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Abstract The Projective Clustering Ensemble (PCE) problem is a recent
clustering advance aimed at combining the two powerful tools of clustering
ensembles and projective clustering. PCE has been formalized as either a two-
objective or a single-objective optimization problem. Two-objective PCE has
been recognized as more accurate than its single-objective counterpart, al-
though it is unable to jointly handle the object-based and feature-based cluster
representations.

In this paper, we push forward the current PCE research, aiming to over-
come the limitations of all existing PCE formulations. We propose a novel
single-objective PCE formulation so that (i) the object-based and feature-
based cluster representations are jointly considered, and (ii) the resulting op-
timization strategy follows a metacluster-based methodology borrowed from
traditional clustering ensembles. As a result, the proposed formulation features
best suitability to the PCE problem, thus guaranteeing improved effectiveness.
Experiments on benchmark datasets have shown how the proposed approach
achieves better average accuracy than all existing PCE methods, as well as ef-
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ficiency superior to the most accurate existing metacluster-based PCE method
on larger datasets.

Keywords Clustering · Clustering Ensembles · Projective Clustering ·
Subspace Clustering · Dimensionality reduction · Optimization

1 Introduction

After more than four decades, a large number of algorithms has been developed
for data clustering, focusing on different aspects such as data types, algorithmic
features, and application targets [14]. In the last few years, there has been an
increasing interest in developing advanced tools for data clustering. In this
respect, projective clustering and clustering ensembles represent two of the
most important directions of research.

The goal of projective clustering (or projected clustering) [32,45,1,13,29]
is to discover projective clusters, i.e., subsets of the input data having different
(possibly overlapping) subsets of features (subspaces) associated with them.
Projective clustering is closely related to the subspace clustering problem [4,
34,26,30], as both detect clusters that exist in different subspaces; however,
the goal of subspace clustering is to search for all clusters in all meaningful
subspaces, whereas projective clustering methods output a single partition of
the input dataset. Projective clustering aims to solve issues that typically arise
in high-dimensional data, such as sparsity and concentration of distances [6,21,
40]. Existing projective clustering methods [26,30] can be classified into four
main approaches: bottom-up (it finds subspaces recognized as “interesting”
and assigns each data object to the most similar subspace [29,37]), top-down
(it finds the subspaces starting from the full feature space [32,28,43,1,3,44,42,
44,7]), soft (it produces soft data clusterings [29,10] and/or clusterings hav-
ing differently weighted feature-to-cluster assignments [13,10]), and hybrid (it
combines elements of both projective and subspace clustering approaches [35,
2,25]).

The problem of clustering ensembles [38,41,12,15], also known as consen-
sus clustering [33] or aggregation clustering [16], is stated as follows: given a set
of clustering solutions, or ensemble, to derive a consensus clustering that prop-
erly summarizes the solutions in the ensemble. The input ensemble is typically
generated by varying one or more aspects of the clustering process, such as
the clustering algorithm, the parameter setting, and the number of features,
objects or clusters. The majority of the existing clustering ensemble meth-
ods follow the instance-based approach or the metacluster-based approach, or
a combination of both (i.e., hybrid). In particular, the metacluster-based ap-
proach lies in the principle “to cluster clusters” [9,38,8], whereby a new dataset
is inferred whose objects are the clusters that belong to the clustering solu-
tions in the ensemble. This dataset is then partitioned in order to produce a
set of metaclusters (i.e., sets of clusters), and the consensus clustering is finally
computed by assigning each data object to the metacluster that optimizes a
specific criterion (e.g., majority voting).
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Fig. 1 Illustration of a projective clustering ensemble and derived consensus clustering.
Each gradient refers to the cluster memberships over all objects. Colors denote different
feature subspaces associated with the projective clusters. (The color version of this figure is
available only in the electronic edition)

Projective clustering and clustering ensembles have been recently treated
in a unified framework [17,20]. The underlying motivation of that study is that
many real-world application problems are high dimensional and lack a-priori
knowledge. Examples are: clustering of multi-view data, privacy preserving
clustering, news or document retrieval based on pre-defined categorizations,
and distributed clustering of high-dimensional data. To address both issues
simultaneously, the problem of projective clustering ensembles (PCE) is hence
formalized, whose goal is to compute a projective consensus clustering from an
ensemble of projective clustering solutions. Intuitively, each projective cluster
is characterized by a distribution of memberships of the objects as well as a dis-
tribution over the features that belong to the subspace of that cluster. Figure 1
illustrates a projective clustering ensemble with three projective clustering so-
lutions, which are obtained according to different views over the same dataset.
A projective cluster is graphically represented as a rectangle filled with a color
gradient, where higher intensities correspond to larger membership values of
objects to the cluster. Clusters of the same clustering may overlap with their
gradient (i.e., objects can have multiple assignments with different degrees of
membership), and colors change to denote that different groupings of objects
are associated with different feature subspaces. In the figure, a projective con-
sensus clustering is derived by suitably “aggregating” the ensemble members.
In particular, the first projective consensus cluster is derived by summarizing
C ′1, C ′′2 , and C ′′′2 , the second is derived from C ′2, C ′′3 , and C ′′′3 , and the third
is derived from C ′4, C ′′1 , and C ′′′1 . Note that the resulting color in each pro-
jective consensus cluster resembles a merge of colors in the original projective
clusters, which means that a projective consensus cluster is associated with a
subset of features shared by the objects in the original clusters.
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Two formulations of PCE have been proposed in [20], namely two-objective
PCE and single-objective PCE. The former consists in the optimization of two
objective functions, which separately consider the data object clustering and
the feature-to-cluster assignment. The latter embeds in one objective function
the object-based and feature-based representations of the various clusters. A
heuristic developed for two-objective PCE, called MOEA-PCE, has shown
to be particularly accurate, although it has drawbacks concerning efficiency,
parameter setting, and interpretability of results. In contrast, the heuristic de-
veloped for single-objective PCE, called EM-PCE, has shown better efficiency
while being outperformed by two-objective PCE in terms of effectiveness. An
attempt to improve the accuracy of single-objective PCE has been proposed
in [18]; the approach is based on a corrective term designed to achieve a bet-
ter balance between the object-to-cluster assignment and the feature-to-cluster
assignment when measuring the error of a candidate projective consensus clus-
tering. Despite the achieved improvement in accuracy, the heuristics in [18] are
still outperformed by two-objective PCE, thus suggesting that the path indi-
cated by the two-objective formulation is the one to be followed. Nevertheless,
the two-objective PCE suffers from a major weakness: it does not take into
consideration the interrelation between the object-based and the feature-based
cluster representations. In a nutshell, according to the early two-objective PCE
formulation, consensus clusterings whose clusters have both object-based and
feature-based representations that well comply with the input ensemble but
that are not correctly “coupled” with one another might mistakenly be recog-
nized as ideal. This fact can lead to projective consensus clustering solutions
that contain conceptual flaws in their cluster composition. By preventing this
scenario, one can improve the two-objective PCE formulation and correspond-
ing methods.

Contributions. In this paper, we pursue a new approach to the study of
PCE, which is motivated by our insights on the theoretical foundations of
two-objective and single-objective PCE formulations. Our aim is to provide a
stronger tie between the PCE and the traditional clustering ensemble problem.
By investigating the opportunity of adapting existing approaches for clustering
ensembles to the PCE problem, we propose a new single-objective formulation
of PCE which resembles a metacluster-based clustering ensemble approach
and extends our first attempt in this regard [19]. The key idea underlying our
proposal is to define a function that measures the distance of a projective clus-
tering solution from a given ensemble, in such a way that the object-based and
the feature-based cluster representations are considered as a whole. We show
that the new PCE formulation is theoretically sound and has advantages over
the ones proposed previously [20,19]. It enables the development of heuristic
algorithms that can exploit the results obtained by the majority of existing
clustering ensemble methods. Specifically, we define a heuristic that follows
a metacluster-based approach, called Enhanced MetaCluster-Based Projective
Clustering Ensembles (E-CB-PCE), which computes the consensus cluster-
ing starting from a partition (i.e., metaclustering) inferred from the set of
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clusters belonging to the ensemble components. Compared to the previously
developed metacluster-based heuristics in [19], E-CB-PCE involves more con-
straints aimed to ensure a total coverage of the ensemble components in terms
of clusters selected for deriving the projective consensus clustering solution.
Experimental results have revealed that the proposed E-CB-PCE is on aver-
age more accurate than all previous PCE methods, according to each of the
selected assessment criteria. Moreover, E-CB-PCE has shown to improve the
efficiency of its most direct competitor CB-PCE [19] on larger datasets up to
two orders of magnitude.

Organization of the paper. The remainder of this paper is organized as
follows. Section 2 provides the background on the PCE problem and its early
single-objective and two-objective formulations. Section 3 focuses on the pro-
posed metacluster-based PCE approach. Section 4 presents the two developed
heuristics for the metacluster-based PCE along with an analysis of their com-
putational complexity. Section 5 describes the experimental evaluation and
presents the results, and Section 6 concludes the paper. Finally, we give the
proofs of all the theoretical results of the paper in the Appendix.

2 Early Projective Clustering Ensembles (PCE)

Let D be a set of data objects, where each o ∈ D is an |F|-dimensional point
defined over a feature space F .1 A projective cluster C defined over D is a pair
〈ΓC ,∆C〉, where

– ΓC denotes the object-based representation of C. It is a |D|-dimensional
real-valued vector whose components ΓC,o ∈ [0, 1], ∀o ∈ D, represent the
object-to-cluster assignment of o to C, i.e., the probability Pr(o|C) that
the object o belongs to C;

– ∆C denotes the feature-based representation of C. It is an |F|-dimensional
real-valued vector whose components ∆C,f ∈ [0, 1], ∀f ∈ F , represent the
feature-to-cluster assignments of the f -th feature to C, i.e., the probability
Pr(f |C) that the feature f is informative for cluster C (f belongs to the
subspace associated with C).

The object-based (ΓC) and the feature-based (∆C) representations of a pro-
jective cluster C implicitly define the projective cluster representation matrix
(for short, projective matrix ) XC of C. XC is a |D| × |F| matrix that stores,
∀o ∈ D, f ∈ F , the probability of the intersection of the events “object o
belongs to C” and “feature f belongs to the subspace associated with C”. Un-
der the assumption of independence between the two events, such a proba-
bility is equal to Pr(C|o) = ΓC,o joint with Pr(f |C) = ∆C,f . Hence, given
D = {o1, . . . ,o|D|} and F = {1, . . . , |F|}, the matrix XC can formally be

1 Vectorial notation here denotes row vectors.



6 Francesco Gullo et al.

defined as:

XC = ΓT
C ∆C =

 ΓC,o1
×∆C,1 . . . ΓC,o1

×∆C,|F|
...

...
ΓC,o|D| ×∆C,1 . . . ΓC,o|D| ×∆C,|F|

 . (1)

A couple of interesting results put in relation the projective matrix and the
object/feature-based representation of a projective cluster. Such results are
formalized in the following two propositions. We will exploit them in the re-
mainder of the paper.

