
A Time Series Representation Model for

Accurate and Fast Similarity Detection

Francesco Gullo, Giovanni Ponti,
Andrea Tagarelli ∗, Sergio Greco

Dept. of Electronics, Computer and Systems Sciences, University of Calabria

Abstract

Similarity search and detection is a central problem in time series data processing
and management. Most approaches to this problem have been developed around
the notion of dynamic time warping, whereas several dimensionality reduction tech-
niques have been proposed to improve the efficiency of similarity searches. Since
the continuous increasing of sources of time series data and the cruciality of real-
world applications that use such data, we believe there is a challenging demand for
supporting similarity detection in time series in a both accurate and fast way. Our
proposal is to define a concise yet feature-rich representation of time series, on which
the dynamic time warping can be applied for effective and efficient similarity detec-
tion of time series. We present the Derivative time series Segment Approximation
(DSA) representation model, which originally features derivative estimation, seg-
mentation and segment approximation to provide both high sensitivity in capturing
the main trends of time series and data compression. We extensively compare DSA
with state-of-the-art similarity methods and dimensionality reduction techniques in
clustering and classification frameworks. Experimental evidence from effectiveness
and efficiency tests on various datasets shows that DSA is well-suited to support
both accurate and fast similarity detection.

Key words: Time series data, representation models, similarity detection,
dimensionality reduction, clustering, classification

∗ Corresponding author. Address: via P. Bucci, 41C, I87036 Arcavacata di Rende
(CS), Italy. Tel.: +39 0984 494751. Fax: +39 0984 494713.

Email addresses: fgullo@deis.unical.it (Francesco Gullo),
gponti@deis.unical.it (Giovanni Ponti), tagarelli@deis.unical.it (Andrea
Tagarelli), greco@deis.unical.it (Sergio Greco).

Preprint submitted to Pattern Recognition 3 March 2009

1 Introduction

A time series is a sequence of (real) numeric values upon which a total order
based on timestamps is defined. Time series are generally used to represent
the temporal evolution of objects, hence enormous amounts of such data are
naturally available from several sources of different domains, including speech
recognition, medicine and biology measurement, financial and market data
analysis, telecommunication and telemetry, sensor networking, motion track-
ing, meteorology, and so on.
Most research on time series data management and knowledge discovery has
been devoted to the similarity search and detection problem, which arises in
many tasks such as indexing and query processing, change detection, frequent
pattern mining, classification, and clustering. In this work we refer to clus-
tering and classification as evaluation frameworks for similarity detection. In
particular, we focus on the clustering task as it is necessary when the data
being organized are not associated with predefined categories, which is a very
frequent context in real-world application domains. Clustering of time series
data has been attracting a growing interest in several scenarios. For instance,
in the biomedical domain, frequently posed problems include finding groups
of genes with similar expression profiles across a number of experiments, orga-
nizing patients according to different healthy/disease conditions, and finding
groups of similar functional activities of the human brain in response to a given
stimulus. In the socio-economics domain, clustering energy/power consump-
tion patterns can support applications of fraud detection. Other challenging
scenarios involve, for instance, seasonality patterns of retail data, personal in-
come data, models of ecological dynamics, multimedia data streams. A more
exhaustive list of applications which demand for time series clustering can be
found in [23].
The common way to compare two time series is “warping” the time axis in
order to achieve an alignment between the data points of the series. The Dy-
namic Time Warping (DTW) algorithm has long been known in speech recog-
nition [30], and shown to be an effective solution for measuring the distance
between time series [1]. Indeed, unlike the Euclidean distance, DTW allows
elastic shifting of a sequence to provide a better match with another sequence,
thus it can handle time series with local time shifting and different lengths.
Besides the similarity problem in time series, another issue concerns the high
dimensionality that characterizes time series data in many application do-
mains. To address this issue, various dimensionality reduction techniques have
been proposed, following two main approaches in which a (continuous) time
series is approximated with either a piece-wise discontinuous function or a
low-order continuous function.
Dimensionality reduction methods are useful for modeling time series into
a more compact form. However, while this can help to compare time series
efficiently, dimensionality reduction methods may lose significant information
about the main trends in a time series, which are essential to effective similarity

2

detection. Indeed, in many real-world applications there is a growing interest
to develop methods that are able to fit an emerging demand for both accurate
and fast similarity detection. In this respect, we believe there is a number
of special requirements that should be satisfied by any representation model
to support accurate and fast similarity detection in time series, which are
summarized as follows:

• Time warping-aware. Time series should be modeled into a form that can be
naturally mapped to the time domain. This will make it feasible to benefit
from using dynamic time warping for similarity detection.

• Low complexity. Since the high dimensionality of time series data, modeling
time series should be performed maintaining a reasonably low complexity,
which is possibly linear with the series length.

• Sensitivity to features. It is clearly desirable that time series approximation
is able to preserve as much information in the original series as possible. For
this purpose, approximating a time series should be accomplished in such
a way that it tailors itself to the local features of the series, in order to
capture the important trends of the series.

• Parameter-free. Most representation models and dimensionality reduction
methods require the user to specify some input parameters, such as, e.g.,
the number of coefficients or symbols. However, prior domain knowledge
is often unavailable, and the sensitivity to input parameters can seriously
affect the accuracy of the representation model or dimensionality reduction
method.

In this paper, we present a time series representation model which is conceived
to support accurate and fast similarity detection. This model is called Deriva-
tive time series Segment Approximation (DSA), as it achieves a concise yet
feature-rich time series representation by combining the notions of derivative
estimation, segmentation and segment approximation.

Our DSA involves a segmentation scheme that employs the paradigm based
on a piecewise discontinuous function. However, in contrast to any other tech-
nique of dimensionality reduction, the segmentation step is performed on the
derivative version of the original time series, rather than directly on the raw
time series. The derivative estimates represent a new feature space that en-
ables the identification of the trends of the original series. Moreover, the final
segment modeling step allows for concisely fitting the detected trends in a
low-dimensional, time warping-aware representation of the original time se-
ries. As we proved experimentally, the intuition underlying the DSA model
works out very advantageously in supporting accurate and fast similarity de-
tection, indeed DSA is able to fulfill all of the desiderata mentioned above:

• DSA sequences can be compared by using DTW directly;
• the derivative-based feature generation allows for representing a time series

3

by focusing on the trends that are characteristic of the series;
• the segmentation step in DSA has a computational complexity which is

linear with the series length, and it is adaptive with respect to the identified
trends of the series;

• the absence of mandatory input parameters in DSA addresses the unavail-
ability of prior domain knowledge.

We conducted an extensive experimental evaluation of DSA within clustering
and classification frameworks, by considering aspects of effectiveness as well as
efficiency. This evaluation necessarily involved the prominent state-of-the-art
methods for time series representation and dimensionality reduction. Exper-
imental evidence has shown that DSA supports accurate and fast similarity
detection, in terms of a number of results that are summarized in Section 5.4.

The rest of the paper is organized as follows. Section 2 discusses the state-
of-the-art for similarity search/detection and dimensionality reduction, and
provides a first comparison between our proposal and the competing methods.
Section 3 presents our DSA model in detail. Section 4 and Section 5 describe
the experimental methodology and relating results to assess DSA and the
competing methods on benchmark datasets. Section 6 presents an application
of DSA on a real case study. Finally, Section 7 provides concluding remarks
and some pointers to future research.

2 Related work

As we mentioned in the Introduction, DTW is widely used to perform sim-
ilarity search and detection in time series. Given two sequences T1 and T2,
DTW performs a non-linear mapping of one sequence to another by minimiz-
ing the total distance between them. For doing this, a (|T1| × |T2|)-matrix
storing the squared Euclidean distances between the two sequences is used
to find an optimal warping path (i.e., a sequence of matrix elements) via a
dynamic programming algorithm. Moreover, a number of pruning techniques
and computationally cheap lower bounds (e.g., [15,21,42]) have been proposed
to make DTW able to support fast and tight indexing and query processing.
However, a major weakness of DTW is that it tends to produce “singularities”,
i.e., alignments of a single point of a series with multiple points of another
series. This phenomenon becomes undesirable when unexpected singularities
are produced. An effective variant of DTW, called Derivative Dynamic Time
Warping (DDTW) [19], has been proposed to reduce the phenomenon of singu-
larities. Basically, DDTW considers new features in the sequences while main-
taining a computational complexity equal to DTW. The novelty of DDTW is
that local derivatives of the data points are estimated to capture information
on the trends in the sequences and to find a warping more robust to singulari-
ties. For instance, two data points having identical values, one with a negative
slope (i.e., part of a falling trend) and the other one with a positive slope (i.e.,
part of a rising trend), are correctly not mapped each other when DDTW is

4

used. In a sense, DDTW can be seen as DTW equipped with a preliminary
preprocessing step, in which the original data points are replaced with their
derivatives.
An alternative, although not computationally more convenient approach to
similarity search and detection in time series is based on edit distance-like
string matching measures. The Longest Common SubSequence (LCSS) algo-
rithm [37] is a variant of the edit distance that uses the length of the longest
common subsequence of two sequences to define the distance between them.
LCSS can deal with noisy time series by performing approximate matching
rather than exact matching of time series, although it suffers from large-
grained similarity. Edit Distance with Real sequences (EDR) [8] performs the
same distance quantization of LCSS (which is parametric with respect to a
tolerance threshold) in order to remove noisy effects. Unlike LCSS and EDR,
Edit distance with Real Penalty (ERP) [7] is a metric and still supports local
time shifting. ERP can be seen as a variant of EDR and DTW, although it
does not require a noise-tolerance threshold like EDR, and does not replicate
previous data points to add a gap like DTW.
To address the high dimensionality issue in time series, there are mainly two
basic approaches as we mentioned above: approximating a time series by a
piecewise discontinuous function or applying a low-order continuous function
to a time series.
The first approach includes Discrete Wavelet Transform (DWT) [6,39], Swing-
ing Door (SD) [2], Piecewise Linear Approximation (PLA) [28,17], Piecewise
Aggregate Approximation (PAA) [16,18,41], Adaptive Piecewise Constant Ap-
proximation (APCA) [5], and Symbolic Aggregate approXimation (SAX) [24].
Using DWT, a time series is represented in terms of a finite length, fast de-
caying, oscillating and discretely sampled waveform (mother wavelet), which
is scaled and translated in order to create an orthonormal wavelet basis. Each
function in the wavelet basis is related to a real coefficient: the original series
is reconstructed by computing the weighted sum of all the functions in the
basis, using the corresponding coefficient as weight. The Haar basis [3] is the
most widely used in wavelet transformation. The DWT representation of a
time series of length n consists in identifying n wavelet coefficients, whereas a
dimensionality reduction is achieved by maintaining only the first p coefficients
(with p ≪ n).

