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ABSTRACT
We study two novel clustering problems in which the pairwise
interactions between entities are characterized by probability distri-
butions and conditioned by external factors within the environment
where the entities interact. This covers any scenario where a set
of actions can alter the entities’ interaction behavior. In particular,
we consider the case where the interaction conditioning factors
can be modeled as cluster memberships of entities in a graph and
the goal is to partition a set of entities such as to maximize the
overall vertex interactions or, equivalently, minimize the loss of
interactions in the graph. We show that both problems are NP-hard
and they are equivalent in terms of optimality. However, we fo-
cus on the minimization formulation as it enables the possibility
of devising both practical and efficient approximation algorithms
and heuristics. Experimental evaluation of our algorithms, on both
synthetic and real network datasets, has shown evidence of their
meaningfulness as well as superiority with respect to competing
methods, both in terms of effectiveness and efficiency.
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1 INTRODUCTION
Modeling and mining behavioral patterns of users of online as well
as offline systems is central to enhance the user engagement and
experience in the systems. In this regard, uncertain graph models are
seen as a powerful tool to capture the inherent uncertainty in user

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403190

behaviors into a representation of user interaction patterns [14].
A common way of modeling uncertainty in a graph, which we re-
fer to in this work, is to associate each pair of (linked) users with
a probability value that expresses the likelihood of observing and
quantifying an interaction between the two users. In this regard, one
important aspect is that the modeling of user interactions should
also account for exogenous conditions or events that occur within
the social environment where the users belong to, which indeed can
significantly affect the users’ interaction behaviors. For example,
delivering a post on a user’s page (e.g., Facebook wall) that contains
a message of friend recommendation will likely favor or not a meet-
ing between two users, and so their interactions. Intuitively, it is of
high interest to identify proper settings of a network system and
relating conditions that can maximize the overall user interactions
within the system. In this work, we extend the uncertain graph
modeling framework to capture the dependency of interactions on
conditioning factors, in a network system. In particular, we focus
on the case when the interaction behaviors depend on a clustering

of the set of users in a graph, so that the probability of interaction
between any two users varies depending on whether they belong
to the same cluster or not. Modeling such interaction conditioning
factors in terms of cluster memberships of users arises in several
relevant application scenarios. Let us discuss on a couple of them.
Applications. Consider a social-media platform where users pro-
duce, exchange and consume content items. Each user is typically
associated with a personal profile page. This acts also as an inter-
face for the platform to deliver recommendations and advertise-
ments to a target user u, including those contents produced by
other users which u may interact with. The probability that an
interaction between two users u and v will occur, in relation to a
content item c possibly produced or endorsed by any of them, can
depend on whether the two users have been informed or not about
c through their corresponding homepages. Clearly, if a grouping
of users into communities was available, the platform administra-
tors would likely drive the attention of users towards contents that
are produced by members of the same community, according to a
homophily effect. On the other hand, any user may also want to
seek for relevant contents and similar users outside the boundary
of her community, which would also have the effect of mitigating
information-bubble issues that may arise inside each community.
In this regard, it would be strategic for the administrators to know
which links to users and associated contents are worthy to be rec-
ommended within other users’ pages, in order to incentivate the
overall interactions across the platform.

Another application scenario corresponds to a team formation
task for a collaborative system, like Wikipedia, where users should
be grouped into teams to contribute in the editing of different parts
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of a Wikipedia page. In this context, the likelihood of collaboration
between any pair of users will vary in relation to their assignment
to the same team. The goal becomes to partition the set of users into
teams in order to maximize the total collaboration. The greater the
overall collaboration is, the higher the contamination will be, and
the probability of successfully accomplishing the task will increase.
Contributions. To the best of our knowledge, we are the first to
address the problem of optimizing the overall interaction among a
set of entities in a probabilistic graph, subject to the cluster mem-
berships of the entities. In particular, our main contributions are:

•We define theMax-Interaction-Clustering andMin-Inter-
action-Loss-Clustering problems for graph entities whose inter-
action patterns depend on their cluster memberships (Section 3). We
show that both problems are special instances of the well-studied
correlation-clustering framework [2], and we delve into their theo-
retical properties and complexities.

• Although the two problems are equivalent in terms of optimal-
ity, we focus on the minimization problem, as it enables the use
of more practical yet efficient algorithms inspired by correlation-
clustering theory. To this purpose, we devise both approximation al-
gorithms and heuristics for theMin-Interaction-loss-Clustering
problem (Section 4).

• Experimental evaluation of our algorithms, on both synthetic
and real network datasets, has shown evidence of their meaning-
fulness as well as superiority with respect to competing methods,
both in terms of effectiveness and efficiency (Section 5).

2 RELATEDWORK
Clustering uncertain graphs.The problemwe tackle in this work
is close to that of clustering uncertain graphs, which is to cluster ver-
tices of a graph whose edges are assigned a probability of existence,
according to some (possible-world) semantics [4, 8, 10, 11, 15–17]. A
major difference is that our problem is more general than clustering
uncertain graphs since the probabilities of interaction are affected
by cluster memberships, which poses additional challenges that
we address in this work. Further differences are that (i) the classic
uncertain-graph model is a special case of interaction graph we
consider in this work (where the probability distributions of interac-
tion are binary), and (ii) existing methods for clustering uncertain
graphs aim to maximize the intra-cluster connectivity andminimize
the inter-cluster connectivity, whereas we seek clusterings such
that both types of connectivity are maximized.
Community detection in signed graphs. In signed graphs, which
have positive and negative signs as a property on the edges (e.g.,
trust vs. distrust relations), the problem of community detection is
to produce a structure whereby many positive (resp. negative) links
are observed within (resp. between) communities. For example,
[21] considers a directed graph and solves the above problem by
optimizing a new notion of modularity that combines linearly the
contribution of positive and negative weights, and extending the
Potts Model to incorporate negative links. The method in [9] also
introduces a generalization of modularity that is able to deal with
both positive and negative weights. That definition of modularity
is a special case of the one defined in [21], as it can be obtained
from the general definition of [21] by properly setting the param-
eters that control the balance between the importance of present

and absent (positive and negative) edges within a community. [7]
reformulates the Map Equation to measure the quality of partitions,
known as Minimum Description Length (MDL), and extends Con-
stant Potts Model (CPM) to collect a spectrum of partitions from
highly simplified to detailed ones, by varying its parameter λ from
zero to one. Based on these extensions, the community detection is
carried out by minimizing MDL on λ-spectrum.

The aforementioned methods will be considered in our exper-
iments (cf. Section 5), given the similarity in the requirements of
within- and across-cluster interactions. Nonetheless, we remark
that edges in a signed graph can have either positive or negative
weight, while in our setting each edge is assigned a probability
distribution of the interaction strength between two vertices.
Correlation clustering. Originally introduced by Bansal et al. [2],
correlation clustering is, given a complete signed graphG where ev-
ery pair of vertices is labeled either as positive or negative, partition
the vertices of G so as to either minimize the number of negative
pairs within the same cluster plus the positive pairs across different
clusters, or maximize the positive pairs within the same cluster plus
the negative pairs across different clusters. In Sections 3.1–3.2, we
shall discuss the profound relation with our problem formulations.