Proposition 1 For any two projective clusters C, C ′ it holds that XC = XC′

if and only if ΓC = ΓC′ and ∆C = ∆C′ . ut

Proposition 2 For any projective cluster C, its object-based representa-
tion ΓC = (ΓC,o1 , . . . , ΓC,o|D|) and feature-based representation ∆C =
(∆C,1, . . . ,∆C,|F|) can uniquely be derived from its projective matrix XC as
follows:

ΓC,oi =

|F|∑
j=1

XC(i, j), ∆C,j =
XC(1, j)

ΓC,o1

= · · · = XC(|D|, j)
ΓC,oD

,

where XC(i, j) denotes the element (i, j) of the matrix XC . ut

A projective clustering solution, denoted by C, is defined as a set of projective
clusters that satisfy the following conditions:

∑
C∈C

ΓC,o = 1, ∀o ∈ D, and
∑
f∈F

∆C,f = 1, ∀C ∈ C. (2)

The semantics of any projective clustering C is that for each projective cluster
C ∈ C, the objects belonging to C are close to each other if (and only if) they
are projected onto the subspace associated with C.

A projective ensemble E is defined as a set of projective clustering solutions.
No information about the ensemble generation strategy (algorithms and/or
setups), nor original feature values of the objects within D are provided along
with E . Moreover, each projective clustering solution in E may contain in
general a different number of clusters.

The goal of PCE is to derive a projective consensus clustering that prop-
erly summarizes the projective clustering solutions within the input projective
ensemble.
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2.1 Single-objective PCE

A first PCE formulation proposed in [20] is based on a single-objective func-
tion:

C∗ = arg min
C

∑
C∈C

∑
o∈D

ΓαC,o XC,o, (3)

where

XC,o =
∑
f∈F

(∆C,f − Λo,f )
2
, (4)

Λo,f =
1

|E|
∑
Ĉ∈E

∑
Ĉ∈Ĉ

ΓĈ,o ∆Ĉ,f , (5)

and α > 1 is a positive integer that ensures non-linearity of the objective
function w.r.t. ΓC,o. To solve the optimization problem based on the above
function, the EM-based Projective Clustering Ensembles (EM-PCE) heuristic
is defined. EM-PCE iteratively looks for the optimal values of ΓC,o (resp.
∆C,f ) while keeping ∆C,f (resp. ΓC,o) fixed, until convergence.

Weaknesses of single-objective PCE. The objective function at the basis
of the problem in (3) does not allow for a perfect balance between object- and
feature-to-cluster assignments when measuring the error of a candidate pro-
jective consensus clustering solution. This weakness is formally shown in [18]
and avoided by adjusting (3) with a corrective term. The final form of the
problem based on the corrected objective function is the following:

C∗ = arg min
C

∑
C∈C

∑
o∈D

ΓαC,o

(
1

2|E|
XC,o +

1

|D| − 1
X ′C,o

)
, (6)

where

X ′C,o =
∑
o′ 6=o

1− ΓC,o′

|E|
∑
Ĉ∈E

∑
Ĉ∈Ĉ

ΓĈ,o ΓĈ,o′

 .

The above optimization problem is tackled in [18] by proposing two different
heuristics. The first one, called E-EM-PCE, follows the same scheme as the
EM-PCE algorithm for the early single-objective PCE formulation. The second
heuristic, called E-2S-PCE, consists of two sequential steps that handle the
object-to-cluster and the feature-to-cluster assignments separately.

2.2 Two-objective PCE

PCE is also formulated in [20] as a two-objective optimization problem, whose
functions take into account the object-based (function Ψo) and the feature-
based (function Ψf ) cluster representations of a given projective ensemble E ,
respectively:

C∗ = arg min
C
{Ψo(C, E), Ψf (C, E)} , (7)
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where the arg min function is over all possible projective clustering solutions
C that satisfy the conditions reported in (2) (this makes the searching space
in principle infinite), and

Ψo(C, E) =
∑
Ĉ∈E

ψo(C, Ĉ), Ψf (C, E) =
∑
Ĉ∈E

ψf (C, Ĉ). (8)

Functions ψo and ψf are defined as ψo(C′, C′′) = 1
2 (ψo(C′, C′′) + ψo(C′′, C′))

and ψf (C′, C′′) = 1
2 (ψf (C′, C′′) + ψf (C′′, C′)), respectively, where

ψo(C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
J
(
ΓC′ ,ΓC′′

))
,

ψf (C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
J
(
∆C′ ,∆C′′

))
,

and J
(
u,v

)
=
(
u vT

)
/
(
‖u‖22 + ‖v‖22 − u vT

)
∈ [0, 1] denotes the extended

Jaccard similarity coefficient (also known as Tanimoto coefficient) between any
two real-valued vectors u and v [39].

The problem defined in (7) is solved by a heuristic, called MOEA-PCE, in
which a Pareto-based Multi-Objective Evolutionary Algorithm is exploited to
avoid combining the two objective functions into a single one.

Weaknesses of two-objective PCE. Experimental evidence in [20] has
shown that the two-objective PCE formulation is much more accurate than the
single-objective counterpart. Nevertheless, the original two-objective PCE also
suffers from an important conceptual issue which has been firstly indentified
in [19], and we further investigate in this paper. The existence of this issue
proves that the accuracy of two-objective PCE can still be improved, which is
a major goal of this work. We unveil this issue in the following example.

Example 1 Let E be a projective ensemble defined over a set D of data objects
and a set F of features. Suppose that E contains only one projective clustering
solution C and that C in turn contains two projective clusters C ′ and C ′′, whose
object- and feature-based representations are different from one another, i.e.,
∃ o ∈ D s.t. ΓC′,o 6= ΓC′′,o, and ∃ f ∈ F s.t. ∆C′,f 6= ∆C′′,f .

Let us consider two candidate projective consensus clusterings C1 =
{C ′1, C ′′1 } and C2 = {C ′2, C ′′2 }. We assume that C1 = C, whereas C2 is defined
as follows. Cluster C ′2 has object- and feature-based representations given by
ΓC′ (i.e., the object-based representation of the first cluster C ′ within C) and
∆C′′ (i.e., the feature-based representation of the second cluster C ′′ within C),
respectively; cluster C ′′2 has object- and feature-based representations given by
ΓC′′ (i.e., the object-based representation of the second cluster C ′′ within C)
and ∆C′ (i.e., the feature-based representation of the first cluster C ′ within
C), respectively. According to (8), it is easy to see that:

Ψo(C1, E)=Ψo(C2, E)=0, and Ψf (C1, E)=Ψf (C2, E)=0.
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Thus, both candidates C1 and C2 minimize the objectives of the early two-
objective PCE formulation reported in (7), and hence, they are both recognized
as optimal solutions. This conclusion is conceptually wrong, because only C1
should be recognized as an optimal solution, since only C1 exactly corresponds
to the unique solution of the ensemble. Conversely, C2 is not well-representative
of the ensemble E , as the object- and the feature-based representations of its
clusters are inversely associated to each other w.r.t. the associations in C.
Indeed, in C2, C ′1 = 〈ΓC′ ,∆C′′〉 and C ′′1 = 〈ΓC′′ ,∆C′〉, whereas, the solution
C ∈ E is such that C ′ = 〈ΓC′ ,∆C′〉 and C ′′ = 〈ΓC′′ ,∆C′′〉. ut

The issue described in the above example arises because the two-objective
PCE formulation ignores that the object-based and the feature-based represen-
tations of a projective cluster are strictly coupled to one another and, therefore,
they need to be considered as a whole. In other words, in order to effectively
evaluate the quality of a candidate projective consensus clustering, detecting
the correct object-based and feature-based representations of the various clus-
ters in a standalone fashion is not enough; instead, a mapping between the two
(i.e., which object-based representation a feature-based representation should
be coupled with and vice versa) should be properly discovered as well. For this
purpose, the objective functions Ψo and Ψf should not be kept separated, but
they should somehow be put in relation to one another. We show next how
this can be overcome by employing a metacluster-based PCE formulation.

3 Metacluster-based PCE

3.1 Early metacluster-based PCE formulation

In our previous work [19], we attempted to solve the main drawback of two-
objective PCE shown in Example 1 by proposing the following alternative
formulation based on a single-objective function:

C∗ = arg min
C

Ψof (C, E), (9)

where Ψof is a function designed to measure the “distance” of any well-defined
projective clustering solution C from E in terms of both data clustering and
feature-to-cluster assignment. To define Ψof , we resorted to the early two-
objective PCE formulation and adapted the (asymmetric) measure therein
involved to the new setting:

Ψof (C, E) =
∑
Ĉ∈E

ψof (C, Ĉ), (10)

where

ψof (C′, C′′) =
1

2

(
ψof (C′, C′′) + ψof (C′′, C′)

)
, (11)
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and

ψof (C′, C′′) =
1

|C′|
∑
C′∈C′

(
1− max

C′′∈C′′
Ĵ
(
XC′ ,XC′′

))
. (12)

In order to measure the similarity between any pair C ′, C ′′ of projective clus-
ters jointly in terms of object-based representation and feature-based represen-
tation, the corresponding projective matrices XC′ and XC′′ are compared to
each other. To accomplish this, the two matrices are first linearized as mono-
dimensional vectors, and then compared by means of some distance measure
between real-valued vectors. We resorted to the Tanimoto similarity coefficient
(also known as extended Jaccard coefficient), as it represents a trade-off so-
lution between Euclidean and Cosine measures in terms of scale/translation
invariance [39]. Moreover, it has a fixed-range codomain ([0, 1]), which is a
desirable property in the design of the proposed objective function. More pre-
cisely, the generalized definition of the Tanimoto coefficient operating on real-
valued matrices is as follows:

Ĵ(X, X̂) =

∑|rows(X)|
i=1 Xi X̂

T

i

‖X‖22 + ‖X̂‖22 −
∑|rows(X)|
i=1 Xi X̂

T

i

, (13)

where Xi X̂
T

i denotes the scalar product between the i-th rows of matrices X
and X̂.

It is easy to note that the PCE formulation reported in (9) is well-suited to
measure the quality of a candidate consensus clustering in terms of both object-
to-cluster and feature-to-cluster assignments as a whole. As shown in [19],
this allows for overcoming the conceptual disadvantages of both early single-
objective and two-objective PCE. Particularly, the issue described in Exam-
ple 1 does not arise anymore with the PCE formulation in (9). Indeed, con-
sidering again the two candidate projective consensus clusterings C1 and C2 of
Example 1, it is straightforward to see that:

Ψof (C1, E) = 0, and Ψof (C2, E) > 0.

and hence, C1 would be correctly recognized as an optimal solution, whereas
C2 would not.

Weaknesses of early metacluster-based PCE formulation. Although
the early metacluster-based PCE formulation in (9) mitigates the issues of two-
objective PCE, we will show how to further improve that formulation. For this
purpose, next we provide a detailed analysis of the theoretical properties of the
formulation in (9), with the ultimate goal of defining an enhanced metacluster-
based PCE formulation that discards the controversial aspects of the earlier
formulation.

Let us denote the expression 1− Ĵ(XC′ ,XC′′) with T (XC′ ,XC′′) or, more
simply, T (C ′, C ′′), for any two clusters C ′, C ′′. Since Ĵ ∈ [0, 1], T (·, ·) is
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regarded as Tanimoto distance [19]. Combining (10), (11), and (12), we have
that:

Ψof (C, E) =
∑
Ĉ∈E

ψof (C, Ĉ) =

=
∑
Ĉ∈E

1

2

(
1

|C|
∑
C∈C

(
1−max

Ĉ∈Ĉ
Ĵ
(
XC ,XĈ

))
+

1

|Ĉ|

∑
Ĉ∈Ĉ

(
1−max

C∈C
Ĵ
(
XĈ ,XC

)))
.