SD is a data compression technique that belongs to the family of piecewise
linear trending functions. Recently, SD has been adopted in several PI data
analysis scenarios (e.g., [34]). Also, in [12], SD has been compared to wavelet
compression. The SD algorithm employs a heuristic to decide whether a value
is to be stored within the segment being grown or it is to be the beginning
of a new segment. Given a pivot point, which indicates the beginning of a
segment, two lines (the “doors”) are drawn from it to envelop all the points
up to the next one to be considered. The envelop has the form of a triangle
according to a parameter that specifies the initial amplitude of the lines. The
setup of this parameter has impact on the data compression level.

5

In the PLA method, a time series is represented by a piecewise linear function,
i.e., a set of line segments. Several approaches have been proposed to recognize
PLA segments (e.g., [28,17]); among these methods, the most efficient ones are
able to produce a PLA representation with computational complexity linear
with the length of the time series.

PAA transforms a time series of n points in a new one composed by p segments
(with p ≪ n), each of which is of size equal to n/p and is represented by the
mean value of the data points falling within the segment. Like PAA, APCA
approximates a time series by a sequence of segments, each one represented
by the mean value of its data points. A major difference from PAA is that
APCA can identify segments of variable length. Also, the APCA algorithm is
able to produce high-quality approximations of a time series by resorting to
solutions adopted in the wavelet domain.

The SAX representation of a time series involves three steps. Initially, the PAA
version of a time series is computed, then the PAA coefficients are quantized,
and finally each quantization level is represented by a single character, called
SAX symbol.

Note that representing a time series of n points according to DWT, SD, (the
fastest versions of) PLA, PAA and SAX can be performed in O(n), whereas
the complexity of APCA is O(n log(n)).

Dimensionality reduction techniques based on piecewise discontinuous approx-
imations can be combined with existing similarity measures, in order to im-
prove the computational cost in similarity searches. In particular, the use of
DTW on the coefficients obtained by segmenting a time series has been in-
vestigated in the literature (e.g., [18]), and several lower bounding measures
operating on segmented versions of a time series have been defined. Among
these methods, the Fast search method for dynamic Time Warping (FTW) [33]
has been recently proposed as one of the most effective methods that use the
time warping distance on a coarse version of the original sequences.

The other approach to dimensionality reduction, which approximates a time
series with a continuous polynomial, includes Singular Value Decomposition
(SVD) [22,14], Discrete Fourier Transforms (DFT) [32,31], splines, non-linear
regression and Chebyshev polynomials [4,25]. SVD consists of space rotation
and truncation applied on a data matrix and is computationally more ex-
pensive than all the other discussed methods for dimensionality reduction.
DFT and Chebyshev approaches are quite close to DWT: they are based on
the use of a set of orthonormal functions, whose contributions to the whole
representation are given by the relating coefficients. Major differences among
these representations regard the functions that compose the orthonormal basis
(i.e., sine waves for DFT, and Chebyshev polynomials for Chebyshev) and the
computational cost (i.e., O(n log n) for DFT, and O(n) for Chebyshev). Also,
Chebyshev approximation is very close to the optimal minimax polynomial,
which represents an approximation able to minimize the maximum deviation

6

from the original data points.

It has been recently observed from an empirical viewpoint that there is no
absolute winner among the dimensionality reduction methods in every appli-
cation domain. 1 Nevertheless, it is interesting to compare the above methods
with respect to the desiderata discussed in the Introduction. The requirement
for time warping-aware representation is not satisfied by methods based on
orthonormal functions such as DFT and Chebyshev, while the requirement for
low complexity is satisfied by a few methods (e.g., DWT, Chebyshev, PAA,
SAX and our DSA). The sensitivity to features can be considered according
to three main sub-requirements (which are satisfied by our DSA) for the seg-
ments detected in an individual time series: i) segments may have different
lengths, ii) any segment represents different slopes of a subsequence of data
points, iii) segments capture the series trends. Point i) is addressed by APCA
and SD, but not by SAX, PAA and PLA; SD and PLA satisfy point ii), un-
like PAA, SAX, and APCA; finally, no one of such methods satisfies point iii).
Also, most dimensionality reduction methods are not parameter-free, which is
instead an advantageous feature of DSA—indeed, the threshold used to con-
trol the segmentation step is automatically determined in DSA, consequently
the user is not required to specify it.

3 Derivative time series Segment Approximation

In this section we describe our Derivative time series Segment Approximation
(DSA) model to represent time series into a concise form which is designed to
capture the significant variations in the time series profile. 2 More precisely, a
DSA sequence is the result of a transformation that applies to a time series and
yields a shorter sequence of values approximating the segments identified in
the derivative version of the original series. DSA entails derivative estimation,
segmentation and segment modeling to map a time series into a different value
domain which allows for maintaining information on the significant features
of the original series in a dense and concise way.

We hereinafter denote a time series with T = [(x1, z1), . . . , (xn, zn)], where
each couple (xh, zh) is composed by a real numeric value (xh) and a timestamp
(zh); as is often the case by assuming a fixed sampling period, T can be
simply rewritten as T = [x1, . . . , xn]. Also, we can assume that the timestamp
associated with the first point x1 is set to be zero.
Given a time series T of length n, DSA computes a new sequence τ of p values,
with p ≪ n, by three main steps:

(1) Derivative estimation — the original time series is transformed into a
new one in which each point is replaced with its first derivative estimate.

1 http://www.cs.ubc.ca/∼rng/psdepository/chebyReport2.pdf
2 A preliminary version of DSA was originally presented in [10]

7

(2) Segmentation — the derivative time series is decomposed into variable-
length segments, each of which is comprised of a subsequence of points
having close slopes.

(3) Segment approximation — the individual segments are substantially map-
ped to angular values, which represent synthetic information on the av-
erage slopes within the segments.

3.1 Derivative estimation

Given a time series T = [x1, . . . , xn], the derivative estimation step yields a
sequence Ṫ = [ẋ1, . . . , ẋn], whose elements are first derivative estimates of the
points in T .

A simple yet effective derivative estimation model is that exploited in [19]—we
hereinafter refer to it as DDTW estimation model—which computes, for each
point (except the first and the last one in the series), the mean value between
the slope of the line from the left neighbor to the point and the slope of the
line from the left neighbor to the right neighbor. Formally:

ẋh =



























ẋh+1 if h = 1

1
2
[(xh − xh−1) + 1

2
(xh+1 − xh−1)] if h ∈ [2..n-1]

ẋh−1 if h = n

(1)

We slightly modify the DDTW estimation model by also considering the slope
of the line from the point to the right neighbor; actually, this modification leads
to an algebraic simplification producing an expression that is equivalent to
consider only the slope of the line from the left neighbor to the right neighbor.
The derivatives of the first and the last point in the series are computed by
taking into account their respective neighbors as well. Formally:

ẋh =



























xh+1 − xh if h = 1

1
2
(xh+1 − xh−1) if h ∈ [2..n-1]

xh − xh−1 if h = n

(2)

We investigated how the performances of DSA and DDTW may vary depend-
ing on the derivative estimation model. As we describe in Appendix A, the
DSA derivative estimation model (Eq. 2) leads to a better derivative-based
feature space than the DDTW derivative estimation model (Eq. 1).

8

3.2 Segmentation

Segmenting a time series of length n consists in identifying p − 1 delimiter
points (p ≪ n) to partition the series into p contiguous subsequences of points
(segments) having similar features.

In our approach, segmentation is computed on the derivative version of a time
series. Precisely, a derivative time series Ṫ = [ẋ1, . . . , ẋn] is transformed into
a sequence SṪ = [s1, . . . , sp] of variable-length segments of the form sj =
[sj,1, . . . , sj,kj

] = [ẋj1 , . . . , ẋjkj
], such that:

• s1,1 = ẋ1 and sp,kp
= ẋn, and

• for each j ∈ [1..p-1], sj,kj
immediately precedes sj+1,1 in the time axis.

A critical aspect in segmentation is how to determine the segment delimiters.
For this purpose, we follow a sliding windows approach, i.e., a segment is
grown until it exceeds an error threshold, and the process continues from the
next point not yet considered. Although more refined segmentation schemes
could be devised (e.g., top-down or bottom-up schemes), in this work we chose
to pursue the above idea for the sake of its simplicity.

The key idea in our segmentation method is to break a series according to the
first point such that the absolute difference between it and the mean of the
previous points is above a certain threshold ǫ; this point becomes the anchor
for the next segment to be identified in the rest of the series. Formally, let
µ(sj) denote the average of the points in a sequence sj of SṪ , i.e., µ(sj) =

(
∑kj

h=1 ẋjh
)/kj, for each j ∈ [1..p-1]. The sequence sj is identified as a segment

if and only if

|µ([sj,1, . . . , sj,h]) − sj,h+1| ≤ ǫ, ∀h ∈ [1..kj − 1]

and
|µ([sj,1, . . . , sj,kj

]) − sj+1,1| > ǫ

Intuitively, this condition allows for aggregating subsequent data points hav-
ing very close derivatives; in such a way, the growth segment sj represents a
subsequence of points with a specific trend.

To estimate the threshold ǫ, we resort to an index of spread of the (deriva-
tive) data points within a sequence. The objective is to produce a number of
segments that is large enough to capture the “characteristic” trends in the
original series (i.e., subsequences of points having close derivative estimates),
but small enough to guarantee a reasonably good degree of compression. Pre-
cisely, we devise three definitions of ǫ, namely dataset-oriented, series-oriented,
or segment-oriented.

The dataset-oriented definition of ǫ aims to express this threshold by globally
referring to a given collection of time series. Given a dataset D of N time

9

series, ǫ can be defined as:

ǫ(D) =
1

N

N
∑

i=1

|Ṫi|

max{|Ṫ | | T ∈ D}
σ(Ṫi)

where σ(Ṫi) denotes the standard deviation over the points in the i-th deriva-
tive series, and normalization of the series lengths is provided to deal with
variable-length series.