3 PROBLEM DEFINITION
We are given a set of users who interact with each other, where
“interaction” is meant here as referring to any, symmetric or recip-
rocated, relation between two users (e.g., commenting posts of each
other, collaborating for a task, etc.). We assume that the strength of
interaction between any two users is represented by a nonnegative
real value, however the exact interaction strength is not known
beforehand; rather, a set of possible strengths are given, each one
being assigned a probability of corresponding to the actual strength.
This scenario is here modeled by a probabilistic interaction graph,
or simply interaction graph, we define as a key notion in this work.

Definition 1 (Probabilistic interaction graph). A proba-
bilistic interaction graph is a triple G = (V ,E, P), with V set of

vertices, E ⊆ V ×V set of undirected edges, and P = {puv }(u,v)∈E set

of probability distributions, each one defined on a domain D(puv ) ⊆
R+0 . For all (u,v) ∈ E and all x ∈ D(puv ), puv (x) is the probability
that the strength of the interaction between u and v is equal to x . For
any (u,v) < E, puv (0) = 1 and puv (x) = 0 for any x , 0.

Given an interaction graphG= (V,E, P), a set {G= (V,E,wG )}G⊑G
of deterministic graphs can be derived as instances of G — follow-
ing the literature on uncertain data/graphs [14], these are also
called worlds. Every instance G that can be derived from G, here
denoted as G ⊑ G, is a weighted graph that is defined over the
same sets V , E of G, and whose weighting functionwG : E → R+0
assigns a weight to every edge (u,v) ∈ E so that wG (u,v) is sam-
pled from puv ∈ P , i.e., wG (u,v) ∈ D(puv ). Note that, as for any
(u,v) ∈ E : D(puv ) ⊆ R+0 , a possible world G ⊑ G may contain
edges (u,v) from G that do not exist in G, i.e.,wG (u,v) = 0.

Assuming independence between probability distributions — as
usual in the literature on uncertain graphs [3, 4, 12–15, 17, 19] —
the probability of a possible world G = (V ,E,wG ) ⊑ G is:

Pr(G) =
∏

(u,v )∈E

puv (wG (u, v)). (1)
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A key aspect in our study is that an interaction graph G =
(V ,E, P) can be provided in terms of two probabilistic graphs, say
G+ and G−, both defined over V and E, such that the one accounts
for interactions within the same clusters of vertices, and the other
one for interactions between different clusters of vertices. To this
end, let C : V → N denote an injective function that expresses
the cluster-membership for the vertices in V . Conditionally to the
cluster-memberships for the vertices in G+ and G−, the two graphs
can be “merged” into a single interaction graph we define as follows.

Definition 2 (Clustering-conditional interaction graph).
Let G+ = (V ,E, P+) and G− = (V ,E, P−) be two interaction graphs

defined over the same vertex- and edge-sets, and C : V → N be the

cluster-membership function for the vertices. A clustering-conditional
interaction graph is defined as GC = (V ,E, PC), such that each edge

(u,v) of GC is assigned the corresponding probability distribution

puv ∈ P
+
from G+, if u and v belongs to the same cluster according

to C, otherwise the distribution puv ∈ P
−
from G−, i.e., PC = {puv ∈

P+ | C(u) = C(v)} ∪ {puv ∈ P
− | C(u) , C(v)}.

Upon the above definition, we focus on two optimization prob-
lems with complementary yet conceptually equivalent goals, that is,
to cluster V so as to either (i) maximize the expected overall interac-

tion, or (ii)minimize the expected overall interaction loss. These goals
lead to two different formulations, which we state in detail next.

3.1 Maximizing interaction
Let the overall interaction f (G) of a deterministic graph G =
(V ,E,wG ) be the sum of the interactions on all edges, i.e.,

f (G) =
∑

(u,v )∈E

wG (u, v) (2)

As a consequence, the expected overall interaction f̄ (G) of an in-
teraction graph G = (V ,E, P) is defined as:

f̄ (G) = E
G⊑G
[f (G)] =

∑
G⊑G

f (G) Pr(G), (3)

where Pr(G) is the probability of observing G (Equation (1)).
The first problem we tackle in this work is as follows:

Problem 1 (Max-Interaction-Clustering). Given two interac-
tion graphs G+ = (V ,E, P+) and G− = (V ,E, P−) sharing the same

vertex set and edge set, find a clustering C∗ : V → N that maxi-

mizes the expected overall interaction of the clustering-conditional

interaction graph, i.e.,

C∗ = arg max
C

f̄ (GC). (4)

Connection with Correlation Clustering. Since its introduc-
tion, correlation clustering has received a great deal of attention,
with a focus on various aspects, such as theoretical results, algo-
rithms, and problem generalizations/variants [18]. To date, the most
general formulation of correlation clustering [1] takes as input a set
Ω of objects, and two nonnegative weights ω+xy ,ω−xy for every un-
ordered pair x ,y ∈ Ω of objects. The weights assigned to an object
pair (x ,y) intuitively express the advantage of putting x and y in
the same cluster (ω+xy ) or in separate clusters (ω−xy ). The objective
is to partition Ω so as to either minimize the sum of the negative
weights between objects within the same cluster plus the sum of the
positive weights between objects in separate clusters (Min-CC), or

maximize the sum of the positive weights between objects within
the same cluster plus the sum of the negative weights between
objects in separate clusters (Max-CC):

Problem 2 (Min-CC [1]). Given a set Ω of objects, and nonneg-

ative weights ω+xy ,ω
−
xy ∈ R

+
0 for all unordered pairs x ,y ∈ Ω of

objects, find a clustering C : Ω → N+ that minimizes∑
x,y∈Ω,
C(x )=C(y)

ω−xy +
∑

x,y∈Ω,
C(x ),C(y)

ω+xy . (5)

Problem 3 (Max-CC [1]). Given a set Ω of objects, and nonneg-

ative weights ω+xy ,ω
−
xy ∈ R

+
0 for all unordered pairs x ,y ∈ Ω of

objects, find a clustering C : Ω → N+ that maximizes∑
x,y∈Ω,
C(x )=C(y)

ω+xy +
∑

x,y∈Ω,
C(x ),C(y)

ω−xy . (6)

Min-CC and Max-CC are equivalent in terms of optimality and
complexity class (both NP-hard), but have different approximation-
guarantee properties, with the latter being easier in this regard.

As a noteworthy result, our Max-Interaction-Clustering
problem can be shown to be an instance of Max-CC:

Theorem 1. Given two interaction graphs G+ = (V ,E, P+) and
G− = (V ,E, P−), solving Max-Interaction-Clustering on input〈
G+,G−

〉
is equivalent to solving Max-CC by setting Ω = V , ω+uv =

E[p+uv ], ω
−
uv = E[p

−
uv ], for all (u,v) ∈ E, and ω

+
uv = ω−uv = 0, for

all (u,v) ∈ E (where E = V ×V \ E).