By discarding the constant terms and observing that

1−max
C∈C

Ĵ
(
XC ,XĈ

)
= min

C∈C

(
1−Ĵ

(
XC ,XĈ

))
= min

C∈C
T
(
C, Ĉ

)
,

we can rewrite Ψof as:

Ψof (C, E) =
∑
Ĉ∈E

∑
Ĉ∈Ĉ

min
C∈C

T (C, Ĉ)

︸ ︷︷ ︸
Ψ ′of (C,E)

+
∑
C∈C

∑
Ĉ∈E

min
Ĉ∈Ĉ

T (C, Ĉ)

︸ ︷︷ ︸
Ψ ′′of (C,E)

. (14)

Thus, the objective function Ψof corresponds to a sum of two objective func-
tions Ψ ′of and Ψ ′′of , which are the focus of the following discussion. Let us

introduce the variable x(Ĉ, C) ∈ {0, 1}, which is 1 if cluster Ĉ, belonging to
any projective clustering solution within the ensemble E , is “mapped” to the
cluster C of the candidate projective consensus clustering C, and 0 otherwise.
The meaning of the “mapping” between clusters is clarified next.

Explaining the Ψ ′of function. The Ψ ′of function models a modified version
of the K-Means problem [22], where (i) the input dataset for the clustering
task corresponds to the set of projective clusters belonging to all solutions in
the ensemble E , i.e., the set {Ĉ | Ĉ ∈ Ĉ, Ĉ ∈ E}, (ii) each “object” in such
a dataset is hence a projective cluster represented by its projective matrix,
(iii) the centers have the form of projective matrices satisfying the constraints
defined in (2), and (iv) the distance between objects and centers is computed
according to the Tanimoto distance T (·, ·), rather than the classic squared Eu-
clidean distance. Formally, the Ψ ′of function models the following optimization
problem:

C∗ = arg min
C

∑
C∈C

∑
Ĉ∈E

∑
Ĉ∈Ĉ

x(Ĉ, C) T (Ĉ, C) (15)

s.t .

C satisfies (2),

x(Ĉ, C) ∈ {0, 1}, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C,∑
C∈C

x(Ĉ, C) = 1, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ. (16)

Due to the analogies with K-Means, it is easy to see that the solution for
the above problem is a set of K “center” projective matrices (representing
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Fig. 2 (a) a projective ensemble where, for each projective cluster, different projective
matrix representations are depicted with different color shades, (b) optimal projective con-
sensus clustering according to the Ψ ′of objective function, (c) expected projective consensus

clustering. (The color version of this figure is available only in the electronic edition)

the various clusters in the optimal C∗) that minimize the sum of the Tani-
moto distances between each projective cluster in the ensemble and its closest
center. In the following example we show that such a problem might not be
particularly appropriate in the context of PCE.

Example 2 Figure 2-(a) shows an ensemble composed by three projective clus-
tering solutions. Projective clusters in each solution are depicted as colored
rectangles whose color shade corresponds to a certain representation provided
by its corresponding projective matrix. Similar shades denote similar projec-
tive matrices, and, therefore, similar clusters.2 In this example, the clusters
within the same projective clustering solution are highly similar to each other,
and are highly dissimilar from the clusters of the other solutions. Assuming
K = 3 clusters in the output projective consensus clustering, the optimal
partition of the ensemble of Fig. 2-(a) according to the problem defined in
(15)–(16) would correspond to the one identified by the solutions in the en-
semble themselves. This leads to the optimal consensus clustering reported
in Fig. 2-(b), whose clusters C1, C2, and C3 take the colors red, green, and
blue as a result of the summarization of the sets {C ′1, C ′2, C ′3}, {C ′′1 , C ′′2 , C ′′3 },
{C ′′′1 , C ′′′2 , C ′′′3 }, respectively. This solution is actually not very intuitive for
PCE, since a good projective consensus clustering is supposed to summarize
the information available from the ensemble by putting in relation clusters that
belong to different solutions of the ensemble. Therefore, it would be much more
meaningful if a consensus clustering would have the form reported in Fig. 2-
(c), whose grey-shaded clusters C∗1 , C∗2 , and C∗3 derive from mixing the red,

2 The meaning of the colors here is different from Figure 1, where different colors and
gradients refer to the distinct parts of the two-fold projective cluster representation, i.e.,
the feature-to-cluster assignment and the object-to-cluster assignment, respectively. Here,
instead, we focus on the unified view of the representation provided by the projective matrix.
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green, and blue colors of the sets {C ′1, C ′′1 , C ′′′1 }, {C ′2, C ′′2 , C ′′′2 }, {C ′3, C ′′3 , C ′′′3 },
respectively. ut

Explaining the Ψ ′′of function. The optimization problem defined by the
Ψ ′′of function in (14) can be rewritten as follows:

C∗ = arg min
C

∑
C∈C

∑
Ĉ∈E

∑
Ĉ∈Ĉ

x(Ĉ, C) T (Ĉ, C) (17)

s.t .

C satisfies (2),

x(Ĉ, C) ∈ {0, 1}, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C,∑
Ĉ∈Ĉ

x(Ĉ, C) = 1, ∀Ĉ ∈ E , ∀C ∈ C. (18)

Let us informally explain what is given above. Consider first the case where
the number K of clusters in the output consensus clustering is equal to 1
and consider all subsets C of {Ĉ | Ĉ ∈ C, C ∈ E} that satisfy the following
condition: each solution within the ensemble E has exactly one cluster in C;
also, for each C, let XC denote the projective matrix that (i) satisfies (2),
and (ii) minimizes the sum dC of the Tanimoto distances between itself and
(the projective matrices of) all members of C. The problem defined by Ψ ′′of
(for K = 1) aims to find a matrix X∗C such that dC is minimum; the final
output would be a projective clustering C∗ composed by only one cluster whose
projective matrix corresponds to the matrix X∗C. This interpretation can easily
be generalized to the case K > 1; indeed, in this case, all K optimal solution
matrices (i.e., projective clusters in C∗) would necessarily have the same form,
as formally stated in the next proposition.

Proposition 3 Given a projective ensemble E, let Υ denote the set of all
clusterings obtained by taking exactly one cluster from each ensemble member,
i.e., Υ = {C | C ⊆ {Ĉ | Ĉ ∈ Ĉ ∧ Ĉ ∈ E} ∧ |Ĉ ∩ C| = 1,∀Ĉ ∈ E}. Moreover,

let X∗ = argminX̂ minC∈Υ
∑
C∈C T (X̂,XC) s.t. X̂ satisfies (2). Given an

integer K ≥ 1, it holds that the optimal projective consensus clustering for the
optimization problem defined in (17)–(18) is C∗ = {C∗1 , . . . , C∗K} s.t. XC∗1

=
· · · = XC∗K

= X∗. ut

The above result provides a clearer explanation of the optimization problem
based on the objective function Ψ ′′of . Some issues that may arise with Ψ ′′of are
discussed in the following example.

Example 3 The ensemble illustrated in Fig. 3-(a) contains three projective
clustering solutions whose clusters are very different from each other (different
color shades), but are similar to some clusters from other solutions in the
ensemble. In particular, C ′1, C ′′1 , C ′′′1 are exactly the same (red shade), and
the other groups of similar clusters are C ′2, C ′′2 , C ′′′2 (green shade), and C ′3,
C ′′3 , C ′′′3 (blue shade). According to Proposition 3, the optimal solution for the
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Fig. 3 (a) a projective ensemble where, for each projective cluster, different projective
matrix representations are depicted with different color shades, (b) optimal projective con-
sensus clustering according to the Ψ ′′of objective function, (c) expected projective consensus

clustering. (The color version of this figure is available only in the electronic edition)

optimization problem based on Ψ ′′of with K = 3 is the one depicted in Fig. 3-
(b), as the clusters in the red -shaded group are more similar to each other
than the green-shaded and blue-shaded groups. This solution is conceptually
far away from the ideal one reported in Fig. 3-(c), which is expected to be
composed by three different clusters, each one summarizing a group of clusters
with different shades. ut

3.2 Enhanced metacluster-based PCE formulation

We have discussed above the limitations due to the treatment of the functions
Ψ ′of and Ψ ′′of as separate [19]. Combining Ψ ′of and Ψ ′′of into a single function
somehow mitigates their respective undesired effects. Nevertheless, it is hard
to understand to which extent each one of the two objective functions really
contributes to hide the weaknesses of the other. Hence, it is more appropriate
to have a problem formulation based on a single objective function which does
not suffer from either of the drawbacks illustrated in Examples 2 and 3. We
achieve this goal by proposing a modified metacluster-based PCE formulation,
whose details are discussed next.

Let us first consider again the issue due to the function Ψ ′of described in
Example 2. We recall that a major problem in this case is that the summa-
rization provided by the clusters in the optimal consensus clustering might
put in relation clusters from the same solutions in the ensemble, rather than
coupling clusters from different ensemble components. It can be noted that
this arises because the mappings of the various clusters in the ensemble to
the center matrices are unconstrained (cf. the formal definition of the prob-
lem in (15)–(16)). The issue can be overcome by defining such mappings so
to guarantee that each center is associated with (at least) one cluster from
each different solution in the ensemble. These constraints actually correspond
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to those defined in (18), which is indeed the optimization problem based on
function Ψ ′′of .

Focusing now on the function Ψ ′′of , a possible solution to the issue described
in Example 3 is to constrain the clusters forming the output projective consen-
sus clustering to be different from each other. Alternatively, one can observe
that the issue of Example 3 is mainly due to the fact that not all clusters in the
ensemble are required to be mapped to a cluster of the projective consensus
clustering. Based on this consideration, we can fix such an issue by resorting to
some constraints of the problem based on the other function Ψ ′of , particularly
the constraints listed in (16). Thus, in conclusion, the constraints reported in
(16) and (18) represent a solution to the issues pertaining the functions Ψ ′of
and Ψ ′′of , respectively. As such, we define our enhanced metacluster-based PCE
formulation by involving both these constraints. We hereinafter refer to this
problem as CB-PCE enhanced.

Problem 1 (CB-PCE enhanced) Given a projective ensemble E defined
over a set D of objects and a set F of features, and an integer K > 0, find a
projective clustering solution C∗ such that |C∗| = K and:

C∗ = arg min
C

∑
C∈C

∑
Ĉ∈E

∑
Ĉ∈Ĉ

x(Ĉ, C) T (Ĉ, C) (19)

s.t .

C satisfies (2),

x(Ĉ, C) ∈ {0, 1}, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C,∑
C∈C

x(Ĉ, C) ≥ 1, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, (20)∑
Ĉ∈Ĉ

x(Ĉ, C) ≥ 1, ∀Ĉ ∈ E , ∀C ∈ C. (21)

ut

Note that the constraints (20) and (21) have been slightly modified w.r.t. the
original ones in (16) and (18), in order to handle the cases where the number
of clusters of some ensemble solutions is smaller or larger than the number
of clusters in the output consensus clustering. In summary, the constraints in
(20) force each cluster Ĉ of the ensemble to be mapped to at least one cluster
in the candidate projective consensus clustering C, while the constraints in
(21) ensure that each cluster C ∈ C is coupled with at least one cluster from
each ensemble solution Ĉ.