The above definition is reasonably adequate when most time series in the col-
lection show similar shapes; however, this may not necessarily hold in several
real domains (e.g., sensor network measurements). Therefore, an estimation
of ǫ might be provided by a series-oriented definition, i.e., globally to each
individual time series T :

ǫ(Ṫ) = σ(Ṫ)

Another definition of ǫ may involve the individual segments being identified
in each series. We can hence define a segment-oriented ǫ for each segment sj

as
ǫ(sj) = σ(sj)

It is easy to observe that, regardless the definition of ǫ, the segmentation step
on a dataset of N series can be performed in O(N × nmax), where nmax is
the maximum of the series lengths. Since the segment-oriented definition is
tailored to the local features of an individual series, we chose to adopt it in
the segmentation step of our DSA model.

It is worth noting that the segmentation step in DSA does not require any user-
specified parameter, since the threshold ǫ is automatically chosen by analyzing
the information of each series. By contrast, this step is not automatic for
other methods of dimensionality reduction (i.e., APCA, SAX, SD, PAA, PLA,
Chebyshev, DWT and DFT), where the user is required to specify an input,
such as the number of segments or coefficients being computed. We believe
this represents an important advantage of our method.

3.3 Segment approximation

The individual segments of a derivative time series are represented with a
synthetic information capturing their respective main features. More precisely,
each segment sj is mapped to a pair formed by the value zj+1, where zj is the
timestamp of the last point (ẋjkj

) in sj, and an angle that explains the average

slope of the portion of time series bounded by sj . This is mathematically
expressed by the notion of arctangent applied to the mean of the (derivative)
points in each segment.

10

Given a segmented derivative time series SṪ = [s1, . . . , sp], the final step of
segment approximation yields a sequence τ = [(α1, t1), . . . , (αp, tp)] such that

αj = arctan(µ(sj)), j ∈ [1..p]

tj = tj−1 + kj, j ∈ [1..p]

where we assume t0 = 0 for any DSA sequence.

Modeling a given time series by means of the DSA representation hence leads
to a new sequence whose elements (pairs angle-timestamp) still maintain a
direct association to the original time domain, while concisely representing the
features of original points. This makes the DSA model able to fully support
dynamic time warping, i.e., (dis)similarities between DSA sequences can be
computed by using DTW-based measures.

As a final remark, it is easy to observe that the time complexity of computing
a DSA sequence from a time series of length n has a total cost O(n), since
the three steps, namely derivation, segmentation and segment approximation,
cost O(n), O(n), and O(p) (p ≪ n), respectively.

4 Experimental methodology

We devised an experimental evaluation to assess the ability of our DSA in sup-
porting effective and efficient similarity detection within clustering and classi-
fication frameworks. We compared DSA against state-of-the-art methods for
modeling and comparing time series data, which include LCSS, EDR, ERP,
DTW, DDTW and FTW as distance measures, and APCA, SAX, PAA, PLA,
SD, Chebyshev, DWT and DFT as dimensionality reduction methods. Since
our DSA and the competing dimensionality reduction methods are not similar-
ity/distance measures, we chose to apply DTW over the segments/coefficients
computed by each particular representation scheme in the time domain (i.e.,
APCA, SAX, PAA, PLA, SD and DSA), whereas we used the Euclidean dis-
tance (L2) to compare the sequences obtained by Chebyshev, DWT and DFT,
as suggested in their respective works.

Before going into the details of the experimental results, in this section we
introduce the clustering and classification algorithms and the validity criteria
used in the experimental evaluation. We also discuss the preliminary task of
preprocessing of the raw time series and the setup of the various methods that
compete with our DSA.

4.1 Algorithms

Finding the best strategy of time series clustering or classification is not an
objective of this work; rather, we are interested in assessing the impact of

11

the proposed time series representation model in similarity detection, and
hence we conceived standard clustering and classification frameworks for time
series data. Specifically, we resorted to well-known paradigms, namely parti-
tional clustering, agglomerative hierarchical clustering [13] and nearest neigh-
bor classification [26]. As stated in [23], partitional and hierarchical clustering
methods have been extensively used in the context of time series clustering.
Analogously, using nearest neighbor learning has been widely encouraged for
time series classification (e.g., [20]).

4.1.1 Partitional clustering

The partitional clustering paradigm is characterized by simplicity, and low
computational and memory requirements. In this work, we mainly use the
popular K-Means algorithm [13], which is a centroid-based partitional clus-
tering method; in Appendix C we also discuss a more general partitional clus-
tering method. It is worth noting that choosing the number of output clusters
does not represent a drawback in our evaluation context, since we selected
datasets for which reference classifications are available, and hence we were
able to fix the number of clusters equal to the actual number of classes in
each clustering experiment. Also, we address the random selection of the ini-
tial cluster centroids by performing multiple runs of the K-Means algorithm
to avoid that the quality results were due to random chance. In order to de-
fine the cluster centroids, we adopt two strategies depending on whether or
not the representation model produces variable-length segments. Concerning
SAX, PAA, PLA, SD, Chebyshev, DWT and DFT, we compute the cluster
representatives by simply averaging the corresponding coefficients over the
time series in any specific cluster. In the following, we present a method for
computing cluster representatives of DSA sequences; we remark that although
this method has been originally conceived for DSA clusters, it can be easily
adapted to any representation model that is able to produce variable-length
segments (coefficients), such as APCA.

Computing cluster representatives in K-Means. Let us denote with TC =
{τ1, . . . , τM} a cluster of DSA sequences, where each τi has the form [(αi1, ti1), . . . ,
(αipi

, tipi
)], and with C = {T1, . . . , TM} the cluster of original time series such

that each Ti ∈ C is associated with a unique τi ∈ TC . The objective is to
compute a DSA sequence prototype rep(TC) as the representative of cluster
C.

We identify a fixed number v of segments over which the average series is
defined. We can reasonably define the number of segments v as the closest
integer to the mean (

∑M
i=1 pi)/M over all the series τi ∈ TC . The timestamps

associated to the new v segments are defined as t̂j = tmax × j/v, for each
j ∈ [1..v], where tmax = max{tupu

| τu ∈ TC} (i ∈ [1..M]) and t̂0 = 0. For each

τi, the angle α′
ij

corresponding to the timestamp t̂j (with t̂j ≤ tipi
) is computed

12

to be equal to the angle αiu of the u-th segment including the point sampled
at time t̂j. Formally, α′

ij
is equal to the angle αiu such that (αiu , tiu) ∈ τi and

tiu−1
< t̂j ≤ tiu , for all i ∈ [1..M], j ∈ [1..v]. Note that any pair (α′

ij
, t̂j) is

introduced only if the condition t̂j ≤ tipi
holds, i.e., if the i-th time series is

defined in the timestamp t̂j.

For each τi the new vi pairs (α′
ij
, t̂j) are then included in the rewritten DSA

sequence τ ′′
i = [(α′′

i1
, t′′i1), . . . , (α

′′
iqi

, t′′iqi
)] which is computed as

time-sort{(αi1, ti1), . . . , (αipi
, tipi

), (α′
i1
, t̂1), . . . , (α

′
ivi

, t̂vi
)}

where t̂vi
is the new timestamp with maximum value defined over the i-th

sequence.

Formally, for each τi ∈ TC , the sequence τ̂i = [(α̂i1 , t̂1), . . . , (α̂iv , t̂vi
)] is com-

puted, where

α̂ij =

∑

(α′′

iu
,t′′

iu
)∈τ ′′

i
∧ t′′

iu
∈(t̂j−1,t̂j]

[α′′
iu
× (t′′iu − t′′iu−1

)]

t̂j − t̂j−1

, j ∈ [1..vi]

The DSA representative rep(TC) is finally computed as:

rep(TC) = [(α1, t̂1), . . . , (αv, t̂v)], where αj =

∑

t̂j≤t̂vi
∧i∈[1..M] α̂ij

|{t̂j |t̂j ≤ t̂vi
}|

for each j ∈ [1..v]. Note that ∆t = t̂j − t̂j−1 is a constant for each j ∈ [1..v].

4.1.2 Hierarchical clustering

The agglomerative hierarchical clustering paradigm allows us to test the com-
peting methods in a clustering framework which does not rely on a notion
of cluster prototype and on the cluster initialization. For this purpose, we
use the UPGMA algorithm (Unweighted Pair Group Method using arithmetic
Averages), which is based on group-average-linkage to compute the distance
between any two clusters [13].

4.1.3 K-nearest neighbor classification

As the most basic instance-based learning method, the K-Nearest-Neighbor
(K-NN) algorithm [26] is a straightforward approach to assess the various
representation and similarity detection methods in our context. Indeed, ac-
cording to the K-NN algorithm, the classification of an instance (time series)
will be most similar to the classification of instances that are similar to each
other.

13

4.2 Assessment criteria

To assess the effectiveness of classification algorithms, we directly compare the
result of the automatic assignment with a reference (expected) organization
of the data. Analogously, in clustering frameworks, we assess how well a clus-
tering solution fits a given scheme of known classes, thanks to the availability
of reference classifications for all the test datasets.

F-measure (F) [36] is the most commonly used external criterion, and is de-
fined as the harmonic mean between the Information Retrieval notions of
precision (P) and recall (R):

F =
2 × P × R

P + R

Given a set D of series, let Γ = {Γ1, . . . , ΓH} be the expected organization
of the series in D, and C = {C1, . . . , CK} be the output of a classification
or clustering algorithm. Precision of Cj with respect to Γi is the fraction of
the series in Cj that has been correctly classified, i.e., Pij = |Cj ∩ Γi|/|Cj|.
Recall of Cj with respect to Γi is the fraction of the series in Γi that has been
correctly classified, i.e., Rij = |Cj ∩ Γi|/|Γi|. In the case of classification, the
condition H = K holds, and the overall precision and recall are defined as

P =
1

H

H
∑

i=1

Pii R =
1

H

H
∑

i=1

Rii

whereas, in the case of clustering, the definitions are as follows:

P =
1

H

H
∑

i=1

Pi R =
1

H

H
∑

i=1

Ri

where each Pi and Ri are equal to Pij∗ and Rij∗, respectively, such that j∗ ∈
argmaxj=1..K{Pij , Rij}.

Another popular measure used to compare two classifiers is the error rate (E),
which takes into account both errors of commission and errors of omission:

E =
1

2 × |D|

H
∑

i=1

(|Ci \ Γi| + |Γi \ Ci|)

The accuracy of a classifier is defined in terms of the error rate as A = 1−E.
Note that all the measures above range within zero and one; in particular,
higher values of F-measure and accuracy indicate better quality.