Proof. The objective function of Max-Interaction-Clustering
(Equation (4)) can be rearranged as follows:

f̄ (GC) = E
G⊑GC

[f (G)] =
∑

G⊑GC

f (G) Pr(G)=
∑

G⊑GC

( ∑
(u,v )∈E

wG (u, v)

)
Pr(G) =

=
∑

G⊑GC

( ∑
(u,v )∈E,
C(u)=C(v )

wG (u, v)

)
Pr(G) +

∑
G⊑GC

( ∑
(u,v )∈E,
C(u),C(v )

wG (u, v)

)
Pr(G) =

=
∑

(u,v )∈E,
C(u)=C(v )

©«
∑

G⊑GC

wG (u, v) Pr(G)ª®¬︸                       ︷︷                       ︸
= E[p+uv ]

+
∑

(u,v )∈E,
C(u),C(v )

©«
∑

G⊑GC

wG (u, v) Pr(G)ª®¬︸                       ︷︷                       ︸
= E[p−uv ]

=

=
∑

(u,v )∈E,
C(u)=C(v )

E[p+uv ] +
∑

(u,v )∈E,
C(u),C(v )

E[p−uv ] +
∑

(u,v )∈E,
C(u)=C(v )

E[p+uv ] +
∑

(u,v )∈E,
C(u),C(v )

E[p−uv ]

︸                                     ︷︷                                     ︸
= 0

=

=
∑

x,y∈Ω,
C(x )=C(y)

ω+xy +
∑

x,y∈Ω,
C(x ),C(y)

ω−xy,

which corresponds to the objective function of Max-CC. □

The connection with correlation clustering also unveils the NP-
hardness of Max-Interaction-Clustering:

Theorem 2. Max-Interaction-Clustering is NP-hard.

Proof. (Sketch) The fact of being a special case of Max-CC
clearly does not necessarily imply thatMax-Interaction-Clustering
is NP-hard too. However, NP-hardness can be shown by reducing
from the basic Bansal et al.’s variant of correlation clustering on gen-
eral graphs [2], which corresponds to Max-CC when (ω+xy ,ω−xy ) ∈



KDD ’20, August 23–27, 2020, Virtual Event, CA, USA D. Mandaglio, A. Tagarelli, and F. Gullo

{(1, 0), (0, 0), (0, 1)}. Even such a simpler variant isNP-hard, and can
easily be observed to correspond toMax-Interaction-Clustering
when ∀(u,v) ∈E : p+uv (ω+uv ) = p−uv (ω−uv ) = 1. □

3.2 Minimizing interaction loss
Given two interaction graphs G+ = (V ,E, P+), G− = (V ,E, P−), let
M(G+,G−) ∈ R+ be a constant larger than the maximum interaction
strength in G+ and G−, i.e.,M(G+,G−) > max{x ∈ D(puv ) | puv ∈
P+ ∪ P−, (u,v) ∈ E}. Based onM(G+,G−), let the overall interaction
loss ℓ(G) of a deterministic graph G = (V ,E,wG ) be:

ℓ(G) =
∑

(u,v )∈E

(M (G+,G−) −wG (u, v)) + |E |M (G+,G−) =

= M (G+,G−)
(
|V |
2

)
−

∑
(u,v )∈E

wG (u, v), (7)

and the expected overall interaction loss ℓ̄(G) of an interaction
graph G = (V ,E, P) be:

ℓ̄(G) = E
G⊑G
[ℓ(G)] =

∑
G⊑G

ℓ(G) Pr(G). (8)

The minimization version of the problem we tackle in this work is:

Problem 4 (Min-Interaction-loss-Clustering). Given two

interaction graphs G+ = (V ,E, P+) and G− = (V ,E, P−) sharing the
same vertex set and edge set, find a clustering C∗ : V → N+ so that

C∗ = arg min
C

ℓ̄(GC). (9)

Such a minimization formulation is equivalent to the maximiza-
tion one in terms of optimality (and complexity class), since:

ℓ̄(G) =
∑
G⊑G

(
M (G+,G−)

(
|V |
2

)
−

∑
(u,v )∈E

wG (u, v)
)

Pr(G) =

= −
∑
G⊑G

( ∑
(u,v )∈E

wG (u, v)
)

Pr(G)︸                                     ︷︷                                     ︸
= −f̄ (G)

+M (G+,G−)
(
|V |
2

)
︸             ︷︷             ︸
constant > 0

. (10)

The result in Theorem 3 immediately follows:

Theorem 3. Min-Interaction-loss-Clustering is NP-hard.

Connection with Correlation Clustering. Similarly to the max-
imization version, our Min-Interaction-loss-Clustering can be
shown to be an instance of Min-CC:

Theorem 4. Given two interaction graphs G+ = (V ,E, P+) and
G− = (V ,E, P−), solving Min-Interaction-loss-Clustering on

input ⟨G+,G−⟩ is equivalent to solving Min-CC by setting Ω = V ,
ω+uv = M(G+,G−)−E[p−uv ],ω

−
uv = M(G+,G−)−E[p+uv ], for all (u,v) ∈

E, andω+uv = ω−uv = M(G+,G−), for all (u,v) ∈ E (where E =
(V

2
)
\E).

Proof. Let us define the discounted interaction loss GC which
discards the loss contribution due to non-linked pairs, as follows:

L(GC) =
∑

(u,v )∈E,
C(u)=C(v )

( ∑
G⊑GC

(M (G+,G−)−wG (u, v))
)

Pr(G)︸                                         ︷︷                                         ︸
= M (G+,G−) − E[p+uv ]

+

+
∑

(u,v )∈E,
C(u),C(v )

( ∑
G⊑GC

(M (G+,G−)−wG (u, v))
)

Pr(G)︸                                          ︷︷                                          ︸
= M (G+,G−) − E[p−uv ]

. (11)

With similar arguments as Theorem 1, it can be shown that:

ℓ̄(GC) = L(GC) + |E |M(G+,G−) =
∑

x,y∈Ω,
C(x )=C(y)

ω−xy +
∑

x,y∈Ω,
C(x ),C(y)

ω+xy ,

which corresponds to the objective function of Min-CC. □

4 ALGORITHMS
The connection with correlation clustering forms the basis of algo-
rithm design for our problems. Specifically, our main idea here
is to investigate whether the considerable amount of work on
correlation-clustering algorithms with proved quality guarantees
can be fruitfully exploited in our setting too.

Our first remark in this regard is that, thanks to Theorem 1,
it is not hard to demonstrate that (constant-factor) approxima-
tion algorithms designed for Max-CC keep their guarantees on
Max-Interaction-Clustering too (seeAppendix A). However, the
state-of-the-art approximation algorithms for Max-CC (on general,
weighted graphs) correspond to the semidefinite-programming-
based ones devised by Swamy [20]. Those algorithms are inefficient
and, more importantly, rather impractical, since they are not able
to output more than a fixed number of clusters (i.e., six). This is a
showstopper in our context, as we are interested in algorithms that
are effective and theoretically solid, yet capable of handling large-
scale inputs and providing outputs whose quality is recognizable
in practice too, not only theoretically.