4 Heuristics for CB-PCE enhanced

The CB-PCE enhanced problem can formally be shown to be NP-hard.
The detailed proof, which is reported in the appendix, is based on a reduction
from the Jaccard Median problem [11]. This reduction shows that CB-
PCE enhanced remains hard even on a restricted version of the problem
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where the input dataset is a singleton and the number of clusters in both the
output projective consensus clustering and each ensemble solution is 1.

Lemma 1 Let CB-PCE restricted be a special version of the CB-PCE
enhanced problem where ( i) |D| = 1, ( ii) K = 1 (K denotes the number of
clusters in the output projective consensus clustering), ( iii) |Ĉ| = 1, ∀Ĉ ∈ E,
( iv) n(∆Ĉ) = n(∆Ĉ′) = nE , ∀Ĉ, Ĉ ′, where n(∆Ĉ) =

∑
f∈F I[∆Ĉ,f > 0],

and ( v) ∆Ĉ,f = 1
nE

, ∀f ∈ F , ∀Ĉ ∈ Ĉ, ∀Ĉ ∈ E. CB-PCE restricted is
NP-hard. ut

Theorem 1 CB-PCE enhanced is NP-hard. ut

The above results prompted us to develop heuristics for approximating
CB-PCE enhanced. In this respect, consider the formulation of CB-PCE
enhanced reported in (19)–(21) and suppose that, for any input ensemble
E , the optimal mappings between the clusters Ĉ within E and the clusters
C of the output projective consensus partition are available, i.e., suppose we
know in advance the optimal x(Ĉ, C) values, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C. Within
this view, a metacluster might be derived for each C ∈ C that contains all
clusters Ĉ in the ensemble that are mapped to C (i.e., such that x(Ĉ, C) =
1). In this way, the optimum for CB-PCE enhanced would be found by
computing, for each metacluster, the projective matrix that minimizes the sum
of the distances from all members of that metacluster under the constraints
in (2). Unfortunately, neither the optimal x(Ĉ, C) mappings can be known in
advance as they are part of the optimization process, nor the computation of
the optimal projective matrices given an optimal mapping is feasible, as it is
easy to observe from Lemma 1 that even this subproblem is NP-hard.

Nevertheless, the above reasoning interestingly reveals that CB-PCE en-
hanced can conceptually be split into two different sub-problems: the first one
concerning the mapping of the clusters within the ensemble to the clusters in
the output projective consensus clustering, and the second one consisting in
finding optimal projective matrices given that mapping. To tackle these sub-
problems, we improve upon the CB-PCE heuristic originally introduced in [19],
as it still complies with the two-step nature of CB-PCE enhanced.

4.1 The CB-PCE heuristic

Algorithm 1 sketches the CB-PCE heuristic defined in [19]. For clarity of pre-
sentation, the following symbols are used in addition to the notation provided
in Section 2: M denotes a set of metaclusters (i.e., a set of sets of clusters),
M ∈M denotes a metacluster (i.e., a set of clusters), and M ∈ M denotes a
cluster (i.e., a set of data objects). The mapping of clusters in the ensemble
to clusters in the output projective consensus clustering is approximated in
CB-PCE by exploiting a basic idea in traditional metacluster-based clustering
ensembles, namely grouping all clusters in the ensemble in order to form a set
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Algorithm 1 CB-PCE

Input: a projective ensemble E; the numberK of clusters in the output projective consensus
clustering.

Output: the projective consensus clustering C∗.

1: P← pairwiseClusterDistances(E)
2: M← metaclusters(E,P,K)
3: C∗ ← ∅
4: for all M∈M do
5: compute Γ∗M according to Theorem 2

6: compute ∆∗M according to Theorem 3

7: C∗ ← C∗ ∪ {〈ΓM,∆M〉}
8: end for

of metaclusters (cf. Section 2). This is achieved by invoking the function meta-
clusters (Line 2), which aims to cluster the set of clusters from all solutions
within the input ensemble E . This function exploits the matrix P of pairwise
distances between all clusters in E (Line 1), which are computed using the
Tanimoto distance defined in (13).

The second conceptual step of the CB-PCE enhanced problem consists
in finding a suitable projective matrix representation for each cluster in the
output consensus clustering, given the various metaclusters (Lines 4–8). As
shown above, the ideal solution concerning the direct optimization of the sum
of the Tanimoto distances is NP-hard. Therefore the idea underlying CB-PCE
is to derive projective matrices by focusing on the optimization of a different
criterion which is easier to solve and well-suited to find reasonable and effective
approximations. Specifically, the solution provided by CB-PCE is to adapt the
widely used majority voting [38] to the context at hand.

Deriving projective matrices from metaclusters. For each metacluster
we derive a projective matrix that optimizes the majority voting criterion. This
is sufficient to obtain an approximation of the solution of the problem, since
deriving the corresponding object- and feature-based cluster representations
given a projective matrix can be performed easily by using Proposition 2.
However, due to the use of the majority voting criterion, it is possible to derive
object- and feature-based representation vectors directly, without requiring the
computation of the projective matrix.

The object- and feature-based representations of each projective cluster to
be included into the output consensus clustering C∗ are denoted as Γ∗M and
∆∗M, ∀M ∈ M, respectively. More precisely, Γ∗M (resp. ∆∗M) is the object-
based (resp. feature-based) representation of the projective cluster within C∗
corresponding to the metacluster M. Let us derive the values of Γ∗M first.
Since the ensemble can in principle contain projective clusterings that are soft
at the clustering level, the majority voting criterion leads to the definition of
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the following optimization problem:

{Γ∗M|M∈M} = argmin
{ΓM|M∈M}

Q (22)

s.t . ∑
M∈M

ΓM,o = 1, ∀o ∈ D, (23)

ΓM,o ≥ 0, ∀M ∈M, ∀o ∈ D, (24)

where

Q=
∑
M∈M

∑
o∈D

ΓαM,o AM,o , AM,o =
1

|M|
∑
M∈M

(1− ΓM,o) ,

and α > 1 is an integer that guarantees the non-linearity of the objective
function Q w.r.t. ΓM,o, needed to ensure Γ ∗M,o ∈ [0, 1] (rather than {0, 1}).3
The final solution for such a problem is stated in the next theorem. The details
of its derivation are in the appendix.

Theorem 2 The optimum of the problem defined in (22)-(24) is (∀M, ∀o):

Γ ∗M,o =

[ ∑
M′∈M

(
AM,o

AM′,o

) 1
α−1

]−1
.

ut

A similar argument applies to ∆∗M. In this case, the problem to be solved
is as follows:

{∆∗M|M∈M} = arg min
{∆M|M∈M}

∑
M∈M

∑
f∈F

∆β
M,f BM,f (25)

s.t . ∑
f∈F

∆M,f = 1, ∀M ∈M, (26)

∆M,f ≥ 0, ∀M ∈M, ∀f ∈ F , (27)

where BM,f = |M|−1
∑
M∈M 1−∆M,f and β plays the same role as α in the

function Q. The solution of such a problem is similar to that derived for Γ ∗M,o.

Theorem 3 The optimum of the problem defined in (25)-(27) is (∀M, ∀f):

∆∗M,f =

 ∑
f ′∈F

(
BM,f

BM,f ′

) 1
β−1

−1 .
ut
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Function 2 metaclusters(E , P, K)

Input: a projective ensemble E; a matrix P storing the pairwise distances between clusters
in
⋃
Ĉ∈E Ĉ; the number K of output metaclusters.

Output: a set M of K metaclusters.

1: initialize M = {M1, . . . ,MK} so to satisfy the constraints in (20)–(21)
2: compute initial V from P as V ←

∑
M∈M

∑
M1,M2∈M T (M1,M2)

3: V ′ ← V
4: repeat
5: V ← V ′

6: Mmove ← nil, Mswap ← nil, Mold ← nil, Mnew ← nil
7: for all Ms ∈M, M ∈Ms do
8: for all Mt ∈M \ {Ms} do

9: 〈V̂ , M̂〉 ← evaluateMove(M,Ms,Mt,P)

10: if V + V̂ < V ′ then
11: V ′ ← V + V̂
12: Mmove ←M , Mswap ← M̂ , Mold ←Ms, Mnew ←Mt

13: end if
14: end for
15: end for
16: if V ′ < V then
17: move Mmove from Mold to Mnew

18: if Mswap 6= nil, move Mswap from Mnew to Mold

19: end if
20: until no M changes metacluster
21: return M

4.2 The E-CB-PCE heuristic

Although CB-PCE provides an approximation to CB-PCE enhanced
that reasonably exploits its intrinsic two-step nature, it does not take into
account the new findings of this work. In particular, a major issue of CB-PCE
is due to the approximation of the optimal mappings between clusters in the
ensembles and clusters in the projective consensus clustering: it satisfies only
the constraints listed in (20), and it ignores the constraints in (21). Indeed,
the clustering of all the clusters in the ensemble in CB-PCE is carried out
by using a standard clustering algorithm, and this is clearly not sufficient
to enforce that each output metacluster must contain at least one cluster
from each different projective clustering solution of the ensemble, which is
what the constraints in (21) require. For this purpose, we describe next a
modified version of CB-PCE, called Enhanced CB-PCE (E-CB-PCE ). E-CB-
PCE follows the overall scheme of CB-PCE reported in Algorithm 1. The only
difference is that it incorporates a well-suited (local-search) procedure to be
used as the metaclusters subroutine in Line 2, whose main goal is to produce
metaclusters satisfying the constraints in (21) along with those in (20).

The outline of the proposed method is given in Function 2. The set of
metaclusters is initialized in such a way that the constraints in (20)–(21) are
satisfied (Line 1). A score V for the set of metaclusters is computed, corre-

3 An alternative way of obtaining Γ ∗M,o ∈ [0, 1] is to employ regularization terms [27].
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Function 3 evaluateMove(M , Ms, Mt, P)

Input: a projective cluster M ; a source metacluster Ms; a target metacluster Mt; a
matrix P storing the pairwise distances between clusters in

⋃
Ĉ∈E Ĉ.

Output: a pair 〈V̂ , M̂〉, where V̂ is a real value and M̂ is a projective cluster.

1: for any projective cluster M and metaclusterM, let g(M,M) denote
∑

M′∈M T (M,M ′)

2: M̂ ← nil
3: let CM the projective clustering in E s.t. M ∈ CM
4: if Ms ∩ CM \ {M} 6= ∅ then

5: V̂ ← g(M,Mt)− g(M,Ms)
6: else
7: M̂ ← arg minM′∈Mt∩CM [(g(M,Mt \ {M ′}) − g(M,Ms)) + (g(M ′,Ms \ {M}) −

g(M ′,Mt))]

8: V̂ ← [(g(M,Mt \ {M̂})− g(M,Ms)) + (g(M̂,Ms \ {M})− g(M̂,Mt))]
9: end if

10: return 〈V̂ , M̂〉

sponding to the sum of all pairwise Tanimoto distances between the clusters
in the same metacluster (Line 2). The procedure performs an iterative step
aimed at improving the score V (Lines 3-20). In particular, we employ a local
search that moves a projective cluster M from its source metaclusterMs to a
target metacluster Mt 6=Ms (Lines 7–15). The move that causes the largest
decrease in the score V is performed (Lines 16–19). The method terminates
when no valid move that improves the current score V is available, i.e., a local
minimum of V has been reached.