14

4.3 Preprocessing time series

Raw time series are usually preprocessed by smoothing data points in order to
reduce the noise in the data. Moving average represents the simplest family of
smoothing models, as it is a compromise between the mean and the random
walk model. Given a raw time series T = [x1, . . . , xn] and a smoothing degree δ
(i.e., the maximum width of the moving average), the centered δ-point moving
average recomputes the data points by considering both the previous and next
observations around a center:

xsmoothed

h =



























µ([x1, . . . , xh+r]) if h−r ≤ 0

µ([xh−r, . . . , xh+r]) if h−r > 0 and h+r ≤ n

µ([xh−r, . . . , xn]) if h+r > n

where r = (δ−1)/2 denotes the maximum number of back and forward points
that are taken into account for smoothing the h-th point.

More refined models, such as exponential smoothing models, compute the
weighted average of past observations on the basis of previously smoothed ob-
servations. Given a smoothing factor ω ∈ [0..1], the simple exponential smooth-
ing is computed as:

xsmoothed

h =











xh if h = 1

ωxh + (1 − ω)xsmoothed

h−1 if h > 1

It should be emphasized that denoising is essential to make the data amenable
to the further analysis tasks, regardless of the specific representation method
or distance measure used. In particular, in derivative-based feature spaces,
denoising time series data (e.g., via a smoothing function) before differentiat-
ing them is necessary to avoid that the approximation of derivatives by finite
differences will amplify the noise present in the data. In this respect, the com-
bination of smoothing prior to the step of derivative estimation in our DSA
approach (as well as in DDTW) can be seen as somehow similar to the reg-
ularization of a differentiation process [35], although potentially less accurate
and general.

4.4 Setup of the competing methods

Unlike our DSA, most of the competing methods require one or more parame-
ters to be set. In some cases, which include LCSS, EDR, ERP and Chebyshev,

15

typical settings are suggested in their respective works; specifically, the match-
ing thresholds for LCSS and EDR are assumed to be equal to (maxσ(Ti))/4
and min σ(Ti) respectively (for all the series Ti in a dataset), the constant gap
for ERP is set to 0, and the number of coefficients for Chebyshev is set to
20. Such parameter settings revealed to be good enough to enable the respec-
tive methods to achieve their best performances in accuracy. In particular, we
took care in monitoring the behavior of the Chebyshev method, and finally
found no significant improvement in accuracy by increasing the number of
Chebyshev coefficients.

In other cases, to make a comparative evaluation possible in terms of accuracy
and efficiency, we aimed to prepare the various methods to perform at levels
of data compression which were as close as possible. We tried several values
for the parameters of APCA, SAX, PAA, PLA, DWT, DFT and FTW. More
precisely, for each dataset and algorithm, we varied the setting of each of these
methods in such a way that it achieved the same compression (i.e., number of
segments) obtained by DSA, and ±5%, ±10%, and ±20% of the DSA com-
pression; then, we measured the relative clustering/classification quality (F-
measure) scores and finally chosen the setting corresponding to the best score.
Analogously, the alphabet length W (i.e., the number of symbols) required by
SAX was chosen, for each dataset and clustering/classification algorithm, as
the value that led to the best trade-off between clustering/classification quality
and time performance.

A final remark concerns SD, which requires a deviation threshold (i.e., the
“doors” amplitude); however, setting this parameter is even more difficult,
since the compression factor (i.e., the number of segments) cannot be specified
directly in swinging door compression. In [34,40], many calibration trials are
conducted to find the deviation thresholds corresponding to a given compres-
sion factor, for each dataset. We followed this approach and set the deviation
threshold in such a way that the number of segments produced by SD was as
near as possible to the number of segments produced by DSA, finally choosing
the value that led to best clustering/classification quality.

5 Results

5.1 Data description

We selected seven datasets coming from various application domains, and
characterized by different series profiles and dimensionality. Table 1(a) sum-
marizes the characteristics of the main datasets used for the experiments, and
Fig. 1 shows the shapes of sample representative instances in each dataset.

GunX comes from the video surveillance domain, whereas Tracedata simulates
signals representing instrumentation failures. In CBF (Cylinder-Bell-Funnel),
each class is characterized by a specific pattern, namely a plateau (C), an in-

16

0 50 100 150
−2

0

2

4

G
un

X

0 50 100 150 200 250
−5

0

5

T
ra

ce
da

ta

0 10 20 30 40 50 60
−50

0

50

C
on

tr
ol

C
ha

rt

0 20 40 60 80 100 120
−5

0

5

10

C
B

F

0 20 40 60 80 100 120
−5

0

5

T
w

op
at

0 200 400 600 800 1000 1200 1400 1600
−5

0

5

M
ix

ed
−

B
ag

S
ha

pe
s

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

O
va

ria
n

C
an

ce
r

time

Fig. 1. Sample instances from the test datasets. One time series from each class is
displayed for each dataset.

creasing ramp followed by a sharp decrease (B), a sharp increase followed by
a decreasing ramp (F). ControlChart contains synthetically generated control
charts which are classified into one of the following: normal, cyclic, increasing
trend, decreasing trend, upward shift, and downward shift. In Twopat, two
different patterns (upward step and downward step) are used to define the
classes down-down, up-down, down-up, and up-up. Mixed-BagShapes contains
time series derived from shapes belonging to nine classes (bone, cup, device,
fork, glass, hand, pencil, rabbit and tool). The first five datasets are avail-
able at http://www.cis.temple.edu/∼latecki/TestData/TS Koegh/, whereas
Mixed-BagShapes can be found at http://www.cs.ucr. edu/∼eamonn/shape/.

Besides the benchmark datasets above, we also used OvarianCancer [29], which
contains proteomic spectra generated by Surface-Enhanced Laser Desorption
and Ionization - Time Of Flight Mass Spectrometry (SELDI-TOF MS). The
spectra (i.e., MS data) are derived from an analysis of serum samples of
a female population belonging to two classes (ovarian cancer diseased and
healthy). It should be emphasized that OvarianCancer data, like most of MS
datasets, are huge-dimensional and largely affected by noisy factors. Noise is
typically due to a number of reasons, such as sample preparation, insertion of
the samples into the mass spectrometer, and instrumental and measurement
errors. For this purpose, OvarianCancer spectra were subject to a preliminary
preprocessing phase specific for MS data [27,38]. MS preprocessing has been

17

Table 1
Datasets used in the experiments: (a) information on the original series, and (b)
segmentation and compression using DSA

(a)

dataset size classes time
steps

GunX 200 2 150

Tracedata 200 4 275

ControlChart 600 6 60

CBF 300 3 128

Twopat 800 4 128

Mixed-BagSh. 160 9 1,614

OvarianCancer 49 2 28,000

(b)

avg. no.

dataset DSA compr.
segments

GunX 68 55%

Tracedata 118 57%

ControlChart 35 42%

CBF 77 40%

Twopat 38 70%

Mixed-BagSh. 816 49%

OvarianCancer 943 97%

recognized as a crucial step for tasks of MS data management and knowledge
discovery, and mainly consists of operations such as noise reduction, baseline
subtraction and peak detection. The interested reader can find details about
the preprocessing steps carried out in [11].

It is interesting to have a look at the impact on the time series dimensionality
by using DSA. Table 1(b) shows that DSA achieves a 59% compression of the
original series lengths on average, with a maximum compression percentage
of 97% in the OvarianCancer dataset. As we shall discuss later in this section,
the reasonably good rate of compression achieved by DSA does not have a
negative impact on the accuracy in detecting similarities.

5.2 Effectiveness evaluation

We measured the ability of DSA and the competing methods in supporting
time series clustering and classification effectively. We investigated how clus-
tering/classification results can be influenced by choosing different alternatives
for data preprocessing and setting the parameters therein involved; then, we
assessed the performance of DSA and the other methods according to their
respective best settings.

5.2.1 Tuning preprocessing parameters

We used the smoothing functions previously described in Section 4.3 to pre-
process the time series in each dataset. In the case of centered moving average,
the smoothing degree δ(= 2r + 1) was varied within a typical range, namely
[5..9], whereas ω in exponential smoothing settings was varied from 0 to 1 by a
0.1 step. Moreover, we tried to perform zero, one or more iterations of smooth-
ing (up to 5), on the various datasets and for each preprocessing scheme; the

18

rationale here is that smoothing should be avoided to prevent loss of infor-
mation for low-noise series and, conversely, excessive noise might be treated
with multiple smoothing. It should be noted that, in the case of K-Means
evaluation, we performed multiple runs (100) of the K-Means algorithm and
finally averaged the quality results over the runs to obtain a single value of
F-measure.

We observed that smoothing helped to improve the performance of the var-
ious methods on all the datasets, except OvarianCancer; OvarianCancer rep-
resented an exception since, in this case, data was preliminarily subject to
domain-specific preprocessing steps (Section 5.1), hence further preprocessing
via smoothing would have tended to cause loss of information on potentially
significant data features.

The exponential smoothing revealed to be more effective than moving average,
as it was selected 74 out of 90 times as the best preprocessing way. The
parameter ω was set to low values in most cases, thus suggesting the need for
a greater smoothing effect (which is indeed achieved by values of ω closer to
zero). Also, the number of smoothing iterations appeared to be not relevant
in practice; three iterations of smoothing were enough in most cases, except
for SD which always required four or five iterations. In Appendix B, we report
further details about the preprocessing stage, including the best settings and
an evaluation of the impact of smoothing on the various datasets.

5.2.2 Accuracy in time series clustering

We evaluated DSA and the other methods in two clustering frameworks,
namely K-Means and UPGMA. In relation to the selected clustering algo-
rithm, each method was used with the best preprocessing setup for the spe-
cific dataset. In any case, the quality of the obtained clustering solutions was
calculated in terms of F-measure.

Table 2 refers to K-Means clustering and shows the quality results averaged
over 100 runs of this algorithm. Looking at the table we can observe that DTW
on DSA sequences (for short, DTW on DSA) was the first ranked method in
all the datasets except CBF; however, in this dataset, DTW on DSA was
only 1% below the performance of DDTW, which turned out to be the best
method among the competing ones. Also, DTW on DSA always led to better
results than DTW alone. It should be emphasized that the comparison with
DDTW is particularly important in order to gain an insight into the role
of derivative-based features in time series representation and the impact of
combining derivative estimation and segmentation in the accuracy of similarity
detection.