More interesting results instead hold for the minimization ver-
sion of our problem. Specifically, we derive a clever rearrangement
of Min-Interaction-loss-Clustering’s objective function, which
unveils that, under mild conditions, the algorithms designed for
Min-CC preserve their approximation properties when applied
(with minor modifications) to our problem. This is particularly ap-
pealing, asMin-CC admits approximation algorithms that do not
suffer from the limitations of the maximization counterpart, i.e.,
they are efficient and capable of finding general clusterings [1].
For this reason, our algorithm-design process focuses on the mini-
mization version of our problem, and the remainder of this section
provides the details of this process.

4.1 An approximation algorithm
Ailon et al.’s KwikCluster [1] is a well-established algorithm for
Min-CC. It iteratively picks an object x (uniformly at random
among the unclustered objects), and builds a cluster comprised
of x and all unclustered objects y such that ω+xy > ω−xy . KwikClus-
ter is particularly appealing, due to its (i) constant-factor (expected)
approximation guarantees (i.e., factor-5 or factor-2, depending on
the conditions satisfied by the input weights, cf. later in this sec-
tion), (ii) efficiency (i.e., it takes linear time in the number of edges
of the input graph), and (iii) easiness of implementation. All these
aspects make it generally preferable to other algorithms (such as the
one by Charikar et al. [5]) that have slightly better approximation
guarantees, but are less efficient and more difficult to implement.
Theoretical basis. With the above motivations, we investigate
possible exploitation of KwikCluster for our Min-Interaction-
loss-Clustering, and the theoretical basis for which its appealing
features are still valid. In this regard, a major remark is that the
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constant-factor approximation guarantees of KwikCluster hold for
input graphs whose weights on every edge satisfy the probability
constraint, i.e., ω+xy + ω−xy = 1, for all x ,y ∈ Ω. Although this is
a requirement that does not generally hold for the input to Min-
Interaction-loss-Clustering, in the following we show that the
objective function of our problem can be manipulated in such a way
that the probability constraint is satisfied under mild conditions.

Given two interaction graphs G+ = (V ,E, P+), G− = (V ,E, P−),
for every unordered pair u,v ∈ V , let σuv , τ+uv , τ−uv be:

σuv = M (G+,G−) −
(
E[p+uv ] + E[p

−
uv ]

)
, (12)

τ +uv =
1

M (G+,G−)

(
E[p+uv ]+

σuv
2

)
, τ −uv =

1
M (G+,G−)

(
E[p−uv ]+

σuv
2

)
. (13)

It is easy to see that σuv ∈ [−M(G+,G−),M(G+,G−)], and τ+uv , τ−uv
satisfy the above probability constraint, as stated in Lemma 1.

Lemma 1. It holds that τ+uv ,τ−uv ≥ 0 and τ+uv+τ
−
uv =1, ∀u,v ∈V .

Function ℓ̄(·) of Min-Interaction-loss-Clustering can be
rewritten in terms of τ+uv , τ−uv , as follows (proof in Appendix B).

Lemma 2. Given two interaction graphs G+ = (V ,E, P+) and
G− = (V ,E, P−), and a clustering C : V → N+, let

д(GC) =
∑

u,v ∈V ,
C(u)=C(v)

τ−uv +
∑

u,v ∈V ,
C(u),C(v)

τ+uv , K(G+,G−) =
∑

u,v ∈V

σuv
2
. (14)

It holds that ℓ̄(GC) = M(G+,G−) × д(GC) + K(G+,G−).

Moreover, in Lemma 3, we state that constant-factor approxima-
tion guarantees forMin-CC carry over to our problem.

Lemma 3. IfK(G+,G−) ≥ 0 (Equation (14)), then anyα-approximation

algorithm for Min-CC is an α-approximation algorithm for Min-

Interaction-loss-Clustering, for every constant α > 1.

Proof. Let I1 =
〈
G+,G−

〉
be an instance of Min-Interaction-

loss-Clustering, and I2 =
〈
V , {τ+uv }u,v ∈V , {τ

−
uv }u,v ∈V

〉
be an

instance of Min-CC derived from I1 by employing the weights
defined in Equation (13). Let also C∗

ℓ̄
and C∗д be the optimal clus-

terings for the I1 instance according to the ℓ̄(·) and д(·) functions,
respectively. Finally, let C̃ denote the clustering yielded by the given
α-approximation algorithm forMin-CC on input I2.

The goal is to demonstrate that, for every I1, I2, ℓ̄(GC̃) ≤ α ×

ℓ̄(GC∗
ℓ̄
). First, it is straightforward to note that д(·) corresponds

to Min-CC’s objective function. By definition of approximation
algorithm, д(G

C̃
) ≤ α × д(GC∗д ), therefore it holds that:

д(G
C̃
) ≤ α×д(GC∗д )

⇔ M (G+,G−)×д(G
C̃
) ≤ α×M (G+,G−)×д(GC∗д )

⇔ M (G+,G−)×д(G
C̃
)+K (G+,G−) ≤ α×M (G+,G−)×д(GC∗д )+K (G

+,G−)

⇒ M (G+,G−)×д(G
C̃
)+K (G+,G−) ≤ α×M (G+,G−)×д(GC∗д )+α×K (G

+,G−)

⇔ M (G+,G−)×д(G
C̃
)+K (G+,G−)︸                               ︷︷                               ︸

= ℓ̄(G
C̃
) {Lemma 2}

≤ α×
(
M (G+,G−)×д(GC∗д )+K (G

+,G−)

)
︸                                    ︷︷                                    ︸

= ℓ̄(GC∗д
) {Lemma 2}

⇔ ℓ̄(G
C̃
) ≤ α× ℓ̄(GC∗д ) ⇔ ℓ̄(G

C̃
) ≤ α× ℓ̄(GC∗

ℓ̄
),

where the first equivalence step holds since M(G+,G−) > 0, the
second one holds because of the assumption K(G+,G−) ≥ 0, the third

Algorithm 1 MIL

Input: Interaction graphs G+ = (V , E, P+), G− = (V , E, P−)
Output: A clustering C of V
1: compute τ +uv , τ −uv for all (u, v) ∈ E {Equation (13)}
2: C ← ∅, V ′ ← V
3: while V ′ , ∅ do
4: pick a pivot vertex u ∈ V ′ uniformly at random
5: Cu ← {u } ∪ {v ∈ V ′ | (u, v) ∈ E, τ +uv > τ −uv }
6: add cluster Cu to C and remove all vertices in Cu from V ′

step holds as α > 1, and the last step holds since, based on Lemma 2,
the optimum of д(·) corresponds to the optimum of ℓ̄(·). □

TheMIL algorithm. Lemmas 1–3 provide the theoretical support
and motivation for the first algorithm we propose for our Min-
Interaction-loss-Clustering problem, named MIL, whose pseu-
docode is shown in Algorithm 1. Given two interaction graphs G+,
G−,MIL simply builds an instance of Min-CC as per Equation (13),
and applies the KwikCluster algorithm on it.

Proposition 1. (cf. Appendix D) MIL takes O(|V |+ |E |) time.

Approximation guarantees. Thanks to Lemmas 1–3, the MIL al-
gorithm can be shown to achieve expected factor-5 approximation
guarantees forMin-Interaction-loss-Clustering ifK(G+,G−) ≥ 0:

Theorem 5. If K(G+,G−) ≥ 0, Algorithm 1 is a randomized ex-

pected 5-approximation algorithm for Problem 4.

