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Abstract. In this paper we present Hermes, a novel tool for natural language
processing. By employing an efficient and extendable distributed-message archi-
tecture, Hermes is able to fullfil the requirements of large-scale processing, com-
pleteness, and versatility that are currently missed by existing NLP tools.

1 Introduction

Text is everywhere. It fills up our social feeds, clutters our inboxes, and commands
our attention like nothing else. Unstructured content, which is almost always text or at
least has a text component, makes up a vast majority of the data we encounter. Natural
Language Processing (NLP) is nowadays one of the predominant technologies to handle
and manipulate unstructured text. NLP tools can tackle disparate tasks, from marking
up syntactic and semantic elements to language modeling or sentiment analysis.

The open-source world provides several high-quality NLP tools and libraries [2–
5, 9]. These solutions however are typically stand-alone components aimed at solving
specific micro-tasks, rather than complete systems capable of taking care of the whole
process of extracting useful content from text data and making it available to the user
via proper exploration tools. Moreover, most of them are designed to be executed on a
single machine and cannot handle distributed large-scale data processing.

In this paper we present Hermes,1 a novel tool for NLP that advances existing
work thanks to three main features. (i) Capability of large-scale processing: Our tool is
able to work in a distributed environment, deal with huge amounts of text and arbitrar-
ily large resources usually required by NLP tasks, and satisfy both real-time and batch
demands; (ii) Completeness: We design an integrated, self-contained toolkit, which
handles all phases of a typical NLP text-processing application, from fetching of differ-
ent data sources to producing proper annotations, storing and indexing the content, and
making it available for smart exploration and search; (iii) Versatility: While being com-
plete, the tool is extremely flexible, being designed as a set of independent components
that are fully decoupled from each other and can easily be replaced or extended.

To accomplish the above features, we design an efficient and extendable architec-
ture, consisting of independent modules that interact asynchronously through a message-
passing communication infrastructure. Messages are exchanged via distributed queues
to handle arbitrarily large message-exchanging rates without compromising efficiency.
The persistent storage system is also distributed, for similar reasons of scalability in
managing large amounts of data and making them available to the end user.

1 In Greek mythology Hermes is the messenger of the gods. This is an allusion to our distributed-messaging architecture.
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2 Framework
The architecture of Hermes is based on using persisted message queues to decouple
the actors that produce information from those responsible for storing or analyzing data.
This choice is aimed to achieve an efficient and highly modular architecture, allowing
easy replacement of modules and simplifying partial replays in case of errors.
Queues. Message queues are implemented as topics on Kafka2 (chosen for easy hor-
izontal scalability and minimal setup). There are at present three queues: news, clean-
news and tagged-news. Producers push news in a fairly raw form on the news queue,
leaving elaborate processing to dedicated workers down the line. Whilst all present
components are written in Scala, we leave the road open for modules written in dif-
ferent languages by choosing a very simple format of interchange: all messages pushed
and pulled from the queues are simply encoded as JSON strings.

Fig. 1: Depiction of the architecture of Hermes

The main modules of the system are depicted in Figure 1 and described below.
Producers retrieve the text sources to be analyzed, and feed them into the system.
Hermes currently implements producers for the following sources. (i) Twitter: a long-
running producer listening to a Twitter stream and annotating the relative tweets. (ii)
News articles: this is a generic article fetcher that downloads news from the web follow-
ing a list of input RSS feeds and can be scheduled periodically. (iii) Documents: this
producer fetches a generic collection of documents from some known local or public
directory. It can handle various formats such as Word and PDF. (iv) Mail messages: this
producer listens to a given email account, and annotates the received email messages.
We use Apache Camel’s mail component3 to process email messages. Each producer
performs a minimal pre-processing and pushes the fetched information on the news
queue. In the following we call news a generic information item pushed to this queue.
Cleaner. This module consumes the raw news pushed on the news queue, performs the
processing needed to extract the pure textual content, and then pushes it onto the clean-
news queue for further analysis. The module is a fork of Goose,4 an article extractor
written in Scala.