DTW on DSA performed as good as or better than the remaining methods,
and in some cases the performance difference was quite evident. In particular,
DTW on DSA led to quality improvements up to about 59% with respect to

19

Table 2
Summary of average quality results (F-measure) for K-Means clustering

GunX Trace Control CBF Twopat Mixed Ovarian

data Chart BagSh. Cancer

LCSS 0.59 0.30 0.50 0.79 0.36 0.32 0.34

EDR 0.54 0.74 0.88 0.86 0.42 0.70 0.58

ERP 0.72 0.62 0.76 0.58 0.39 0.48 0.34

DTW 0.66 0.78 0.87 0.89 0.95 0.77 0.60

DDTW 0.89 1 0.89 0.97 0.95 0.76 0.62

FTW 0.74 0.90 0.81 0.67 0.55 0.73 0.58

L2 on
DFT

0.63 0.77 0.78 0.67 0.39 0.70 0.36

L2 on
DWT

0.61 0.67 0.76 0.74 0.36 0.68 0.36

L2 on
CHEBY

0.57 0.72 0.70 0.69 0.38 0.72 0.34

DTW on
SD

0.67 0.95 0.85 0.87 0.89 0.76 0.69

DTW on
PLA

0.73 0.77 0.89 0.87 0.75 0.74 0.60

DTW on
PAA

0.68 0.78 0.87 0.86 0.73 0.75 0.59

DTW on

SAX

0.73 0.77 0.83 0.87 0.69 0.71 0.58

DTW on
APCA

0.77 0.81 0.89 0.83 0.91 0.74 0.55

DTW on

DSA

0.92 1 0.90 0.96 0.97 0.78 0.75

DWT, DFT and Chebyshev, and up to 25% with respect to SAX, PAA, PLA,
SD, and APCA. Among these competing methods, it can be noted that DTW
on APCA and SD obtained the best results; in general, DTW on APCA, SD,
SAX, PAA and PLA achieved higher quality clustering than Chebyshev, DWT
and DFT.

Table 3 reports on the quality results obtained by the UPGMA algorithm. A
first remark on these results is that the F-measure scores for the various meth-
ods were generally much lower than the corresponding results obtained by the
K-Means algorithm on all the datasets, except OvarianCancer; in particular,
for DTW on DSA, there was a quality decrease from 19% (in GunX) to 36%

20

Table 3
Summary of quality results (F-measure) for UPGMA clustering

GunX Trace Control CBF Twopat Mixed Ovarian

data Chart BagSh. Cancer

LCSS 0.47 0.23 0.38 0.39 0.24 0.24 0.33

EDR 0.49 0.38 0.41 0.47 0.28 0.28 0.56

ERP 0.49 0.37 0.40 0.40 0.33 0.28 0.54

DTW 0.61 0.48 0.48 0.51 0.61 0.38 0.61

DDTW 0.72 0.76 0.54 0.49 0.64 0.41 0.63

FTW 0.60 0.52 0.44 0.44 0.50 0.40 0.63

L2 on
DFT

0.60 0.40 0.29 0.47 0.39 0.28 0.62

L2 on
DWT

0.60 0.40 0.29 0.47 0.39 0.28 0.62

L2 on
CHEBY

0.60 0.40 0.29 0.47 0.39 0.28 0.62

DTW on
SD

0.51 0.55 0.40 0.49 0.43 0.42 0.60

DTW on
PLA

0.61 0.63 0.40 0.51 0.43 0.29 0.61

DTW on
PAA

0.61 0.61 0.36 0.51 0.56 0.41 0.61

DTW on

SAX

0.61 0.60 0.48 0.56 0.44 0.31 0.61

DTW on
APCA

0.61 0.63 0.40 0.51 0.43 0.29 0.61

DTW on

DSA

0.73 0.82 0.54 0.60 0.67 0.51 0.73

(in CBF and ControlChart). However, like in K-Means clustering, DTW on
DSA revealed to behave as good as or better than the other methods and, in
some cases (i.e., CBF and Mixed-BagShapes) we observed increased advantages
(quality improvements) with respect to the corresponding results by K-Means.

5.2.3 Accuracy in time series classification

Analogously to the evaluation by clustering frameworks, we assessed the per-
formance of DSA and the competing methods using the K-NN classification
algorithm. Table 4 shows the best results obtained by the various methods,

21

where each triple of values refers to the parameter K, F-measure and accu-
racy, in that order. We split each dataset 70% for training, the remainder for
testing. Concerning the choice of K (the neighborhood size), it should be em-
phasized that [20] recommends the use of the “simple yet very competitive”
1-NN algorithm (i.e., K-NN with K equal to 1); we followed the lead of this
authoritative reference, however we also considered more values of K, up to
K = 5.

Using DTW on DSA led to both F-measure and accuracy equal to 1 for all the
selected K on GunX, Tracedata, CBF and Twopat. Moreover, DTW on DSA
performed better than the other methods on Mixed-BagShapes and GunX (in
this dataset, DDTW achieved optimal accuracy like DSA, although requiring
a neighborhood size greater than 1). It should also be noted that DDTW
confirmed to be the best method among the competing ones.

We observed that both F-measure and accuracy tended to decrease for higher
values of K. In particular, the use of K = 1 revealed to be the best choice, in
terms of F-measure or accuracy, 87 out of 105 times over all the methods and
datasets—which advocates the aforementioned recommendation by [20]. 3

5.3 Efficiency evaluation

We measured the time performances of DSA and the other methods in accom-
plishing the tasks of modeling and clustering time series. For each dataset, we
randomly selected samples of sizes equal to 25%, 50%, 75% and 100% of the
size of the entire dataset and, for each sample and method, we used the respec-
tive best preprocessing setup. 4 We left the string matching based approaches
(i.e., LCSS, EDR and ERP) out of this presentation since they revealed to be
drastically slower than all the other methods. 5

5.3.1 Performances in time series modeling

Table 5 summarizes the best performances (in milliseconds) in modeling time
series on the various datasets. PAA, PLA, SAX, SD and DWT performed
as the fastest methods; actually, this result was not surprising since simpler

3 The complete list of K-NN results for all the methods and datasets is available
at http://www2.deis.unical.it/tagarelli/dsa/
4 For each of the smaller samples of the datasets, we performed a preprocessing
stage for the various methods, as we did for the entire datasets (see Section 5.2.1);
however, we cannot present here details on such preprocessing tests due to the space
limits of this paper.
5 Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB
memory and running Microsoft WinXP Pro.

22

Table 4
Summary of quality results (F-measure, accuracy, and the corresponding K in
parentheses) for K-NN classification

GunX Trace

data

Control

Chart

CBF Twopat Mixed-

BagSh.

Ovarian

Cancer

LCSS F=.63 (3)
A=.63 (3)

F=.42 (3)
A=.75 (1)

F=.65 (1)
A=.85 (1)

F=.36 (5)
A=.37 (1)

F=.51 (1)
A=.68 (1)

F=.80 (1)
A=.92 (1)

F=.29 (1)
A=.63 (3)

EDR F=.83 (5)
A=.80 (5)

F=.95 (1)
A=.96 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.76 (3)
A=.94 (2)

F=.62 (1)
A=.80 (1)

ERP F=.99 (1)
A=.99 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.79 (5)
A=.81 (5)

F=.64 (1)
A=.75 (1)

F=.78 (1)
A=.96 (1)

F=.58 (1)
A=.63 (1)

DTW F=.95 (3)
A=.95 (3)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.84 (1)
A=.97 (1)

F=.68 (5)
A=.80 (2)

DDTW F=1 (2)
A=1 (2)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.92 (1)
A=.98 (1)

F=.70 (1)
A=.87 (2)

FTW F=.89 (4)
A=.88 (4)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.93 (1)
A=.93 (1)

F=.88 (1)
A=.90 (1)

F=.83 (2)
A=.96 (2)

F=.68 (3)
A=.80 (1)

L2 on
DFT

F=.96 (1)
A=.96 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.98 (1)
A=.98 (1)

F=.77 (3)
A=.77 (3)

F=.91 (3)
A=.98 (3)

F=.65 (1)
A=.70 (1)

L2 on
DWT

F=.90 (5)
A=.89 (5)

F=.95 (2)
A=.96 (2)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.90 (1)
A=.93 (1)

F=.88 (1)
A=.97 (1)

F=.65 (1)
A=.80 (2)

L2 on
CHEBY

F=.71 (1)
A=.71 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.91 (1)
A=.93 (1)

F=.85 (1)
A=.97 (1)

F=.61 (1)
A=.77 (2)

DTW on
SD

F=.99 (5)
A=.99 (5)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.87 (1)
A=.97 (1)

F=.68 (4)
A=.73 (1)

DTW on
PLA

F=.95 (3)
A=.95 (3)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.86 (1)
A=.97 (1)

F=.68 (4)
A=.77 (1)

DTW on
PAA

F=.99 (1)
A=.99 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.87 (1)
A=.97 (1)

F=.67 (2)
A=.73 (2)

DTW on
SAX

F=.78 (1)
A=.74 (1)

F=1 (1)
A=1 (1)

F=.98 (5)
A=.99 (5)

F=1 (1)
A=1 (1)

F=.99 (1)
A=.99 (1)

F=.80 (2)
A=.95 (1)

F=.63 (3)
A=.80 (1)

DTW on
APCA

F=.95 (3)
A=.95 (3)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.86 (1)
A=.97 (1)

F=.68 (4)
A=.77 (1)

DTW

on DSA

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=1 (1)
A=1 (1)

F=.95 (1)
A=.98 (1)

F=.75 (1)
A=.90 (1)

models obviously lead to higher efficiency and, at the same time, lower ac-
curacy. DFT and APCA were always by far slower than the other methods.
Our DSA was close to the fastest methods in most cases; in particular, com-
pared to Chebyshev, the larger the dataset the faster was modeling by DSA
with respect to modeling by Chebyshev polynomials. It is important to note

23

that, since DSA shares with PAA, PLA, SD and SAX the same asymptotic
time complexity (i.e., linear with the series length), the time differences be-
tween DSA and these fast methods should be not really relevant in practical
contexts.