Proof. The weights τ+uv , τ−uv satisfy the probability constraint
(Lemma 1). Thus, running the KwikCluster algorithm (i.e., Lines 3–6
of Algorithm 1) on a Min-CC instance with τ+uv , τ−uv weights is
proved to achieve expected 5-approximation guarantees forMin-
CC [1]. According to Lemma 3, If K(G+,G−) ≥ 0, such a factor-5
approximation carries over to Problem 4. □

Condition for approximation guarantees. The condition for
MIL to be a 5-approximation algorithm forMin-Interaction-loss-
Clustering is that the constant K(G+,G−) (Equation (14)) is nonneg-
ative. Here we show that this is a rather mild assumption, which is
expected to hold for real-world interaction graphs. In fact:

K (G+,G−) =
∑

u,v∈V

σuv
2

=
∑

(u,v )∈E

σuv
2

+
∑

(u,v )<E

σuv
2

=
∑

(u,v )∈E

(
M (G+,G−)−E[p+uv ]−E[p

−
uv ]

2

)
+
M (G+,G−)

2

((
|V |
2

)
− |E |

)
≥ 0

⇔
∑

(u,v )∈E

(
E[p+uv ]+E[p

−
uv ]

2

)
≤

M (G+,G−)
2

|E |+
M (G+,G−)

2

((
|V |
2

)
− |E |

)
⇔

∑
(u,v )∈E

(
E[p+uv ] + E[p

−
uv ]

)
≤ M (G+,G−)

(
|V |
2

)
. (15)

Thus, as E[p+uv ],E[p−uv ] ≤ M(G+,G−), the worst case to have the
condition in the above Equation (15) satisfied is when E[p+uv ] =
E[p−uv ] = M(G+,G−), for all (u,v) ∈ E. This means that, in the worst
case, K(G+,G−) is guaranteed to be nonnegative if |E | ≤

( |V |
2

)
/2, i.e.,

if the number of edges in the input interaction graphs is no more
than half of the number of all unordered pairs of vertices. Note this
relates to sparseness, which is typical in real-world graphs.
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Figure 1:MIL algorithm: Effect of sampling pivots
uniformly at random in general graphs.

Stronger approximation guarantees. If the input weights, apart
from satisfying the probability constraint, also obey the triangle
inequality, then the KwikCluster algorithm forMin-CC is shown to
achieve better approximation guarantees, i.e., 2 instead of 5 [1]. In
our setting this means that, if the weights defined in Equation (13)
are such that τ−uv ≤ τ−uz + τ−zv , for all u,v, z ∈ V , then the pro-
posed MIL algorithm becomes a 2-approximation algorithm for
Min-Interaction-loss-Clustering.

To this purpose, let us denote with ∆+uv the difference E[p+uv ] −
E[p−uv ], for any u,v ∈ V ; also, let ∆−uv := −∆+uv . It can first be
noted that, for any u,v, z ∈ V , whenever the triangle inequality
τ−uv ≤ τ−uz +τ

−
zv holds, then there exists an equivalent inequality in

terms of the expectation differences, up to the constantM(G+,G−).

Lemma 4. Given two interaction graphs G+ = (V ,E, P+) and
G− = (V ,E, P−), it holds that τ−uv ≤ τ−uz + τ

−
zv ⇔ ∆−uv ≤ ∆−uz +

∆−zv +M(G
+,G−), with u,v, z ∈ V .

Proof. By definition (Equation (13)), τ−uv = 1
M (G+,G−) (E[p

−
uv ] +

σuv
2 ), where σuv = M(G+,G−) − (E[p+uv ] + E[p

−
uv ]), thus it holds:

τ −uv ≤ τ
−
uz + τ

−
zv ⇔ E[p

−
uv ] +

σuv
2
≤ E[p−uz ] +

σuz
2
+ E[p−zv ] +

σzv
2

⇔ E[p−uv ] +M (G+,G−) − E[p
+
uv ] ≤ E[p

−
uz ] +M (G+,G−) − E[p

+
uz ]+

+ E[p−zv ] +M (G+,G−) − E[p
+
zv ]

⇔ ∆−uv ≤ ∆−uz + ∆
−
zv +M (G+,G−), with u, v, z ∈ V . □

The following Lemma 5 states the condition for stronger approx-
imation guarantees, which requires that the difference E[p+uv ] −
E[p−uv ] lies in the range [0,M(G+,G−)/2].

Lemma 5. Given interaction graphsG+= (V ,E, P+),G−= (V ,E, P−),
if ∆+uv ∈ [0,M(G+,G−)/2], then τ−uv ≤ τ−uz + τ

−
zv , for any u,v, z ∈ V .

Proof. By Lemma 4, it follows that:

τ−uv ≤ τ−uz + τ
−
zv ⇔ ∆−uv + ∆

+
uz + ∆

+
zv ≤ M(G+,G−)

⇔ ∆−uv + ∆
+
uz + ∆

+
zv ≤ 0 +

M(G+,G−)

2
+
M(G+,G−)

2

⇐ ∆−uv ≤ 0, ∆+uv ≤
M(G+,G−)

2
,∀u,v ∈ V ,

which corresponds to ∆+uv ∈ [0,M(G+,G−)/2], as ∆+uv = −∆−uv . □

Theorem 6. If K(G+,G−)≥ 0 and ∆+uv ∈ [0,M(G+,G−)/2], ∀u,v ∈V ,

Algorithm 1 is a randomized expected 2-approximation algorithm for

Problem 4.

Thus, the stronger approximation guarantees of MIL hold if the
expected interaction between any two users u and v when they
are put in the same cluster is higher than the expected interaction
when they are part of different clusters, and the former does not

Algorithm 2 D-MIL

Input: Interaction graphs G+ = (V , E, P+), G− = (V , E, P−)
Output: A clustering C of V
1: compute τ +uv , τ −uv for all (u, v) ∈ E {Equation (13)}
2: C ← ∅, V ′ ← V
3: while V ′ , ∅ do
4: compute dV ′ (u) = | {v ∈ V ′ | (u, v) ∈ E } |, for all u ∈ V ′
5: sample a pivot vertex u ∈V ′with probability proportional todV ′ (u)
6: Cu ← {u } ∪ {v ∈ V ′ | (u, v) ∈ E, τ +uv > τ −uv }
7: add cluster Cu to C and remove all vertices in Cu from V ′

exceed the latter by more than half of the maximum interaction.
This is actually not a strict condition, since it can be observed in
application scenarios (especially ∆+uv ≥ 0).
Relation with correlation-clustering theory. Correlation-clus-
tering (in)approximability result states thatMin-CC on general (i.e.,
not necessarily complete) graphs is APX-hard, with best known
approximation factor O(log |V |) [5]. By constrast, in Theorems 5–
6, we have shown that our Min-Interaction-loss-Clustering
problem has constant-factor approximation guarantees for general
instances of our problem, and such results are obtained by adapting
correlation-clustering algorithms.