The evaluation of the move of a cluster M from its source metaclusterMs

to a target metaclusterMt 6=Ms is performed by the method evaluateMove
presented in Function 3. This method returns the relative score V̂ of the move
along with a “swap” projective cluster M̂ within Mt that aims to replace M
inMs. If no swapping is required, no swap cluster is returned (i.e., M̂ = nil).
The move is evaluated by distinguishing between two cases. Let us denote with
CM the projective clustering solution in the input ensemble which contains M .
If the source metacluster Ms contains one or more clusters of CM besides M ,
removing M from Ms does not violate the constraints in (21). Therefore, in
this case, the score V̂ is computed as the sum of the Tanimoto distances of M
from all the clusters in the new metacluster Mt minus the distances between
M and all the members of the old metacluster Ms (Lines 4–5). Otherwise,
if Ms does not contain any other cluster of CM , the move evaluation also
takes into account that a “swap” is needed to ensure that the constraints in
(21) are satisfied (Lines 7–8). More precisely, M needs to be replaced with
another cluster from CM that currently belongs to the target metaclusterMt.
Such a cluster from Mt is chosen in such a way that the resulting score V̂ is
minimized.
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Table 1 Computational complexities of PCE methods

method total online offline

MOEA-PCE [17,20] O(ItK2|E|(|D|+ |F|)) O(ItK2|E|(|D|+ |F|)) —
EM-PCE [17,20] O(K|E||D||F|) O(IK|D||F|) O(K|E||D||F|)
E-EM-PCE [18] O(K|E||D|(IK + |F|)) O(IK|D|(K|E|+ |F|)) O(K|E||D||F|)
E-2S-PCE [18] O(K|E||D|(|D|+ |F|)) O(K|D|(I|D|+ |E||F|)) O(K|E||D|(D + F|))
CB-PCE [19] O(K2|E|2|D||F|) O(K|E|(K|E|+ |D|+ |F|)) O(K2|E|2|D||F|)
FCB-PCE [19] O(K2|E|2(|D|+ |F|)) O(K|E|(K|E|+ |D|+ |F|)) O(K2|E|2(|D|+ |F|))
E-CB-PCE O(K2|E|2(I + |D|+ |F|)) O(K|E|(IK|E|+ |D|+ |F|)) O(K2|E|2(|D|+ |F|))

4.3 Computational analysis

The bottleneck of the early CB-PCE heuristic is the computation of the pair-
wise Tanimoto distances between the clusters in the ensemble (Line 1 in Al-
gorithm 1). For any single pair of clusters, the Tanimoto distance in principle
takes O(|D||F|) time, as it requires to consider all the elements of the |D|×|F|
projective matrices of those clusters. Nevertheless, we show in Proposition 4
that the Tanimoto distance formula can be rewritten in such a way that its
computation takes instead O(|D|+ |F|) time.

Proposition 4 For any two projective clusters C, C ′ it holds that:

T (XC ,XC′) = 1− p(C,C ′)

q(C) + q(C ′)− p(C,C ′)
,

where

p(C,C ′) =
(
ΓC ΓT

C′
)
×
(
∆C ∆T

C′
)
, q(C) =

(
‖ΓC‖22

)
×
(
‖∆C‖22

)
.

ut

Thanks to the above result, the proposed E-CB-PCE improves upon the ef-
ficiency of the early CB-PCE. In particular, E-CB-PCE can now achieve a
better time complexity for the Tanimoto distance of a single pair of clusters
without introducing any approximation, which was the solution exploited in
our previous work to obtain a speed-up (cf. FCB-PCE heuristic in [19]).

Time complexity of E-CB-PCE. Next we discuss in detail the computa-
tional complexity of the proposed E-CB-PCE. We are given: a set D of data
objects, each one defined over a feature space F , a projective ensemble E
defined over D and F , and a positive integer K representing the number of
clusters in the output projective consensus clustering. It is also reasonable to
assume that the size |C| of each solution C in E is O(K). The complexity of
E-CB-PCE can be broken down into three stages:

1. Pre-processing : it concerns the computation of the pairwise distances be-
tween clusters, by applying the Tanimoto distance T (·, ·) to projective ma-
trices. According to Proposition 4, any single distance computation can
be performed in O(|D| + |F|) time. Thus, computing the overall pairwise
matrix takes O(K2 |E|2 (|D|+ |F|)) time;
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2. Meta-clustering : it concerns the clustering of the O(K |E|) clusters of all
the solutions in the ensemble according to the procedure described in Func-
tion 2. This procedure is based on a local-search optimization strategy of
an objective function that is quadratic in the number of all clusters within
the input ensemble. Thus, its time complexity is O(I K2 |E|2), where I is
the number of iterations to convergence.

3. Post-processing : it concerns the assignment of objects and features to the
metaclusters based on Theorems 2 and 3. According to those theorems,
both the object and the feature assignments need to look up all the clusters
in each metacluster only once; thus, for each object and for each feature, it
takes O(K|E|) time. Performing this step for all objects and features leads
to a total cost of O(K|E| (|D|+ |F|)) for the entire post-processing step.

It can be noted that the first step is an offline phase, i.e., a phase to be
performed only once in case of a multi-run execution, whereas the second and
third are online steps. Thus, as summarized in Table 1 (where we also report
the complexities of the earlier MOEA-PCE, EM-PCE [20], E-EM-PCE, E-2S-
PCE [18], and CB-PCE, FCB-PCE [19] methods4), we can conclude that the
offline, online, and total (i.e., offline + online) complexities of E-CB-PCE are
O(K2 |E|2 (|D|+ |F|)), O(K|E|(IK|E|+ |D|+ |F|)), and O(K2 |E|2 (I+ |D|+
|F|)), respectively.

5 Experimental Evaluation

We evaluated accuracy and efficiency of the proposed E-CB-PCE algorithm
and compared it with the early PCE methods, i.e., MOEA-PCE, EM-PCE [17,
20], E-EM-PCE, E-2S-PCE [18], and CB-PCE [19]. In the following, we in-
troduce our evaluation methodology which includes the selected datasets, the
strategy used for generating the projective ensembles, the setup of the pro-
posed algorithms, and the assessment criteria for the projective consensus
clusterings. Finally, we discuss obtained experimental results.

5.1 Evaluation methodology

5.1.1 Datasets

We selected 22 publicly available datasets with different characteristics in
terms of number of objects, features, and classes. In the summary provided in
Table 2, the first fifteen datasets are from the UCI Machine Learning Repos-
itory [5], the next four datasets are from the UCR Time Series Classifica-
tion/Clustering Page [23], whereas the last three datasets are synthetically
generated and selected from [31]. Note that the synthetic datasets originally
had overlapping clusters. We selected for each dataset the maximal subset of

4 In Table 1, t denotes the population size for the genetic algorithm at the basis of MOEA-
PCE.
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Table 2 Datasets used in the experiments

dataset objects features classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Multiple-Features 2,000 585 10
Segmentation 2,310 19 7
Abalone 4,124 7 17
Waveform 5,000 40 3
Letter 7,648 16 10
Isolet 7,797 617 26
Gisette 13,500 5,000 2
p53-Mutants 300 5,409 2
Amazon 120 10,000 4
Arcene 200 10,000 2

Shapes 160 1,614 9
Tracedata 200 275 4
ControlChart 600 60 6
Twopat 800 128 4

N30 1,356 20 8
D75 1,365 75 7
S2500 2,262 20 8

data objects forming a partition and the corresponding natural subspace for
each cluster in the partition.

5.1.2 Projective ensemble generation

We adopted a basic strategy for projective ensemble generation, which consists
in selecting a (projective) clustering algorithm and varying the parameter(s)
of that algorithm in order to guarantee the diversity of the solutions within
the projective ensemble. We were not interested in comparing projective clus-
tering algorithms and assessing the impact of their performance on projective
ensemble generation, since generating projective ensembles with the highest
quality is not a goal of this work; nevertheless, we resorted to a state-of-the-art
algorithm, LAC, whose effectiveness in the context of projective clustering has
been already proven [13]. The diversity of the projective clustering solutions
was ensured by randomly choosing the initial centroids and varying the LAC’s
parameter h.

Note that LAC yields projective clusterings that have hard object-to-
cluster assignments and have weighted feature-to-cluster assignments. There-
fore, in order to test the ability of the proposed algorithm to also deal with soft
clustering solutions and with solutions having unweighted feature-to-cluster as-
signments, we generated each projective ensemble E as a composition of four
equally-sized subsets, denoted as E1, E2, E3, and E4 and defined as follows:

– E1 contains solutions that have hard object-to-cluster assignments and
weighted feature-to-cluster assignments, i.e., solutions as provided by stan-
dard LAC;

– E2 contains solutions that have hard object-to-cluster assignments and un-
weighted feature-to-cluster assignments. Starting from a LAC solution C
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defined over a set D of data objects and a set F of features, a projective
clustering C′ having unweighted feature-to-cluster assignments is derived

such that ∆C′,f = I
[
∆C′,f ≥ |F|−1

∑
f ′∈F ∆C′,f ′

]
, ∀C ′ ∈ C′, ∀f ∈ F ,

where I[A] is the indicator function, which is equal to 1 when the event A
is true, and 0 otherwise;

– E3 contains solutions that have soft object-to-cluster assignments and
weighted feature-to-cluster assignments. Starting from a LAC solution C,
a soft projective clustering C′′ is derived by computing the ΓC′′,o values
(∀C ′′ ∈ C′′, ∀o ∈ D), proportionally to the distance of o from the centroids

C
′′

of the clusters C ′′:

ΓC′′,o =

∑
f∈F

(
of − C

′′
f

)2
∑
C∈C′′

∑
f∈F

(
of − Cf

)2 ,
where the f -th feature Cf of the centroid of any cluster C is defined as
Cf = |C|−1

∑
o∈C of .

– E4 contains solutions that have soft object-to-cluster assignments and un-
weighted feature-to-cluster assignments. The solutions are derived from
standard LAC solutions according to the methods employed for generating
E2 and E3, respectively.

For each dataset, we generated 10 different projective ensembles; all results we
present in the following correspond to averages over these projective ensembles.

5.1.3 Assessment criteria

We assessed the quality of a projective consensus clustering C using both exter-
nal and internal cluster validity criteria: the former is based on the similarity
of C w.r.t. a reference classification, whereas the latter is based on the average
similarity w.r.t. the solutions in the input projective ensemble E .

Similarity w.r.t. the reference classification (external evaluation).
This evaluation stage exploits the availability of a reference classification, here-
inafter denoted as C̃, for any given datasetD. Note that all the selected datasets
are coupled with a reference classification that provides information about the
ideal object-to-cluster assignments ΓC̃,o (∀C̃ ∈ C̃, ∀o ∈ D), which are hard
assignments. The ∆C̃,f feature-to-cluster assignments are instead defined ac-
cording to the following approaches:

– For the synthetic datasets N30, D75, and S2500, which already provide
information about the ideal subspaces assigned to each group of objects
identified by the reference classification, these subspaces are directly used
to define unweighted ∆C̃,f feature-to-cluster assignments in C̃.