Table 5
Summary of best time performances (msecs) in time series modeling

GunX Trace Control CBF Twopat Mixed Ovarian

data Chart BagSh. Cancer

DFT 2,835 8,276 1,652 3,679 4,701 286,829 570,056

DWT 8 13 9 5 17 48 181

CHEBY 58 58 173 87 232 46 14

SD 7 15 14 17 24 65 262

PLA 4 7 2 3 4 21 46

PAA 2 3 2 2 4 14 41

SAX 8 13 11 11 19 56 67

APCA 1,758 7,151 412 657 2,358 68,739 135,982

DSA 15 40 27 31 52 143 391

5.3.2 Performances in time series clustering

We also evaluated the time performances for the clustering task, including in
this stage the time required by the series modeling task as well; for the sake
of brevity, we present here results obtained by the K-Means algorithm, and
we focus on time warping-aware representations.

Figures 2–3 and the summary reported in Table 6 show that DTW on DSA
drastically improved the clustering performances of basic DTW and DDTW;
clearly, this was a consequence of the dimensionality reduction due to the
segmentation performed by DSA. More surprisingly, DSA behaved very close
to the fastest competing methods: indeed, it is interesting to note that the
performance difference between DSA and PAA, SAX, PLA and SD was not
as evident as in the modeling performances previously observed; in particu-
lar, DSA-based clustering was even faster than PAA, SAX, PLA and SD on
Twopat (the largest dataset) and Mixed-BagShapes (the dataset with the high-
est number of classes). This suggests that our DSA is able to yield a time series
representation that might require more time to be computed, but generally is
more accurate yet convenient to fit the whole task of clustering.

24

(a) GunX (b) GunX

(c) Tracedata (d) Tracedata

(e) ControlChart (f) ControlChart

(g) CBF (h) CBF

Fig. 2. Time performances in time series modeling and clustering: GunX, Tracedata,
ControlChart, CBF

5.4 Summary of results and discussion

We evaluated the capabilities of our DSA as well as the competing methods
in supporting similarity detection within clustering and classification frame-
works. Of course, the extent to which such frameworks actually led to good

25

(a) Twopat (b) Twopat

(c) Mixed-BagShapes (d) Mixed-BagShapes

(e) OvarianCancer (f) OvarianCancer

Fig. 3. Time performances in time series modeling and clustering: Twopat,
Mixed-BagShapes, OvarianCancer

solutions depend on how each of the following critical aspects was devised:
i) the preprocessing scheme, ii) the similarity method and its application in
relation to a representation model, and iii) the clustering/classification algo-
rithms.

Since the focus of our work is on a compact representation of derivative-
based features of time series and its impact on similarity detection, it should
be emphasized that the evaluation frameworks are indeed “parametric” with
respect to the algorithms. In order to provide a complete specification of our
evaluation frameworks, we conducted experiments using standard clustering
and classification algorithms mainly because of their simplicity, applicability,
and relatively less dependence on algorithmic parameters.

Facing with the experimental results presented in the above sections and hav-
ing the focus on point ii), we can summarize the main remarks of our study
as follows:

26

Table 6
Summary of best time performances (msecs) in time series modeling and clustering

GunX Trace Control CBF Twopat Mixed Ovarian

data Chart BagSh. Cancer

DTW 1,548 8,018 2,298 2,564 3,548 594,446 4,071,815

DDTW 2,518 10,345 3,117 2,789 4,971 664,885 4,098,329

FTW 368 1,491 405 926 5,254 237,823 5,252,045

DTW on
SD

511 2,912 814 1,317 870 240,744 22,655

DTW on
PLA

253 1,286 652 2,342 1,103 218,272 20,588

DTW on
PAA

197 1,103 601 2,262 812 216,196 18,685

DTW on
SAX

413 1,113 805 1,132 1,941 282,312 18,403

DTW on
APCA

2,865 19,503 3,793 2,563 4,864 749,003 9,282,532

DTW on

DSA

521 3,733 792 1,587 377 121,402 23,821

• Applying the dynamic time warping (DTW) to DSA sequences leads to
clustering and classification solutions that are more accurate than those ob-
tained by using DTW on the original time series. The advantage taken by
DSA is essentially due to the combination of a derivative-based feature gen-
eration with dimensionality reduction by segmentation. In this way, DTW
on DSA performs as good as or better than the major methods for time
series representation and dimensionality reduction (i.e., SAX, APCA, PLA,
SD, PAA, Chebyshev polynomials, etc.) and even than DDTW alone.

• Modeling a time series into a DSA sequence is reasonably fast if compared to
other methods of dimensionality reduction, which is supported by a compu-
tational complexity that is linear with the series length; most importantly,
the trade-off between accuracy and compactness of DSA sequences makes
performing similarity detection more advantageous.

6 Application: Profiling of electricity company customers

We briefly present here a real case study on electricity customer profiling. This
is part of our ongoing research on fraud detection in electricity customer data
in the context of a research project subsidized by the ENEL Italian electricity
power company.

27

6.1 Description

An electrical load profile represents an electricity consumption pattern for a
customer or a group of customers over a given time period. The use of load
profiles for electricity settlement has been identified in many countries as an
effective solution to avoid the prohibitive costs of putting interval metering
into every electricity customer.

We were granted to access customer data from ENEL over a two-month pe-
riod. This customer data consists of two parts. The main part corresponds
to load profiles which represent the amount of electricity consumption (Watt-
hour) over a quarter-hourly period. The second part is represented by various
meta-data associated to each customer load profile, which concerns settlement
information and loading conditions, such as type of customer (i.e., domestic,
commercial, and industrial customers), type of electronic meter, load power,
location (e.g., urban, rural locations).

We aimed to analyze the consumption behavior of customers according to
their load profiles and associated meta-data. It should be noted that meta-
data represents a potentially useful resource for the task in hand, although they
cannot directly used as a-priori knowledge on the customers’ behavior; indeed,
similar loading conditions may yield different load shapes of the customers.

6.2 Framework

We devised a simple framework to profile the customers’ behavior, which con-
sists of three main phases. In the first phase, an initial organization of the data
is obtained. Customer load profiles are modeled based on DSA and grouped
together using the agglomerative hierarchical clustering algorithm equipped
with the DTW distance. The whole dendrogram is built and finally cut at an
appropriate level corresponding to the best quality partition; in this case, the
quality of a partition is measured as the difference between the inter-cluster
distance (cluster separation) and the intra-cluster distance (cluster cohesive-
ness), i.e., the difference between the averages of the pair-wise distances of the
objects between and within the clusters, respectively.

Once an initial organization of the data has been obtained, the next phase
is to characterize the customer groups by two steps: i) computing a load
profile prototype for each cluster, and ii) learning a model on the meta-data
associated to the customers of each cluster. Finally, the third phase is to train a
K-NN classifier based on the initial clustering solution. This classifier and the
characterization of the customer groups establish a knowledge base which will
be used on new load profiles in order to support further analysis for anomaly
detection.

6.3 Evaluation

We conducted preliminary experiments on a data set of 2,864 customer load
profiles, associated with a set of meta-data represented by 5 types of electronic

28

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800

time (15 min period)

W
at

t/h

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800

time (15 min period)

W
at

t/h

Fig. 4. Example load profiles: domestic customer (on the left) and non-domestic
customer (on the right)

meter, 25 types of customer, about 20 different settlement information on load
power, 15 districts and 20 different locations.

The UPGMA algorithm was performed on the set of (preprocessed) load pro-
files and the resulting dendrogram was cut at the level corresponding to a
14-cluster partition. For each of the resulting clusters, a load profile prototype
was computed using our DSA-based cluster representative approach; Figure 4
shows two examples of load profile over a one-week period, which represent a
cluster of domestic customers and a cluster of non-domestic customers, respec-
tively. Moreover, a decision tree (C4.5) classifier was learned on the meta-data
associated to the customers within any given cluster. We observed in each clus-
ter that the electronic meter type, the customer type and the settlement load
power were selected in that order as test attributes in the highest levels of
the decision tree, whereas the leaf nodes mostly corresponded to districts and
locations.

The initial organization of the customer load profiles obtained via clustering
was used as training set for K-NN classification. We tested the K-NN classi-
fier by varying the neighborhood size K (up to 5) and the validation setting
(cross-validation, percentage split). We obtained 0.86 of accuracy and 0.77 of
F-measure averaged over K, with peaks of around 0.93 for both measures.
Overall, these preliminary experiments provided results which have been rec-
ognized as somehow interesting by practitioners from the ENEL electricity
power company and encouraged us to plug the methodology described in a
more complex context of fraud detection.

7 Conclusion

In this paper we proposed DSA, a representation model to support accurate
and fast similarity detection in time series. DSA is able to transform a time
series into a compact yet feature-rich sequence by combining the notions of
derivative estimation, segmentation and segment modeling. We experimentally
evaluated DSA in clustering and classification frameworks, and compared it to
the state-of-the-art similarity measures and dimensionality reduction methods.

29

Experiments conducted on various benchmark and real-world datasets have
shown that performing dynamic time warping on DSA sequences leads to a
good trade-off between effectiveness and efficiency in time series similarity
detection.

We plan to test the applicability of our approach to different application con-
texts, including biomedical domains. Further aspects we would like to study
concern the feasibility of extending DSA to multidimensional time series and
the relation between denoising and differentiation of time series in specific
domains from a more complex perspective of regularization functions.

Acknowledgments

We are grateful to the anonymous reviewers for their valuable suggestions
which helped to improve the quality of this paper.

References

[1] D. J. Berndt and J. Clifford. Using Dynamic Time Warping To Find Patterns in
Time Series. In Proc. AAAI Workshop on Knowledge Discovery in Databases,
pages 359–370, 1994.

[2] E. H. Bristol. Swinging door trending: adaptive trending recording. In Proc. ISA
National Conf., pages 749—753, 1990.

[3] C. S. Burrus, R. A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet
Transforms: A Primer. Prentice Hall, 1997.

[4] Y. Cai and R. Ng. Indexing Spatio-Temporal Trajectories with Chebyshev
Polynomials. In Proc. ACM SIGMOD Conf., pages 599–610, 2004.

[5] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases. ACM
Transactions on Database Systems, 27(2):188–228, 2002.

[6] K. Chan and A. Fu. Efficient Time Series Matching by Wavelets. In Proc. ICDE
Conf., pages 126–133, 1999.

[7] L. Chen and R. Ng. On The Marriage of Lp-norms and Edit Distance. In Proc.
VLDB Conf., pages 792–803, 2004.

[8] L. Chen, M. T. Özsu, and V. Oria. Robust and Fast Similarity Search for Moving
Object Trajectories. In Proc. ACM SIGMOD Conf., pages 491–502, 2005.

[9] E. Diday. The dynamic clusters method in nonhierarchical clustering. Journal
on Computer and Information Science, 2(1):61–88, 1973.