The above would apparently contradict the theory on correlation
clustering. However, this is not the case, for the following reasons.
First, although the original input interaction graphs we deal with
are general (i.e., they may have missing edges), the way how we for-
mulate our Min-Interaction-loss-Clustering problem, through
the M(G+,G−) constant (Equation (7)), guarantees that the actual
graphs processed by the Min-Interaction-loss-Clustering algo-
rithms are complete, i.e., they have an edge with a positive weight
between every pair of vertices. Second, the actual edge weights
handled by the Min-Interaction-loss-Clustering algorithms
(Equation (13)) are not arbitrary. Indeed, they are derived from the
original weights with an ad-hoc rearrangement that guarantees the
appealing properties we show above (i.e., fulfilment of the proba-
bility constraint and the fact that constant-factor guarantees for
correlation clustering carry over to our problem). Such a rearrange-
ment is a nice peculiarity of our problem, which is not possible in
general: that is the main reason why this result is not in contrast
with the inapproximability of Min-CC on general graphs.

4.2 Enhanced pivot-sampling strategy
The proposed MIL basically resembles the correlation-clustering
KwikCluster algorithm [1] on a graph with ad-hoc-defined edge
weights. However, KwikCluster is explicitly designed for complete
graphs, whereas the input graphs for ourMin-Interaction-loss-
Clustering problem are general at first. Clearly, KwikCluster could
be modified to handle general graphs, but this may lead to inef-
fectiveness. More specifically, we recall that the edge reweighting
adopted in ourMIL algorithm (Equation (13)) makes the input graph
complete by assigning an equal positive and negative weight (equal
to 1/2) to those vertex pairs that do not share an edge in the original
graph. This way, putting those non-linked pairs in the same cluster
or in different clusters does not make any difference in terms of
objective-function value of the resulting solution. This fact is over-
looked by KwikCluster, which, being designed for complete graphs,
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samples pivots uniformly at random, without taking into account
how many neighbors a candidate pivot has in the original graph.
This may raise inaccuracies, as shown in the next example.

Example 1. Figure 1 shows an interaction graphwhere (u,v) edges
are labeled according to what distribution prevails on the other in

terms of expected value, i.e., “+” if E[p+uv ] > E[p
−
uv ], “–” other-

wise, while vertices are colored according to their degrees, i.e., the

darker the shade, the more the number of edges adjacent to it. The

optimal solution of Min-Interaction-loss-Clustering on this ex-

ample consists of clusters {3, 7, 10, 11}, {2, 4, 6, 12}, {1, 5, 8, 9}. It is
apparent that this optimal clustering may be found by the MIL al-

gorithm if darker-colored vertices (i.e., vertices 1, 2, 3) are selected as

pivots. Nevertheless, as MIL samples pivots uniformly at random, it

is likely that one of the lighter-colored vertices (that are more than

the darker-colored ones) becomes instead a pivot in the first place.

This may lead to ineffective clusterings. For instance, assume vertex

10 is selected as a very first pivot. Even assuming that the next pivots

are the darker-colored vertices 1 and 2, the ultimate clustering will

be {3, 10}, {1, 5, 8, 9}, {2, 4, 6, 12}, {11}, {7}, which is far from the

optimal one.

The above example shows that, on general graphs, sampling
pivots according to their degrees may be more appropriate than
uniform sampling. This is the main intuition behind the second
algorithm we propose in this work, which is termed D-MIL and
whose outline is reported as Algorithm 2.

Proposition 2. (cf. Appx. D) D-MIL takes O(|E | log |V |) time.

4.3 Hill climbing
The proposed MIL and D-MIL algorithms can be further improved
by performing an a-posteriori hill-climbing step on the cluster-
ings yielded by them. In particular, the idea is to consider relocat-
ing vertices in other clusters, as long as the resulting clustering
has a better objective-function value. Such relocation steps may
be efficiently implemented by incrementally computing marginal
objective-function losses/gains. Specifically, given a clustering C,
let C′ be the clustering obtained from C by moving a vertex u
from cluster Cu ∈ C to a cluster C ′u , Cu . Taking into account the
rearrangement of the ℓ̄(·) objective function stated in Theorem 4,
removingu fromCu leads to a decrease in the ℓ̄(·) function equal to:∑

v∈Cu \{u}

(
M (G+,G−) − E[p+uv ]

)
+

∑
v∈V \Cu

(
M (G+,G−) − E[p−uv ]

)
.

At the same time, addingu toC ′u leads to an increase of ℓ̄(·) equal to:∑
v∈C′u

(
M (G+,G−) − E[p+uv ]

)
+

∑
v∈V \C′u

(
M (G+,G−) − E[p−uv ]

)
.

Combining the expressions above, and denoting ∆+uv = E[p
+
uv ] −

E[p−uv ], ∆−uv = −∆+uv , we obtain:

ℓ̄(GC′ ) = ℓ̄(GC) +
∑

v∈Cu\{u}

((
M (G+,G−)−E[p−uv ]

)
−

(
M (G+,G−)−E[p+uv ]

))︸                                                   ︷︷                                                   ︸
= E[p+uv ]−E[p

−
uv ] = ∆+uv

+

+
∑
v∈C′u

((
M (G+,G−)−E[p+uv ]

)
−

(
M (G+,G−)−E[p−uv ]

))︸                                                     ︷︷                                                     ︸
= E[p−uv ]−E[p

+
uv ] = ∆−uv

+

+
∑

v∈V \{Cu ∪ C′u }

((
M (G+,G−)−E[p−uv ]

)
−

(
M (G+,G−)−E[p−uv ]

))︸                                                     ︷︷                                                     ︸
= 0

= ℓ̄(GC) +
∑

v∈Cu\{u}

∆+uv +
∑
v∈C′u

∆−uv = ℓ̄(GC) +
∑

v∈Cu\{u},
(u,v )∈E

∆+uv +
∑

v∈C′u ,
(u,v )∈E

∆−uv , (16)

where the last equivalence holds as, for vertices v : (u,v) < E,
E[p+uv ] = E[p

−
uv ], and, then, ∆+uv = ∆−uv = 0. The hill-climbing step

consists in iteratively picking a vertex u and a clusterC ′u , Cu that
minimize Eq. (16), and moving u from Cu to C ′u . This local-search
process goes on until either no movement leading to a decrease in
the ℓ̄(·) function exists, or a certain number of iterations I has been
hit. The process is outlined as Algorithm 3 (cf. Appendix C).

Proposition 3. (cf. Appendix D) Hill-climbing for MIL and D-
MIL takes O(I (|V | + |E |)) time, with I number of iterations.

Final remark on approximation guarantees. Here we summa-
rize the approximation guarantees of all the proposed algorithms.
Algorithm 1 achieves constant-factor approximation guarantees un-
der mild conditions (either factor-5 or factor-2, see Theorems 5–6).
Algorithm 2 does not come instead with any guarantees as of now:
the study of its approximation properties is indeed an interesting
open problem that we defer to future work. However, we remark
that one can still have both the guarantees of Algorithm 1 without
sacrificing the practical benefits of Algorithm 2: simply run both
the algorithms and take the best one (in terms of objective-function
value) among the two yielded solutions. This way, the approxima-
tion guarantees of Algorithm 1 would be preserved. As far as hill
climbing procedure, instead, being a post-processing strategy that
can only improve the outputs of Algorithm 1 or Algorithm 2, it does
not alter the approximation properties of those algorithms (i.e., it
achieves guarantees if applied to Algorithm 1’s solutions, while no
guarantees hold for the combo Algorithm 2 + hill climbing).