– For the remaining datasets, the ∆C̃,f values are derived by applying the

procedure suggested in [13] to the reference classification C̃: given the ΓC̃,o
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values (∀C̃ ∈ C̃, ∀o ∈ D) originally provided along with C̃, the ∆C̃,f values
are computed as:

∆C̃,f =
exp

(
−U(C̃, f)/h

)
∑
f ′∈F exp

(
−U(C̃, f ′)/h

) ,
where the LAC parameter h is set to 0.2 and:

U(C̃, f)=

(∑
o∈D

ΓC̃,o

)−1∑
o∈D

ΓC̃,o
(
Cf − of

)2
, Cf =

(∑
o∈D

ΓC̃,o

)−1∑
o∈D

ΓC̃,o×of .

In order to compute the similarity between a projective consensus cluster-
ing C and a reference classification C̃, we resort to the popular F1-measure [36].
Particularly, here we provide a definition of F1-measure that enables a com-
parison between projective clustering having soft object/feature-to-cluster as-
signments. Given a projective cluster C ∈ C, the precision P (C) and the recall
R(C) are defined as:

P (C) =
maxC̃∈C̃ overlap(C̃, C)

size(C)
, R(C) =

maxC̃∈C̃ overlap(C̃, C)

size(arg maxC̃∈C̃ overlap(C̃, C))
,

and the F1-measure is defined as:

F1(C̃, C) =
1

|C|
∑
C∈C

2 P (C) R(C)

P (C) +R(C)
.

The values of the F1-measure belong to the interval [0, 1], where larger val-
ues indicate more accurate projective consensus clusterings. The overlap(·, ·)
and size(·) functions quantify the degree of overlap between two projective
clusters and the size of a projective cluster, respectively. Such functions are de-
fined based on three ways of comparing the various projective clusters, namely
object-based (o), feature-based (f), and object & feature-based (of), which re-
spectively account for the object-based representations only of the projective
clusters to be compared, the feature-based representation only, or both. We
hence define variants of the overlap(·, ·) and the size(·) functions to handle
each of the three cases:

– Object-based (measure F1o): overlap(C ′, C ′′) =
∑

o∈D ΓC′,o ΓC′′,o,
size(C) =

∑
o∈D ΓC,o;

– feature-based (measure F1f ): overlap(C ′, C ′′) =
∑
f∈F ∆C′,f ∆C′′,f ,

size(C) =
∑
f∈F ∆C,f ;

– object & feature-based (measure F1of ): overlap(C ′, C ′′) =(∑
o∈D ΓC′,o ΓC′′,o

) (∑
f∈F ∆C′,f ∆C′′,f

)
, size(C) =(∑

o∈D ΓC,o
) (∑

f∈F ∆C,f

)
.
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Similarity w.r.t. the projective ensemble solutions (internal evalua-
tion). Any valid projective consensus clustering C should comply with the
information available from the input projective ensemble E . In this respect, we
carried out an evaluation stage to measure the average similarity between a
projective consensus clustering and the solutions within E . We define the ob-
ject & feature-based measure F1of (object-based F1o and feature-based F1f
are defined similarly) as follows:

F1of (C) =
1

|E|
∑
Ĉ∈E

max{F1(C, Ĉ), F1(Ĉ, C)}.

All these measures range within [0, 1]; moreover, the larger the values F1of ,
F1o, or F1f are, the larger the similarity between the projective consensus
clustering C and the solutions within the projective ensemble is, and hence the
better the quality of C.

5.1.4 Parameter setting

To set the parameters α and β of the proposed E-CB-PCE, we performed
a leave-one-dataset-out approach: for each dataset the performance of E-CB-
PCE on the other datasets was assessed for different values of the parameter(s),
and the value(s) that achieved the maximum F1of was then used to obtain a
projective clustering solution for the left-out dataset. In general, we observed
that the settings were scarcely influenced by any specific dataset, which indi-
cates that a relatively easy setup can be performed on new datasets for which
a reference classification or other a-priori knowledge is not available. Particu-
larly, the best-performance scores were mostly reached by setting both α and
β to 2. For the competing methods, we set the parameters as suggested in
their respective papers.

5.2 Results

Accuracy. Tables 3–5 give the results of the external evaluation w.r.t. the
reference classification (assessment criteria F1of , F1o, and F1f , respectively),
and Tables 6–8 give the results of the internal evaluation w.r.t. the projective
ensemble solutions (assessment criteria F1of , F1o, and F1f , respectively). All
algorithms involved in the comparison are nondeterministic, thus all tables
contain average results over 50 different runs along with the corresponding
standard deviations (in parentheses). Moreover, to improve the readability of
the results, for each competitor and assessment criterion, we summarize the
average gain of E-CB-PCE w.r.t. the competing method in Table 9.

As observed in the summary reported in Table 9, E-CB-PCE achieved bet-
ter average accuracy performance w.r.t. both MOEA-PCE and CB-PCE, thus
showing that the most recent findings of this work incorporated into the pro-
posed E-CB-PCE actually give the expected outcome. E-CB-PCE was more
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Table 3 Evaluation w.r.t. the reference classification (F1of )

dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris .649(.025) .588(.002) .532(.046) .543(.074) .640(.071) .673(.017)
Wine .345(.025) .300(.003) .303(.001) .266(.047) .327(.028) .356(.001)
Glass .279(.009) .298(.007) .307(.009) .253(.035) .311(.042) .420(.032)
Ecoli .518(.020) .564(.013) .573(.007) .540(.104) .599(.063) .550(.035)
Yeast .288(.009) .237(.004) .232(.005) .202(.025) .317(.025) .308(.008)

Mult.-Feat. .270(.019) .300(.015) .290(.048) .405(.041) .174(.021) .180(.001)
Segmentation .334(.018) .400(.008) .401(.001) .382(.026) .364(.054) .452(.029)

Abalone .116(.003) .112(.003) .111(.004) .080(.006) .116(.004) .122(.002)
Waveform .339(.056) .338(.006) .267(.058) .296(.012) .263(.026) .253(.012)
Letter .181(.025) .155(.007) .155(.006) .141(.021) .120(.023) .185(.012)
Isolet .141(.004) .138(.001) .138(.001) .106(.025) .140(.017) .148(.001)
Gisette .595(.015) .532(.006) .515(.022) .541(.002) .499(.004) .545(.001)

p53-Mutants .464(.021) .411(.020) .411(.002) .397(.001) .412(.011) .418(.001)
Amazon .441(.019) .388(.006) .388(.019) .446(.067) .437(.011) .442(.022)
Arcene .367(.012) .142(.002) .142(.001) .153(.007) .148(.016) .165(.002)
Shapes .243(.009) .294(.007) .297(.005) .208(.031) .281(.025) .314(.006)

Tracedata .438(.010) .432(.012) .432(.001) .437(.019) .491(.031) .470(.014)
ControlChart .092(.013) .203(.020) .195(.008) .250(.021) .063(.008) .122(.007)

Twopat .144(.025) .070(.002) .070(.001) .071(.005) .070(.007) .073(.002)
N30 .098(.005) .108(.003) .107(.005) .091(.013) .110(.015) .124(.003)
D75 .033(.002) .038(.001) .038(.001) .032(.003) .038(.005) .039(.002)
S2500 .116(.004) .122(.005) .121(.007) .098(.010) .131(.009) .127(.004)

min .033 .038 .038 .032 .038 .039
max .649 .588 .573 .543 .640 .673
avg .295 .280 .274 .270 .275 .295

accurate than both MOEA-PCE and CB-PCE on 16 out of 22 datasets on
average, while achieving average gains up to 0.147 (F1of assessment crite-
rion) and 0.078 (F1f assessment criterion) w.r.t. MOEA-PCE and CB-PCE,
respectively.

Larger improvements were produced by E-CB-PCE w.r.t. the early single-
objective PCE methods, i.e., EM-PCE, E-EM-PCE, and E-2S-PCE. The aver-
age gains achieved by E-CB-PCE w.r.t. EM-PCE, E-EM-PCE, and E-2S-PCE
reported in Table 9 were in general larger than those observed w.r.t. the re-
maining competing methods MOEA-PCE and CB-PCE.

Looking at the standard deviations reported in Tables 3–8, it can be ob-
served that the proposed E-CB-PCE was quite insensitive to its random com-
ponent. The standard deviations were in the order of 10−3 in most cases, while
being in the order of 10−2 in the remaining cases.

Efficiency. Table 10 shows the runtimes (in milliseconds) of the various algo-
rithms involved in the comparison. As expected, the proposed E-CB-PCE was
slower than EM-PCE on most datasets, while clearly outperforming MOEA-
PCE. The runtimes of E-CB-PCE were one or two orders of magnitude smaller
than those of MOEA-PCE on average, up to four orders on Isolet. Only on one
dataset, MOEA-PCE was more efficient than E-CB-PCE (Glass), even though
the runtimes of the two methods remained of the same order of magnitude.

Compared to CB-PCE, the proposed E-CB-PCE was faster on 11 datasets,
resulting in one order faster on 3 of them (i.e., Multiple-Features, Waveform,
Amazon), and two orders faster on 4 datasets (i.e., Isolet, Gisette, p53-Mutants,
Arcene). In general, we observed that the performance of E-CB-PCE mainly
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Table 4 Evaluation w.r.t. the reference classification (F1o)

dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris .967(.026) .880(.002) .784(.076) .733(.158) .948(.137) 1(.027)
Wine .835(.037) .731(.009) .735(.001) .639(.152) .855(.082) .957(.003)
Glass .474(.053) .509(.012) .537(.021) .433(.052) .507(.068) .571(.038)
Ecoli .760(.014) .667(.021) .665(.021) .641(.127) .789(.063) .761(.007)
Yeast .417(.007) .333(.007) .328(.014) .298(.030) .424(.034) .395(.014)

Mult.-Feat. .319(.069) .369(.020) .363(.053) .493(.063) .326(.035) .269(.007)
Segmentation .443(.062) .568(.014) .567(.007) .554(.029) .523(.082) .659(.047)

Abalone .208(.006) .169(.005) .164(.006) .152(.014) .198(.014) .210(.004)
Waveform .515(.070) .415(.001) .387(.056) .382(.018) .437(.027) .437(.009)
Letter .331(.030) .306(.005) .308(.002) .299(.037) .307(.031) .305(.017)
Isolet .959(.031) .978(.001) .978(.001) .722(.208) .977(.080) 1(.002)
Gisette .728(.015) .674(.007) .658(.030) .581(.140) .667(.003) .669(.001)

p53-Mutants .728(.038) .619(.028) .642(.031) .596(.002) .650(.054) .733(.001)
Amazon .555(.036) .488(.009) .480(.047) .553(.071) .525(.011) .518(.029)
Arcene .705(.009) .626(.001) .614(.001) .618(.071) .647(.021) .644(.019)
Shapes .681(.017) .693(.015) .704(.013) .531(.052) .716(.041) .786(.017)

Tracedata .614(.002) .628(.059) .628(.001) .619(.032) .629(.029) .617(.010)
ControlChart .319(.020) .332(.003) .342(.026) .345(.040) .311(.014) .321(.019)

Twopat .355(.011) .296(.002) .296(.002) .302(.021) .313(.007) .316(.001)
N30 .807(.219) .884(.013) .881(.017) .752(.117) .915(.096) .997(.028)
D75 .857(.146) .952(.018) .955(.022) .717(.118) .931(.103) .981(.046)
S2500 .880(.156) .895(.031) .889(.056) .747(.093) .983(.070) .941(.014)

min .208 .169 .164 .152 .198 .210
max .967 .978 .978 .752 .983 1
avg .612 .591 .587 .532 .617 .640

depended on the number of iterations needed for Function 2 to converge. In
particular, due to the nature of the local-search moves performed at each iter-
ation, the runtime of Function 2 could negatively compensate the performance
gain achieved by E-CB-PCE w.r.t. CB-PCE in the other steps of the heuristic.
However, as observed in the measurements reported, this mostly affected the
smaller datasets.