2
kafka.apache.org

3
http://camel.apache.org/mail.html

4
https://github.com/GravityLabs/goose/wiki
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NLP. This module consists of a client and a service. The client listens for incoming
news on the clean-news queue, asks for NLP annotations to the service, and places the
result on the tagged-news queue. The service is an Akka5 application providing APIs to
many NLP tasks, from the simplest such as tokenization or sentence splitting, to com-
plex operations such as parsing HTML or Creole (the markup language of Wikipedia),
entity linking, topic detection, clustering of related news and sentiment analysis. All
APIs can be consumed by Akka applications, using remote actors, or via HTTP by
other applications. The algorithms we designed for NLP tasks are detailed in Section 3.
Persister and Indexer. In order to retrieve articles, we need two pieces of infrastruc-
ture: an index service and a key-value store. For horizontal scalability we respectively
choose ElasticSearch and HBase.6 Two long-running Akka applications listen to the
clean-news and tagged-news queues, and respectively index and persist (on a table on
HBase) news as soon as they arrive, in their raw or decorated form.
Frontend. The frontend consists of a JavaScript single-page client (written in Cof-
feeScript using Facebook React) that interacts with a Play application exposing the
content of news. The client home page shows annotated news ranked by a relevance
function that combines various metrics (see Section 3), but users can also search (either
in natural language or using smarter syntax) for news related to specific information
needs. The Play application retrieves news from the ElasticSearch index and enriches
them with content from the persisted key-value store. It is also connected to the tagged-
news queue to be able to stream incoming news to a client using WebSockets.
Monitoring and statistics. A few long-running jobs using Spark Streaming7 connect
to the queues and keep updated statistics on the queue sizes (for monitoring purposes)
and the hottest topics and news per author, journal, or topic. Statistics are persisted for
further analysis and can be displayed in the front end for summary purposes.

3 Algorithms
In this section we describe the algorithms implemented by the Hermes NLP module.
Entity Linking. The core NLP task in our Hermes is Entity Linking, which consists in
automatically extracting relevant entities from an unstructured document.

Our entity-linking algorithm implements the TagMe approach [3]. TagMe employs
Wikipedia as a knowledge base. Each Wikipedia article corresponds to an entity, and
the anchor texts of the hyperlinks pointing to that article are the mentions of that entity.
Given an input text, we first generate all the n-grams occurring in the text and look them
up in a table mapping Wikipedia anchortexts to their possible entities. The n-grams
mapping to existing anchortexts are retained as mentions. Next, the algorithm solves
the disambiguation step for mentions with multiple candidate entities, by computing
a disambiguation score for each possible mention-sense mapping and then associating
each mention with the sense yielding maximum score. The scoring function attempts to
maximize the collective agreement between each candidate sense of a mention and all
the other mentions in the text. The relatedness between two senses is computed as Milne
and Witten’s measure[7], which depends on the number of common in-neighbors.

5
akka.io

6
https://www.elastic.co/, https://hbase.apache.org/

7
http://spark.apache.org/streaming/
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Relevance of an article to a target. We use entities extracted from an article to evaluate
the relevance of the article to a given target (represented as a Wikipedia entity too).
To this end, we compute semantic relatedness between each entity in the text and the
target, then we assign the text a relevance score given by the weighted average of the
relatedness of all entities. We use a p-average, with p = 1.8, so that the contribution of
relevant topics gives a boost, but non-relevant topics do not decrease the score much.
Related news. Every few hours (time window customizable), a clustering algorithm
is run on the recent news to determine groups of related news. We use the K-means
implementation provided by Apache Spark MLlib.8 The feature vector of an article is
given by the first ten entities extracted, weighted by their disambiguation scores.
Document categorization. We categorize news based on the IPTC-SRS ontology.9

Given a document, we compute the semantic relatedness between each extracted entity
and each category (by mapping each category onto a set of editorially chosen Wikipedia
entities that best represent them), and assign each entity the category achieving highest
similarity. The ultimate category assigned to the article is chosen by majority voting.
Document summarization. Following [6], we build a graph of sentences, where edges
between two sentences are weighted by the number of co-occurring words, and rank
sentences by Pagerank centrality. The highest ranked sentence is elected as a summary.
Sentiment Analysis. We follow the general idea [1, 8] to have a list of positive and
negative words (typically adjectives), and then average the score of the words in the
text. The novelty here is that the list of positive and negative words is not fixed. Instead,
a list of adjectives is extracted from Wiktionary, and a graph is formed among them,
where edges are given by synonyms. Two opposite adjectives are then chosen as polar
forms –say good and bad– and for each other adjective a measure of positivity is derived
from the distance of an adjective from the two polars.
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