[10] S. Greco, M. Ruffolo, and A. Tagarelli. Effective and Efficient Similarity Search
in Time Series. In Proc. ACM CIKM Conf., pages 808–809, 2006.

30

[11] F. Gullo, G. Ponti, A. Tagarelli, G. Tradigo, and P. Veltri. MSPtool: A Versatile
Tool for Mass Spectrometry Data Preprocessing. In Proc. CBMS Conf., pages
209–214, 2008.

[12] S. A. Imtiaz, M. A. A. Shoukat Choudhury, and S. L. Shah. Building
Multivariate Model from Compressed Data. Industrial Engineering Chemistry
Research and Development, 46(2):481–491, 2007.

[13] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
1988.

[14] K. V. Kanth, D. Agrawal, and A. Singh. Dimensionality Reduction for
Similarity Searching in Dynamic Databases. In Proc. ACM SIGMOD Conf.,
pages 166–176, 1998.

[15] E. Keogh. Exact Indexing of Dynamic Time Warping. In Proc. VLDB Conf.,
pages 406–417, 2002.

[16] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge
and Information Systems, 3(3):263–286, 2001.

[17] E. Keogh and M. Pazzani. An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback. In
Proc. KDD Conf., pages 239–241, 1998.

[18] E. Keogh and M. Pazzani. Scaling up Dynamic Time Warping for Datamining
Applications. In Proc. ACM KDD Conf., pages 285–289, 2000.

[19] E. Keogh and M. Pazzani. Derivative Dynamic Time Warping. In Proc. SIAM
Int. Conf. on Data Mining, 2001.

[20] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The UCR Time
Series Classification/Clustering Homepage. http://www.cs.ucr.edu/∼eamonn/
time series data/.

[21] S. W. Kim, S. Park, and W. W. Chu. An Indexed-Based Approach for Similarity
Search Supporting Time Warping in Large Sequence Databases. In Proc. ICDE
Conf., pages 607–614, 2001.

[22] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently Supporting Ad Hoc
Queries in Large Datasets of Time Sequences. In Proc. ACM SIGMOD Conf.,
pages 289–300, 1997.

[23] T. Warren Liao. Clustering of Time Series Data—A Survey. Pattern
Recognition, 38:1857–1874, 2005.

[24] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A Symbolic Representation of Time
Series, with Implications for Streaming Algorithms. In Proc. ACM SIGMOD
Conf., pages 2–11, 2003.

[25] J. C. Mason and D. Handscomb. Chebyshev Polynomials. Chapman & Hall,
2003.

31

[26] T. M. Mitchell. Machine Learning. Computer Sciences Series, McGraw-Hill,
1997.

[27] J. S. Morris, K. R. Coombes, J. Koomen, K. A. Baggerly, and R. Kobayashi.
Feature extraction and quantification for mass spectrometry in biomedical
applications using the mean spectrum. Bioinformatics, 21(9):1764–1775, 2005.

[28] T. Pavlidis and S.L. Horowitz. Segmentation of Plane Curves. IEEE
Transactions on Computers, 23(8):860–870, 1974.

[29] E. F. Petricoin 3rd, A. M. Ardekani, B. A. Hitt, P. Levine, V. A. Fusaro, and
S. Steinberg. Use of proteomic patterns in serum to identify ovarian cancer.
Lancet, 9306(359):572–577, 2002.

[30] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Englewood
Cliffs, N. J., 1993.

[31] D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In
Proc. ACM SIGMOD Conf., pages 13–25, 1997.

[32] D. Rafiei and A. Mendelzon. Efficient Retrieval of Similar Time Sequences
Using DFT. In Proc. FODO Conf., 1998.

[33] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: Fast Similarity Search
under the Time Warping Distance. In Proc. ACM PODS Conf., pages 326–337,
2005.

[34] N. F. Thornhill, M. A. A. Shoukat Choudhury, and S. L. Shah. The impact
of compression on data-driven process analyses. Process Control, 14(4):389–398,
2004.

[35] A. N. Tikhonov and V. Y. Arsenin. Solution of Ill-posed Problems. Winston &
Sons, Washington D.C., 1977.

[36] C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.

[37] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering Similar
Multidimensional Trajectories. In Proc. ICDE Conf., pages 673–684, 2002.

[38] M. Wagner, D. Naik, and A. Pothen. Protocols for disease classification from
mass spectrometry data. Proteomics, 3(9):1692–1698, 2003.

[39] Y. Wu, D. Agrawal, and A. Abbadi. A Comparison of DFT and DWT Based
Similarity Search in Time-Series Databases. In Proc. ACM CIKM Conf., pages
488–495, 2000.

[40] F. Xiaodong, C. Changling, L. Changling, and S. Huihe. An Improved Process
Data Compression Algorithm. In Proc. Intelligent Control and Automation
Conf., pages 2190—2193, 2002.

[41] B. K. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary Lp
Norms. In Proc. VLDB Conf., pages 385–394, 2000.

[42] B. K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient Retrieval of Similar Time
Sequences Under Time Warping. In Proc. ICDE Conf., pages 201–208, 1998.

32

Appendix A: DDTW and DSA derivative estimation models

Approximating the derivative of a given series plays an essential role in the
DDTW method as well as in our DSA. We have described both the DDTW
and DSA derivative estimation models in Section 3.1 (Eq. 1 and Eq. 2). Here
we present some experimental results which show a comparison of these two
models concerning their i) performance in approximating real derivatives of
standard functions and ii) impact on the performance of DSA and DDTW.

Evaluation of the approximation of real derivative functions. Let
f(t) : ℜ → ℜ be a continuous function and f ′(t) : ℜ → ℜ be its first deriva-
tive. Let R = [t1, . . . , tn] ∈ ℜn denote a sequence of real values, over which
we suppose to define a sequence T and the corresponding sequence T ′ of
derivative values. Formally, let T = [x1, . . . , xn] and T ′ = [x′

1, . . . , x
′
n], such

that xh = f(th) and x′
h = f ′(th), ∀h ∈ [1..n]. Given T , we also denote with

T̂ ′ = [x̂′
1, . . . , x̂

′
n] the derivative version of T which is obtained by a certain

estimation model.

We compute the average approximation error of T̂ ′ (i.e., the estimated deriva-
tive sequence) with respect to T ′ (i.e., the actual derivative sequence) as fol-
lows:

E(T̂ ′, T ′) =
1

n

n
∑

h=1

|x̂′
h − x′

h|

|x′
h|

Figure 5 shows a comparison between the DDTW and DSA derivative es-
timation models on four example functions, namely a cubic polynomial, an
exponential function, a sine wave, and the Gaussian function. Table 7 reports
on the average approximation errors (in percentage) obtained by using the
two models on the selected functions. It can be noted that the DSA derivative
estimation model produces an average error of approximation which is always
lower than the error by the DDTW model.

Table 7
Average approximation errors on derivative estimation. Each function is valued on
101 points over the range [−5,+5].

function DDTW model DSA model

cubic 4.52% 1.12%

exponential 2.48% 0.26%

Gaussian 1.99% 0.08%

sine 11.48% 0.5%

Impact on the performance of DSA and DDTW. In the main exper-
imental sections we have presented clustering results obtained on the various
data sets by using DSA and DDTW. Since both methods are characterized

33

(a) cubic (b) exponential

(c) Gaussian (d) sin wave

Fig. 5. Approximation errors on derivative estimation: DDTW model vs. DSA model

by a distinct model of derivative estimation, it was also interesting to gain an
insight into the impact of this model on the performance of DSA and DDTW.
For this purpose, we exchanged the respective models of derivative estimation
in DSA and DDTW and then repeated the relative experimental evaluation
in clustering frameworks.

Table 8 shows the clustering results obtained by K-Means and UPGMA when
DDTW was equipped with the DSA derivative estimation model, and com-
pares these results with those previously reported in Table 2 and Table 3.
The modified version of DDTW led to better performances than the original
DDTW method in most cases, in particular Mixed-BagShapes (4% by UPGMA
and 2% by K-Means), Twopat (3% by UPGMA and 1% by K-Means), and
ControlChart (2%).

Analogously, Table 9 reports the clustering results when DSA was equipped
with the DDTW derivative estimation model, and compares them with the
original performances of DSA. Again, the DSA derivative estimation model
prevailed against the DDTW one in most cases—OvarianCancer (5% by UP-
GMA and 4% by K-Means), CBF and GunX (4% by K-Means and 2% by K-
Means), Mixed-BagShapes (3% by K-Means and 2% by UPGMA), and Twopat

(2%).

34

Table 8
DDTW-based clustering results by varying the derivative estimation model

clustering derivative GunX Tracedata ControlChart CBF Twopat Mixed-Bag Ovarian

algorithm estimation Shapes Cancer

K-Means DSA (Eq. 2) .90 1 .91 .95 .96 .78 .63

DDTW (Eq. 1) .89 1 .89 .96 .95 .76 .62

UPGMA DSA (Eq. 2) .72 .78 .56 .48 .67 .45 .64

DDTW (Eq. 1) .72 .76 .54 .49 .64 .41 .63

Table 9
DSA-based clustering results by varying the derivative estimation model

clustering derivative GunX Tracedata ControlChart CBF Twopat Mixed-Bag Ovarian

algorithm estimation Shapes Cancer

K-Means DSA (Eq. 2) .92 1 .90 .96 .97 .78 .75

DDTW (Eq. 1) .90 1 .91 .92 .95 .75 .71

UPGMA DSA (Eq. 2) .73 .82 .54 .60 .67 .51 .73

DDTW (Eq. 1) .69 .80 .56 .62 .65 .49 .68

The above results led us to conclude that while the DSA derivative estimation
model can enhance the DDTW method in practice; conversely, the DDTW
derivative estimation model does not bring any beneficial effect to (in general,
it may negatively affect) the performance of the DSA method.

Appendix B: Impact of preprocessing on similarity detection

As we have discussed in Section 4.3, smoothing was performed prior to the
mining tasks in order to handle noise in the raw data, regardless of the par-
ticular representation method or distance measure used. Smoothing turned
out to be useful for all the methods on every dataset—except for the Ovari-

anCancer case. The intuition that skipping the smoothing stage would cause
a decrease in performing similarity detection was supported by experimental
evidence when we tried to directly classify the original (i.e., non-smoothed)
data. Indeed, as shown for some prominent methods in Table 10, the decrease
would be significantly high in most datasets, with peaks of around 50% on
ControlChart, CBF, and Twopat.