6 Conclusion

In our previous work [17] we introduced a framework in which projective clus-
tering and clustering ensembles are addressed simultaneously. This resulted
in the formulation of a new problem called projective clustering ensembles
(PCE). Since the original formulation, research efforts have been made to
design a single-objective function that keeps the object-based and the feature-
based cluster representations joined together, and at the same time facilitates
the adaptation of a conventional clustering ensemble approach to the PCE
problem. In this paper, we presented the latest advance of PCE by proposing
a metacluster-based formulation and related heuristics, which are theoretically
and experimentally proven to best fit the PCE problem.

We expect that alternative approaches to the PCE problem will be devel-
oped in the next few years. One general direction we envision is moving the
burden of the computation from the clustering side to a proper representation
model. In this respect, we argue that an approach worth exploring is tenso-
rial models and related tensor decomposition methods [24]. In a nutshell, a
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Table 5 Evaluation w.r.t. the reference classification (F1f )

dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris .974(.019) .667(.001) .667(.001) .667(.001) .829(.044) .807(.001)
Wine .643(.051) .426(.006) .432(.022) .437(.017) .472(.058) .476(.091)
Glass .804(.023) .662(.029) .671(.037) .662(.028) .748(.086) .734(.032)
Ecoli .906(.021) .970(.013) .983(.027) 1(.001) .880(.035) 1(.047)
Yeast .846(.011) .774(.010) .772(.018) .726(.025) .827(.026) .956(.018)

Mult.-Feat. .768(.013) .795(.001) .802(.027) .887(.003) .502(.034) .567(.026)
Segmentation .861(.026) .747(.029) .737(.047) .706(.001) .745(.115) .971(.056)

Abalone .822(.023) .716(.006) .713(.007) .670(.001) .750(.008) .754(.006)
Waveform .660(.067) .792(.001) .792(.001) .792(.001) .722(.043) .700(.036)
Letter .643(.037) .595(.008) .598(.009) .580(.001) .593(.031) .686(.027)
Isolet .171(.004) .143(.001) .144(.005) .142(.005) .149(.005) .150(.005)
Gisette .876(.016) .797(.001) .794(.005) .797(.001) .739(.041) .818(.001)

p53-Mutants .721(.009) .671(.001) .671(.001) .673(.001) .673(.015) .692(.001)
Amazon .890(.005) .828(.001) .828(.001) .829(.001) .840(.013) .849(.003)
Arcene .536(.014) .264(.003) .262(.001) .260(.001) .268(.013) .483(.010)
Shapes .428(.011) .448(.002) .449(.001) .405(.016) .451(.018) .444(.005)

Tracedata .787(.010) .800(.006) .811(.015) .796(.029) .795(.027) .894(.034)
ControlChart .322(.044) .673(.002) .673(.003) .673(.003) .263(.027) .473(.035)

Twopat .451(.079) .233(.001) .233(.001) .233(.001) .281(.039) .339(.021)
N30 .131(.002) .119(.001) .120(.002) .113(.004) .119(.003) .338(.005)
D75 .041(.001) .039(.001) .039(.001) .036(.001) .040(.003) .045(.001)
S2500 .141(.002) .124(.002) .127(.003) .125(.005) .130(.003) .343(.001)

min .041 .039 .039 .036 .040 .045
max .974 .970 .983 1 .880 1
avg .610 .558 .560 .555 .537 .615

tensor model (e.g., a third-order tensor) can provide an integrated represen-
tation of the relevant dimensions in the input ensemble (i.e., the objects, the
features, and the clusters); in addition, during the tensor decomposition, a
consensus clustering, or even multiple consensus clusterings, can be induced
in a straightforward manner. Interestingly, the ability of some existing tensor
decomposition methods to generate an unfolding of the tensor in which the
correlations among all dimensions (i.e., aspects in the ensemble) are preserved,
might play an important role in establishing natural mappings between the
clusters in the input ensemble and the clusters of the consensus clustering.
Moreover, the common problem due to the unavailability of feature relevance
values could be relaxed in a tensor modeling, thus enabling a new generation
of clustering ensemble methods.
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Table 6 Evaluation w.r.t. the projective ensemble solutions (F1of )
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Table 7 Evaluation w.r.t. the projective ensemble solutions (F1o)

dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE
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Table 8 Evaluation w.r.t. the projective ensemble solutions (F1f )

dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris .964(.008) .989(.001) .989(.001) .986(.002) .990(.004) .992(.001)
Wine .861(.008) .856(.002) .857(.003) .852(.006) .910(.023) .905(.034)
Glass .833(.007) .843(.003) .844(.006) .849(.013) .871(.030) .846(.016)
Ecoli .848(.007) .818(.006) .814(.004) .804(.001) .884(.010) .893(.021)
Yeast .870(.005) .890(.005) .888(.006) .907(.011) .909(.018) .912(.010)

Mult.-Feat. .656(.008) .662(.001) .665(.014) .697(.004) .715(.046) .695(.010)
Segmentation .854(.014) .815(.005) .812(.013) .824(.001) .942(.071) .935(.023)

Abalone .944(.004) .976(.002) .979(.004) .994(.001) .977(.010) .984(.007)
Waveform .266(.013) .279(.001) .279(.001) .279(.001) .323(.004) .341(.008)
Letter .604(.011) .453(.009) .448(.009) .401(.001) .686(.061) .644(.019)
Isolet .838(.004) .891(.001) .891(.001) .861(.019) .897(.012) .903(.001)
Gisette .750(.005) .771(.001) .770(.002) .771(.001) .751(.010) .771(.010)

p53-Mutants .858(.002) .920(.001) .920(.001) .918(.001) .908(.007) .916(.001)
Amazon .874(.002) .945(.001) .945(.001) .943(.001) .932(.005) .939(.001)
Arcene .664(.010) .546(.006) .544(.003) .534(.006) .558(.029) .592(.001)
Shapes .641(.005) .629(.004) .631(.002) .585(.009) .679(.011) .693(.002)

Tracedata .853(.003) .848(.003) .849(.001) .820(.011) .894(.028) .930(.007)
ControlChart .510(.022) .154(.001) .154(.001) .154(.001) .556(.038) .396(.022)

Twopat .685(.024) .342(.001) .343(.005) .343(.001) .599(.105) .472(.073)
N30 .810(.005) .670(.010) .668(.019) .676(.015) .842(.055) .808(.052)
D75 .799(.008) .741(.006) .743(.004) .717(.017) .832(.040) .832(.009)
S2500 .803(.007) .772(.009) .770(.028) .673(.028) .818(.049) .864(.012)

min .266 .154 .154 .154 .323 .341
max .964 .989 .989 .994 .990 .992
avg .763 .719 .718 .709 .794 .785

Table 9 Average gains of E-CB-PCE w.r.t. the competing methods

criterion MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE

F1of 0 .014 .021 .025 .020
F1o .029 .049 .054 .108 .023
F1f .005 .056 .055 .060 .078

F1of .147 .186 .194 .237 .019

F1o .021 .046 .055 .100 .021

F1f .022 .066 .067 .076 -.010
avg .037 .070 .074 .101 .025
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Table 10 Execution times (milliseconds)

dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 2,056 37 109 253 74 1,492
Wine 2,558 29 88 163 144 1,223
Glass 7,712 56 615 248 500 9,177
Ecoli 14,401 59 685 625 1,147 9,337
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Isolet 20,676,754 10,100 10,000 8,488 66,136 1,447
Gisette 966,108 34,260 38,216 29,700 93,148 1,450
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A Proofs

A.1 Proofs of Section 2

Proposition 1 For any two projective clusters C, C ′ it holds that XC = XC′

if and only if ΓC = ΓC′ and ∆C = ∆C′ .

Proof Let us prove both the directions of the implication. Proving XC =
XC′ ⇐ ΓC = ΓC′ ∧∆C = ∆C′ is immediate: by definition, XC = ΓT

C ∆C

and XC′ = ΓT
C′ ∆C′ . Regarding XC = XC′ ⇒ ΓC = ΓC′ ∧∆C = ∆C′ , we
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first note that:

XC = XC′ ⇒ XC(i, j) = XC′(i, j), ∀i,∀j ⇒
⇒ ΓC,oi ×∆C,j = ΓC′,oi ×∆C′,j , ∀i,∀j. (28)

By summing the statements in (28) over j, we obtain:

ΓC,oi ×∆C,j = ΓC′,oi ×∆C′,j , ∀i,∀j ⇒

⇒
|F|∑
j=1

ΓC,oi ×∆C,j =

|F|∑
j=1

ΓC′,oi ×∆C′,j , ∀i ⇒

⇒ ΓC,oi

|F|∑
j=1

∆C,j = ΓC′,oi

|F|∑
j=1

∆C′,j ,∀i,

which implies ΓC,oi = ΓC′,oi ,∀i, since
∑|F|
j=1∆C,j =

∑|F|
j=1∆C′,j = 1 by defi-

nition. Similarly, by summing the statements in (28) over i leads to:

ΓC,oi ×∆C,j = ΓC′,oi ×∆C′,j , ∀i,∀j ⇒

⇒
|D|∑
i=1

ΓC,oi ×∆C,j =

|D|∑
i=1

ΓC′,oi ×∆C′,j , ∀j ⇒

⇒ ∆C,j

|D|∑
i=1

ΓC,oi = ∆C′,j

|D|∑
i=1

ΓC′,oi ,∀j ⇒

⇒ ∆C,j = ∆C′,j ,∀j,

where the last derivation holds since the result ΓC,oi = ΓC′,oi ,∀i, shown above

clearly implies
∑|D|
i=1 ΓC,oi =

∑|D|
i=1 ΓC′,oi . ut

Proposition 2 For any projective cluster C, its object-based representa-
tion ΓC = (ΓC,o1 , . . . , ΓC,o|D|) and feature-based representation ∆C =
(∆C,1, . . . ,∆C,|F|) can uniquely be derived from its projective matrix XC as
follows:

ΓC,oi =

|F|∑
j=1

XC(i, j), ∆C,j =
XC(1, j)∑|F|
j=1 XC(1, j)

= · · · = XC(|D|, j)∑|F|
j=1 XC(|D|, j)

,

where XC(i, j) denotes the element (i, j) of the matrix XC .

Proof The first statement holds since:

|F|∑
j=1

XC(i, j) =

|F|∑
j=1

ΓC,oi ×∆C,j = ΓC,oi

|F|∑
j=1

∆C,j = ΓC,oi .

Once derived the expression for ΓC,oi , the second statement is immediate,
because each element XC(i, j) is by definition equal to ΓC,oi ×∆C,j . ut
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A.2 Proofs of Section 3

Proposition 3 Given a projective ensemble E, let Υ denote the set of all
clusterings obtained by taking exactly one cluster from each ensemble member,
i.e., Υ = {C | C ⊆ {Ĉ | Ĉ ∈ Ĉ ∧ Ĉ ∈ E} ∧ |Ĉ ∩ C| = 1,∀Ĉ ∈ E}. Moreover,

let X∗ = argminX̂ minC∈Υ
∑
C∈C T (X̂,XC) s.t. X̂ satisfies (2). Given an

integer K ≥ 1, it holds that the optimal projective consensus clustering for the
optimization problem defined in (17)–(18) is C∗ = {C∗1 , . . . , C∗K} s.t. XC∗1

=
· · · = XC∗K

= X∗.