We hereinafter denote with suffix _R the combo algorithms ob-
tained by executing Algorithm 3 in cascade of Algorithm 1 (MIL_R)
or Algorithm 2 (D-MIL_R).

5 EXPERIMENTAL EVALUATION
Data. We considered real-world networks as well as data pro-
duced by selected random network generation models. More specif-
ically, we used 10 real-world, undirected, unweighted and times-
tamped networks, available from the KONECT project, except Pri-
marySchool and HighSchool from SocioPatterns, and StackOver-
flow from SNAP.1 Please see Table 3 in Appendix E for details.

Each of the input temporal networks is treated as a sequence of
undirected snapshot graphs ⟨G1, . . . ,GT ⟩, where eachGt = (V ,Et )
(t = 1..T ) models the vertex interactions at time t . We defined
the interaction graphs G+ = (V ,E, P+) and G− = (V ,E, P−) by
“flattening” the temporal network and estimating the p+uv and p−uv
distributions, respectively, based on the fractions of clusters shared
by u,v over all graphs, according to a precomputed clustering solu-
tion on each graphGt . Insights on this can be found in Appendix E.

Concerning the synthetic data, we focused on two well-known
random-graph models, namely Barabasi-Albert (hereinafter BA)
1http://konect.cc/, http://www.sociopatterns.org/datasets/, http://snap.stanford.edu/
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Table 1: Average loss values and clustering sizes

MIL MIL_R D-MIL D-MIL_R CPM [21] GJA [9] CPMap [7]
loss #clusters loss #clusters loss #clusters loss #clusters loss #clusters loss #clusters loss #clusters

Amazon 4.80 × 106 1.51 × 106 3.82 × 106 1.36 × 106 4.49 × 106 1.47 × 106 3.69 × 106 1.34 × 106 4.38 × 106 1.17 × 106 4.33 × 106 1.03 × 106 3.66 × 106 1.34 × 106

DBLP 3.94 × 106 986.02 × 103 3.17 × 106 614.86 × 103 3.70 × 106 858.93 × 103 3.01 × 106 557.90 × 103 2.55 × 106 354.03 × 103 2.89 × 106 506.72 × 103 2.81 × 106 393.38 × 103

Epinions 12.92 × 106 76.81 × 103 4.71 × 106 47.54 × 103 9.06 × 106 65.59 × 103 4.70 × 106 47.51 × 103 9.80 × 106 16.73 × 103 8.82 × 106 16.68 × 103 5.06 × 106 65.31 × 103

HighSchool 4.59 × 103 45.26 3.50 × 103 8.16 4.44 × 103 37.66 3.35 × 103 6.38 4.29 × 103 9.00 3.43 × 103 7.00 3.29 × 103 8.00
Last.fm 164.67 × 103 57.04 150.25 × 103 37.64 163.35 × 103 42.10 150.25 × 103 36.94 161.53 × 103 3.00 160.66 × 103 4.00 151.60 × 103 37.00
PrimarySchool 6.95 × 103 16.44 5.01 × 103 1.20 6.80 × 103 15.12 4.92 × 103 1.04 6.48 × 103 5.00 6.27 × 103 5.00 5.46 × 103 2.00
ProsperLoans 1.82 × 106 39.60 × 103 1.30 × 106 3.75 × 103 1.81 × 106 26.06 × 103 1.28 × 106 3.70 × 103 1.28 × 106 1.54 × 103 1.30 × 106 1.13 × 103 1.39 × 106 7.49 × 103

StackOverflow 12.39 × 106 1.74 × 106 8.83 × 106 308.66 × 103 11.91 × 106 1.27 × 106 8.65 × 106 237.36 × 103 9.90 × 106 106.58 × 103 9.26 × 106 13.78 × 103 10.81 × 106 188.44 × 103

Wikipedia 6.74 × 106 276.14 × 103 5.31 × 106 157.77 × 103 6.44 × 106 246.29 × 103 5.26 × 106 168.80 × 103 5.84 × 106 113.64 × 103 5.84 × 106 108.82 × 103 5.83 × 106 209.68 × 103

WikiTalk 6.29 × 106 2.77 × 106 3.72 × 106 381.88 × 103 5.41 × 106 1.99 × 106 3.38 × 106 485.66 × 103 3.68 × 106 351.73 × 103 5.13 × 106 1.69 × 106 NA NA
tot. average 4.91 × 106 7.40 × 105 3.10 × 106 2.87 × 105 4.30 × 106 5.93 × 105 3.01 × 106 2.84 × 105 3.76 × 106 2.11 × 105 3.77 × 106 3.37 × 105 3.30 × 106 2.45 × 105

and Watts-Strogatz (hereinafter WS) models. For the BA model, we
varied the number of edges to attach with a new vertex, denoted
asm, and for the WS model, we varied the distance (i.e., number
of steps) within which two vertices will be connected, denoted as
neiдh. More details can be found in Appendix E.
Evaluation goals and competitors.We evaluated the interaction
loss, the size of the clustering produced, and the runtime performance

of the proposed methods, i.e.,MIL, D-MIL,MIL_R, and D-MIL_R.
All criteria measurements reported correspond to averages over
100 runs. We set the number of iterations I to 8, which experimen-
tally revealed to be a good trade-off for balancing the three criteria.
Moreover, we compared our proposed methods against three se-
lected methods for community detection in signed graphs, namely
CPM [21], GJA [9], and CPMap [7] (cf. Sect. 2). Since all such meth-
ods require only one weight, either positive or negative, for each
edge, we set any weight to be the highest expected value between
the positive and negative distribution (i.e., max{E[p+uv ],E[p−uv ]}),
changing the sign of the weight in case the maximum corresponds
to the negative distribution. Since [21] deals with directed networks,
our evaluation networks were modified by replacing each edge with
two reciprocal directed edges. Also, the objective function of the
methods in [21] and [9] corresponds to that used in the Louvain
modularity-optimization-based method. For all methods, we used
the default parameter setting.