Another important remark is that the relative performances of most of the
various methods (including our DSA) do not vary substantially whether or
not smoothing is performed. This indicates that the representation model and
similarity/distance measure play a more important role than the preprocessing
operations in determining the best approach(es) to similarity detection in time
series.

A special remark should also be made on the OvarianCancer dataset which
is huge-dimensional and largely affected by noisy factors, like most of mass
spectra datasets (cf. Section 5.1). On this dataset, DSA performed far better

35

Table 10
K-Means clustering performance reduction in case of no smoothing

GunX Trace

data

Control

Chart

CBF Twopat Mixed-

BagSh.

FTW -21% -16% -41% -29% -23% –

DTW -16% -2% -46% -48% -53% -4%

DDTW -19% – -47% -57% -50% –

DWT -6% -17% -37% -35% -15% –

SD -5% -19% -45% -46% -47% –

PLA -14% -1% -47% -46% -35% -3%

PAA -7% -2% -46% -46% -30% -5%

SAX -22% -2% -43% -47% -25% -4%

APCA -18% -5% -48% -42% -46% -4%

DSA -19% – -48% -54% -51% –

than DDTW, precisely +13% by K-Means, +10% by UPGMA and 5% by
K-NN, in terms of F-measure (cf. Tables 2–4).

Table 11 summarizes the best preprocessing setups for DSA and the other
methods on the various datasets, using the K-Means algorithm; we left the
best setups for UPGMA and K-NN out of the presentation, since they re-
sulted fairly similar to those obtained by K-Means in most datasets. In the
table, term MA (resp., EXP) stands for moving average (resp., exponential
smoothing) and is followed by the value set for δ (resp., ω) and the number
of iterations.

Appendix C: Dynamic kernel clustering

We briefly present a preliminary investigation on the use of a more general
notion of cluster prototype in time series clustering. For this purpose, we con-
sidered a dynamic kernel clustering algorithm. Dynamic kernel clustering [9]
falls into the family of partitional clustering, and represents a generalization
of centroid-based and medoid-based partitional clustering algorithms. Indeed,
a major difference between dynamic kernel clustering and more popular al-
gorithms (such as, e.g., K-Means and K-Medoids) consists in the notion of
cluster prototype, which can be a centroid, a medoid, or even a whole set of
points or objects. To conduct an experimental evaluation of dynamic kernel
clustering in our context, we chose the following notion of cluster prototype
based on a set of medoids: given any cluster C in the current partition, the

36

Table 11
Summary of the preprocessing setups providing the best clustering results by K-
Means

GunX Trace

data

Control

Chart

CBF Twopat Mixed-

BagSh.

Ovarian

Cancer

LCSS MA δ=9
it=3

MA δ=5
it=3

EXP ω=0.3
it=1

No smooth. EXP ω=0.1
it=4

No smooth. No smooth.

EDR No smooth. EXP ω=0.3
it=5

EXP ω=0.7
it=1

EXP ω=0.7
it=1

No smooth. EXP ω=0.1
it=3

No smooth.

ERP EXP ω=0.1
it=5

EXP ω=0.1
it=1

EXP ω=0.7
it=3

EXP ω=0.1
it=5

MA δ=5
it=3

EXP ω=0.5
it=5

No smooth.

FTW EXP ω=0.3
it=3

No smooth. EXP ω=0.7
it=3

EXP ω=0.1
it=3

EXP ω=0.3
it=3

EXP ω=0.5
it=2

No smooth.

DTW EXP ω=0.1
it=3

No smooth. EXP ω=0.9
it=1

No smooth. EXP ω=0.9
it=5

EXP ω=0.1
it=5

No smooth.

DDTW EXP ω=0.9
it=3

EXP ω=0.1
it=1

EXP ω=0.3
it=5

EXP ω=0.5
it=5

EXP ω=0.1
it=1

EXP ω=0.1
it=1

No smooth.

DFT EXP ω=0.2
it=4

EXP ω=0.1
it=3

MA δ=9
it=2

EXP ω=0.1
it=1

EXP ω=0.2
it=4

MA δ=5
it=1

No smooth.

DWT EXP ω=0.1
it=2

EXP ω=0.6
it=2

EXP ω=0.3
it=1

EXP ω=0.1
it=3

EXP ω=0.6
it=3

EXP ω=0.1
it=2

No smooth.

CHEBY EXP ω=0.1
it=3

EXP ω=0.9
it=5

EXP ω=0.7
it=5

EXP ω=0.5
it=1

MA δ=9
it=3

EXP ω=0.9
it=3

No smooth.

SD EXP ω=0.7
it=5

MA δ=9
it=5

EXP ω=0.6
it=4

EXP ω=0.3
it=4

EXP ω=0.3
it=5

EXP ω=0.9
it=4

No smooth.

PLA EXP ω=0.1
it=1

MA δ=5
it=1

EXP ω=0.5
it=1

EXP ω=0.5
it=1

EXP ω=0.3
it=1

EXP ω=0.4
it=1

No smooth.

PAA EXP ω=0.1
it=1

EXP ω=0.5
it=1

EXP ω=0.7
it=3

EXP ω=0.7
it=1

EXP ω=0.1
it=1

EXP ω=0.1
it=1

No smooth.

SAX EXP ω=0.3
it=3

EXP ω=1
it=1

EXP ω=0.4
it=3

EXP ω=0.5
it=1

EXP ω=0.1
it=1

EXP ω=0.5
it=3

No smooth.

APCA EXP ω=0.1
it=3

EXP ω=0.7
it=5

EXP ω=0.7
it=3

No smooth. EXP ω=0.5
it=1

EXP ω=0.1
it=3

No smooth.

DSA EXP ω=0.9
it=3

EXP ω=0.1
it=1

EXP ω=0.2
it=2

EXP ω=0.4
it=3

EXP ω=0.2
it=2

EXP ω=0.1
it=2

No smooth.

prototype (or kernel) of C is the set of the H objects in C such that the sum
of the distances of all the objects in C to such H objects is minimized.

Table 12 summarizes the (average) F-measure scores obtained by dynamic
kernel clustering and compares them to the corresponding results obtained
by K-Means on the various datasets. For each dataset and method, the table
contains three values separated by the symbol ‘/’:

37

• the first value refers to dynamic kernel clustering with H = 2;

• the second value refers to dynamic kernel clustering with H =
√

|C|, for
each cluster C;

• the third value refers to K-Means (which is extracted from Table 2).

In Table 12 we can observe that there were no significant differences between
dynamic kernel with H = 2 and K-Means. In most cases, the obtained F-
measure scores were identical or very close (±1% on average) to those obtained
by K-Means; in particular, as far as our DSA, the maximum improvement of
quality with respect to K-Means occurred in Mixed-BagShapes, which was
about 2%.

Setting the kernel with H = ⌈
√

|C|⌉, for each cluster C, led to further im-
provements of the clustering quality with respect to K-Means in most cases.
On average, the observed improvements were about 2-3%, with maximum
increases of the quality up to 4-5% in Mixed-BagShapes and OvarianCancer.
Indeed, as we expected, the dynamic kernel clustering revealed to be par-
ticularly advantageous for those datasets where the separation between the
classes is less sharp (e.g., Mixed-BagShapes and OvarianCancer). In this case,
using a set of medoids as cluster prototype was effective to better represent
the clusters and improve the clustering quality.

However, the improvements in terms of clustering quality provided by the dy-
namic kernel algorithm appeared to be not enough large to justify a runtime
behavior that is much more costly than K-Means. Moreover, the higher com-
putational complexity of the dynamic kernel algorithm represents an efficiency
issue that may limit the applicability to large datasets and real use cases.

38

Table 12
Summary of average quality results (F-measure) by dynamic kernel clustering and
comparison with K -Means clustering results

GunX Trace Control CBF Twopat Mixed Ovarian

data Chart BagSh. Cancer

LCSS .58/.62/.59 .32/.32/.30 .50/.52/.50 .79/.79./.79 .37/.37/.36 .33/.35/.32 .35/.39/.34

EDR .53/.53/.54 .72/.74/.74 .90/.91/.88 .86/.86/.86 .44/.44/.42 .69/.73/.70 .63/.63/.58

ERP .73/.73/.72 .64/.65/.62 .77/.77/.76 .59/.59/.58 .38/.41/.39 .49/.53/.48 .34/.37/.34

DTW .67/.68/.66 .77/.81/.78 .86/.86/.87 .89/.90/.89 .95/.95/.95 .78/.80/.77 .58/.63/.60

DDTW .90/.91/.89 .99/1/1 .89/.89/.89 .96/.97/.97 .94/.96/.95 .78/.78/.76 .62/.66/.62

FTW .75/.74/.74 .91/.92/.90 .80/.80/.81 .67/.67/.67 .57/.56/.55 .75/.75/.73 .57/.62/.58

L2 on
DFT

.65/.64/.63 .78/.78/.77 .78/.80/.78 .66/.69/.67 .42/.43/.39 .70/.71/.70 .41/.41/.36

L2 on
DWT

.59/.60/.61 .69/.69/.67 .76/.79/.76 .76/.76/.74 .37/.37/.36 .70/.71/.68 .40/.40/.36

L2 on
CHEBY

.56/.58/.57 .72/.74/.72 .70/.72/.70 .68/.70/.69 .40/.42/.38 .73/.75/.72 .36/.38/.34

DTW
on SD

.68/.69/.67 .95/.96/.95 .85/.87/.85 .89/.89/.87 .87/.91/.89 .77/.79/.76 .69/.71/.69

DTW
on PLA

.74/.74/.73 .78/.79/.77 .89/.91/.89 .88/.87/.87 .75/.76/.75 .77/.77/.74 .62/.65/.60

DTW
on PAA

.69/.69/.68 .80/.80/.78 .87/.88/.87 .88/.89/.86 .72/.75/.73 .76/.78/.75 .60/.61/.59

DTW
on SAX

.73/.75/.73 .76/.77/.77 .83/.84/.83 .87/.87/.87 .70/.70/.69 .73/.74/.71 .61/.61/.58

DTW
on
APCA

.76/.78/.77 .80/.80/.81 .88/.88/.89 .84/.84/.83 .90/.92/.91 .78/.79/.74 .57/.59/.55

DTW

on

DSA

.91/.94/.92 1/1/1 .89/.91/.90 .95/.95/.96 .97/.98/.97 .80/.83/.78 .76/.79/.75

39

