(h)p = arg minC J(C) over all C belonging to the set of
all clusterings that can be obtained from C(h)p−1 by moving
the object op to any other possible cluster. In this respect, it
holds that V (h)

p is smaller than or equal to any other value
obtained by considering different clusterings built starting
from C(h)p−1, and, therefore, V (h)

p ≤ J
(
C(h)p−1

)
= V

(h)
p−1,

∀p, h, i.e., V (h)
n ≤ V

(h)
n−1 ≤ · · · ≤ V

(h)
1 ≤ V

(h)
0 , ∀h. As

V
(h)
n = V (h) and V (h)

0 = V
(h−1)
n = V (h−1), it follows that

V (h) ≤ V (h−1), ∀h, which proves the proposition.

Proposition 3: Given a set D of n m-dimensional uncer-
tain objects, the number k of output clusters, the number
S of statistical samples used for representing the uncertain
objects, and denoting by I the number of iterations to
convergence, the computational complexity of the MMVar
algorithm (Alg. 1) is O(n m (I k + S)).

Proof: In the “offline” phase of the algorithm, the
computation of the ~µ and ~µ2 values for all objects within D
(Line 1) costs either O(n m) (if the pdfs of the uncertain
objects are such that there exist closed-form expressions for
computing moments), or O(S n m) (if the moments may be
only approximated according to (9) by taking into account
S samples from distributions).

Then, the k-way incremental initialization phase processes
all objects one time, and, for each object, it looks at all
clusters in order to find the best one given the assignments
already computed. This leads to aO(k n m) time complexity
for the entire initialization.

As far as the refinement phase, each iteration of the
main cycle has the following computational cost. Computing
expected value and second order moment of any cluster
prototype according to Lemma 1 or Lemma 2 is O(m).



Once all objects have been assigned to k clusters, computing
cluster C∗ (Line 18) takes O(k m), since (14) needs to be
evaluated for each cluster. All operations to be performed
in case an object o is moved to C∗ (Lines 20-22) take
O(m), since their cost is dominated by that of computing
~µ(PC), ~µ2(PC), ~µ(PC∗), ~µ2(PC∗) according to Lemma 2.
As the above operations are repeated for all objects in D
until convergence, each iteration of the main cycle globally
costs O(k n m). This leads to an overall complexity of
O(n m (I k + S)).