Proof The constraints in (18) imply that each cluster C of the optimal pro-
jective consensus clustering should be associated with exactly one cluster Ĉ of
each ensemble solution, but no limitations are imposed about associations of
Ĉ to multiple C, which are therefore allowed. Within this view, the set Υ iden-
tifies a sound and complete searching space for the assignments =⇒diventa
mappings⇐= x(Ĉ, C). This implies that the matrix X∗, which is the ma-
trix that minimizes the sum of the Tanimoto distances between itself and all
clusters within a set of clusters C, over all matrices satisfying (2) and all
C ∈ Υ , would represent an optimal solution for the case K = 1. The gen-
eralization to the case K > 1 is straightforward, as C∗ = {C∗1 , . . . , C∗K} s.t.
XC∗1

= · · · = XC∗K
= X∗ represents a feasible solution to the problem and any

other solution where XC∗i
6= X∗ for some i ∈ [1..K] would have a non-smaller

objective function value due to the optimality of X∗. ut

A.3 Proofs of Section 4

Lemma 2 Given an m-dimensional, binary vector u, let u′ denote the vector
1

n(u) u, where n(u) =
∑m
j=1 uj. For any two m-dimensional binary vectors u

and v, it holds that J(u′,v′) = J(u,v).

Proof

J(u′,v′) =

∑m
j=1 u

′
j v
′
j∑m

j=1(u′j)
2 +

∑m
j=1(v′j)

2 −
∑m
j=1 u

′
j v
′
j

=

=

∑m
j=1

uj
n(u)

vj
n(v)∑m

j=1

(
uj
n(u)

)2
+
∑m
j=1

(
vj
n(v)

)2
−
∑m
j=1

uj
n(u)

vj
n(v)

=

=

1
n(u) n(v)

∑m
j=1 uj vj

1
n(u)2

∑m
j=1 u

2
j + 1

n(v)2

∑m
j=1 v

2
j − 1

n(u) n(v)

∑m
j=1 uj vj

.
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Since u and v are binary vectors, it holds that
∑m
j=1 u

2
j =

∑m
j=1 uj = n(u)

and
∑m
j=1 v

2
j =

∑m
j=1 vj = n(v); thus, it results that:

J(u′,v′) =

1
n(u) n(v)

∑m
j=1 uj vj

1
n(u)2

∑m
j=1 u

2
j + 1

n(v)2

∑m
j=1 v

2
j − 1

n(u) n(v)

∑m
j=1 uj vj

=

=

1
n(u) n(v)

∑m
j=1 uj vj

1
n(u) + 1

n(v) −
1

n(u) n(v)

∑m
j=1 uj vj

=

=

1
n(u) n(v)

∑m
j=1 uj vj

1
n(u) n(v)

(
n(u) + n(v)−

∑m
j=1 uj vj

) =

=

∑m
j=1 uj vj∑m

j=1 u
2
j +

∑m
j=1 v

2
j −

∑m
j=1 uj vj

= J(u,v).

ut

Lemma 1 Let CB-PCE restricted be a special version of the CB-PCE
enhanced problem where ( i) |D| = 1, ( ii) K = 1 (K denotes the number of
clusters in the output projective consensus clustering), ( iii) |Ĉ| = 1, ∀Ĉ ∈ E,
( iv) n(∆Ĉ) = n(∆Ĉ′) = nE , ∀Ĉ, Ĉ ′, where n(∆Ĉ) =

∑
f∈F I[∆Ĉ,f > 0],

and ( v) ∆Ĉ,f = 1
nE

, ∀f ∈ F , ∀Ĉ ∈ Ĉ, ∀Ĉ ∈ E. CB-PCE restricted is
NP-hard. ut

Proof First, it is easy to note that, due to the restrictions w.r.t. the gen-
eral CB-PCE enhanced, the projective matrix of each cluster Ĉ within a
valid input ensemble for CB-PCE restricted corresponds to its (mono-
dimensional) feature-based representation ∆Ĉ . To show that CB-PCE re-
stricted is NP-hard, we define a reduction from the Jaccard Median
problem, which has been proven to be NP-hard in [11]. Jaccard Median
is defined as follows: given a set U of m-dimensional, binary vectors, find a
(possibly new) binary vector x such that

∑
u∈U (1 − J(u,x)) is minimized.

The corresponding decision problem is: given a set U of m-dimensional bi-
nary vectors and a real value r, check whether a binary vector x exists such
that

∑
u∈U (1 − J(u,x)) ≤ r. Given a set U of vectors in input to Jaccard

Median, we define a valid instance of our problem by building a new set
U ′ = {u′ | u′ = 1

n(u) u, u ∈ U}. It is easy to see that U ′ is a valid input for

CB-PCE restricted, as all vectors in U ′ represent valid projective matrices
as their values sum to one, and this is the only condition to satisfy for an en-
semble E having |Ĉ| = 1, ∀Ĉ ∈ E and |D| = 1. The key point is to show that, for
each r, U has a solution for the decision version of Jaccard Median if and
only if U admits a solution for the decision version of CB-PCE restricted.
Let us prove the first side of the implication, i.e., if U is a yes instance for
Jaccard Median then U ′ is a yes instance for CB-PCE restricted, for all
r. To this end, let x denote the binary vector that makes U a yes instance for
Jaccard Median, i.e., the binary vector such that

∑
u∈U (1 − J(u,x)) ≤ r.
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According to Lemma 2, the Jaccard similarities, and therefore the Jaccard dis-
tances defined as 1− J , are preserved if each input vector u is scaled up by a
factor n(u). This implies that

∑
u∈U (1−J(u,x)) =

∑
u′∈U ′(1−J(u′,x′)) ≤ r.

Thus, x′ = 1
n(x) x makes U ′ a yes instance for CB-PCE restricted (note

that, like each vector u′ ∈ U ′, x′ satisfies the constraints of CB-PCE re-
stricted on the output format because it represents a valid projective ma-
trix). The second side of the implication, i.e., if U is a no instance for Jaccard
Median then U ′ is a no instance for CB-PCE restricted, for all r, can be
proved similarly. Indeed, according to Lemma 2 again, if no binary vector is
within a distance r from the vectors in U , then no vector can exist with such
a property for U ′ either. ut

Theorem 1 CB-PCE enhanced is NP-hard.

Proof Straightforward, since CB-PCE enhanced is a more general version
of CB-PCE restricted, which has been proven to be NP-hard in Lemma 1.

ut

Theorem 2 The optimum of the problem P defined in (22)-(24) is (∀M, ∀o):

Γ ∗M,o =

[ ∑
M′∈M

(
AM,o

AM′,o

) 1
α−1

]−1
.

Proof The optimal Γ ∗M,o can be found by means of the conventional Lagrange
multipliers method. We first consider the relaxed problem P ′ of P obtained
by temporarily discarding the inequality constraints from the constraint set of
P (i.e., the constraints defined in (24)).

We define the new unconstrained objective function Q′ for P ′ as follows:

Q′ = Q+
∑
o∈D

λo

( ∑
M′∈M

ΓM′,o − 1

)
. (29)

The optimal Γ ∗M,o is computed by first retrieving the stationary points of
Q′, i.e., the points for which

∇Q′ =

(
∂ Q′

∂ ΓM,o
,
∂ Q′

∂ λo

)
= 0.

Thus, we solve the following system of equations:

∂ Q′

∂ ΓM,o
= α AM,o (ΓM,o)α−1 + λo = 0, (30)

∂ Q′

∂ λo
=

∑
M′∈M

ΓM′,o − 1 = 0. (31)

By solving (30) w.r.t. ΓM,o and substituting the solution in (31), we obtain:

∑
M′∈M

(
−λo

α AM′,o

) 1
α−1

= 1. (32)
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By solving (32) w.r.t. λo and substituting such a solution in (30), we obtain:

α AM,o (ΓM,o)α−1−

[ ∑
M∈M

(
1

α AM′,o

) 1
α−1

]−(α−1)
= 0. (33)

Finally, by solving (33) w.r.t. ΓM,o, we obtain a stationary point whose ex-
pression is exactly equal to that reported in the claim of the theorem:

Γ ∗M,o =

[ ∑
M′∈M

(
AM,o

AM′,o

) 1
α−1

]−1
. (34)

As it holds that (i) the stationary points of the Lagrangian function Q′ are
also stationary points of the original objective function Q, (ii) the feasible
region of P , and hence the feasible region of P ′, is a convex set, and (iii) Q is
convex w.r.t. ΓM,o, it follows that such a stationary point represents a global
minimum of Q, and, accordingly, the optimal solution of P ′. Moreover, as
AM,o ≥ 0, ∀M, ∀o, it is trivial to observe that Γ ∗M,o ≥ 0, ∀M, ∀o. Therefore,
the solution in (34) satisfies the inequality constraints that were temporarily
discarded in order to define the relaxed problem P ′ (cf. (24)); thus, it represents
the optimal solution of the original problem P , which proves the theorem. ut

Theorem 3 The optimum of the problem defined in (25)-(27) is (∀M, ∀f):

∆∗M,f =

 ∑
f ′∈F

(
BM,f

BM,f ′

) 1
β−1

−1 .
Proof Analogous to Theorem 2. ut

Proposition 4 For any two projective clusters C, C ′ it holds that:

T (XC ,XC′) = 1− p(C,C ′)

q(C) + q(C ′)− p(C,C ′)
,

where

p(C,C ′) =
(
ΓC ΓT

C′
)
×
(
∆C ∆T

C′
)
, q(C) =

(
‖ΓC‖22

)
×
(
‖∆C‖22

)
.
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Proof The Tanimoto distance T (XC ,XC′) is equal to 1− Ĵ(X, X̂). Regarding

Ĵ , it holds that:

Ĵ(X, X̂) =

∑|rows(X)|
i=1 XT

i · X̂i

‖X‖22 + ‖X̂‖22 −
∑|rows(X)|

i=1 XT
i · X̂i

=

=

∑
o∈D

∑
f∈F

ΓC,o ∆C,f ΓC′,o ∆C′,f∑
o∈D

∑
f∈F

ΓC,o ∆C,f +
∑
o∈D

∑
f∈F

ΓC′,o ∆C′,f −
∑
o∈D

∑
f∈F

ΓC,o ∆C,f ΓC′,o ∆C′,f

=

=

∑
o∈D

ΓC,o ΓC′,o

×
∑

f∈F
∆C,f ∆C′,f


∑

o∈D
ΓC,o

×
∑

f∈F
∆C,f

+

∑
o∈D

ΓC′,o

×
∑

f∈F
∆C′,f

−
∑

o∈D
ΓC,o ΓC′,o

×
∑

f∈F
∆C,f ∆C′,f

=

=

(
ΓC ΓT

C′

)
×
(
∆C ∆T

C′

)
(
‖ΓC‖22

)
×
(
‖∆C‖22

)
+
(
‖ΓC′‖22

)
×
(
‖∆C′‖22

)
−
(
ΓT
C · ΓC′

)
×
(
ΓC ΓT

C′

) =

=
p(C,C′)

q(C) + q(C′)− p(C,C′)
.

ut