5.1 Results on real data
Interaction loss. Table 1 reports the values of the discounted in-
teraction loss (cf. Eq. (11)). As expected, the clustering solutions
of the enhanced methods (i.e., MIL_R and D-MIL_R) show consis-
tently lower loss than the solutions produced byMIL and D-MIL.
Also, we observe that, on all datasets, D-MIL outperformsMIL and,
in turn, D-MIL_R outperformsMIL_R, which confirms our initial
hypothesis that the degree-based heuristic should be preferred on
real-world networks. Notably, considering the total average of loss
values over all networks (last row in the table), the percentage loss-
decrease values obtained byMIL_R are 37% and 28% againstMIL
and D-MIL, respectively, while the values obtained by D-MIL_R
are 39%, 30% and 3% against MIL, D-MIL, and MIL_R, respectively.
Number of clusters. Table 1 also shows the size of the clusterings
produced by the various methods. D-MIL always yields a smaller
number of clusters than MIL. This happens since, by pivoting over
vertices with higher degree, it is more likely to sample vertices

Table 2: Execution times (in seconds)

MIL MIL_R opt. time D-MIL D-MIL_R opt. time CPM [21] GJA [9] CPMap [7]
Amazon 8.63 347.77 339.14 97.40 427.28 329.88 2 248.9 1 020 122.23 669.114
DBLP 6.11 189.63 183.52 71.15 251.24 180.09 1 570.41 147 159.68 601.044
Epinions 5.90 327.27 321.38 18.90 348.11 329.21 797.71 34 998.9 592.901
High School 0.00 0.04 0.04 0.01 0.04 0.03 0.2 0.19 2.716
Last.fm 0.03 3.48 3.45 0.14 3.72 3.58 7.73 21.54 10.467
PrimarySchool 0.00 0.06 0.05 0.01 0.05 0.04 0.125 0.1 3.698
ProsperLoans 0.70 48.74 48.04 4.31 52.06 47.75 179.78 30 152.47 116.59
StackOverflow 7.88 319.67 311.79 105.68 397.39 291.72 2 465.76 1 140 054.23 1519.943
Wikipedia 2.41 150.03 147.62 19.05 160.69 141.64 826.93 189 345.74 316.438
WikiTalk 13.92 203.49 189.56 129.10 300.68 171.58 1 165.01 650 282.4 NA

having a larger number of incident edges such thatp+uv > p−uv . Also,
note thatMIL andD-MIL tend to produce more clusters thanMIL_R
and D-MIL_R, up to 157% and 160%, respectively, of percentage
size-increase. This is not surprising since the reduction of loss is
related to a decrease in the clustering size.
Time performance. Table 2 reports the average time performance
of the various methods. For MIL_R and D-MIL_R, we show details
about the optimization phase time (i.e., Algorithm 3).2 Consistently
with the computational complexity analysis (Sect. 4), D-MIL tends
to perform worse thanMIL, and so D-MIL_R againstMIL_R. Never-
theless, in PrimarySchool, D-MIL_R runtime is found to be slightly
better than MIL_R: this happens since, despite the two methods
converge to almost the same local optimum, D-MIL_R starts from a
solution which is closer to the final solution as compared to the one
produced by MIL_R (cf. Table 1), thus requiring a fewer number of
optimization steps (10% decrease), and hence execution time.

5.2 Results on synthetic data
We analyzed loss, clustering size and time performance of the pro-
posed methods, averaged over 100 network-generation runs. Each
of the assessment criteria wasmeasured by varying them parameter
for BA networks and the neiдh parameter for WS networks.
Interaction loss. Figures 2(a)-(b) show the percentage loss-decrease
of D-MIL over MIL, and of D-MIL_R over MIL_R. In agreement
with the results obtained on real-world networks, the pairwise loss
variation is relatively low, for either pair of methods, as long as the
network is sparse (i.e., lowerm or neiдh values); more specifically,
the percentage loss-decrease of D-MIL w.r.t.MIL is just 0.4% and
0.15% for BA and WS networks, respectively, while correspond-
ing values for D-MIL_R w.r.t.MIL_R are further lower (i.e., below
2Experiments were carried out on a Ubuntu 18.04.2 LTS machine with Intel Xeon(R)
Gold 5118 CPU @ 2.30GHz × 48 processor and 256GB ram
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Figure 2: Results on BA networks (left side) and on WS
networks, with rewiring probability 0.5 (right side).

0.1% for BA and 0.05% for WS). In all cases, the loss variation be-
comes negligible already for mid regimes of the x-axis. Also, for
WS networks having rewiring probability lower than 0.5 (results
not shown), the pairwise loss variation would be negligible even
for low values of neiдh (i.e., higher sparsity).
Number of clusters. The clustering size (Figs. 2(c)-(d)) decreases
as the number of edges increases with the value ofm or neiдh.MIL
always yields a larger number of clusters than the other methods,
especially on BAnetworks still with highest values ofm, followed by
D-MIL and the enhanced methods, which produce almost the same
number of clusters. In general, the difference among the methods
is emphasized for sparser networks and decreases as the networks
tend to become almost complete.
Time performance. Figures 2(e)-(f) show the running times of
the methods. Like for real networks (cf. Table 2), MIL is the fastest
method, immediately followed by D-MIL, showing to be very ro-
bust as the number of edges (and hence, density) of the network
increases, i.e., asm and neiдh parameter values increase for BA and
WS networks, respectively. On the contrary, the enhanced meth-
ods achieve higher runtime, with D-MIL_R being slightly slower
than MIL_R; nonetheless, they scale linearly on WS networks, and
sublinearly on BA networks, with the density of the network.

5.3 Evaluation with competing methods
On real networks, considering the interaction-loss values reported
in the last three groups of columns in Table 1, it is worth noticing
that our D-MIL_R andMIL_R outperform all competing methods
in most cases, with average percentage loss-decreases of 20% for D-
MIL_R, resp. 18% forMIL_R, against bothCPM andGJA, and 10% for

D-MIL_R, resp. 8% forMIL_R, againstCPMap. In terms of clustering
size, GJA generally produces the lowest number of clusters (6 cases
out of 10), though it holds the opposite on average due to the
performance on WikiTalk, while CPMap generates solutions with
higher size than the others (7 cases out of 10).

Concerning execution times, GJA is the slowest method among
the competitors, while CPMap is the fastest. Remarkably, in all
cases, the fastest competitor is outperformed by all of our MLI meth-
ods, with a minimum gap (w.r.t. D-MIL_R) of 119% time-increase.

Results on synthetic networks obtained by the competitors are
shown in Appendix F.

6 CONCLUSIONS
We introduced the problem of optimizing the overall interaction
in probabilistic graphs under clustering constraints. We theoreti-
cally characterized the problem and devised both approximation
algorithms and heuristics, whose effectiveness, efficiency and supe-
riority w.r.t. competing methods was assessed in the experiments.

As future work, we plan to extend the problem formulation in
order to capture overlapping clusters as well as consider the case
when the probability distributions of interaction are not given but
only samples coming from that distributions can be observed.

For reproducibility purposes, we make source code and data avail-

able at: https://github.com/Ralyhu/optimize_interactions.
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A APPROXIMATION OF PROBLEM 1
In the following we show that the state-of-the-art (constant-factor)
approximation algorithms designed forMax-CC keep their guar-
antees on Max-Interaction-Clustering too. Theorem 1 states
that Max-Interaction-Clustering is an instance of Max-CC.
Specifically, as the variousp+uv ,p−uv are general,Max-Interaction-
Clustering is an instance of Max-CC with weights (ω+uv ,ω+uv ) ∈
R+0 ×R

+
0 , for allu,v ∈ V . Such a variant of Max-CC is not studied in

the literature. The closest variant for which theoretical results have
been derived is the one where, for every pair (u,v) of vertices, at
most one between ω+uv and ω−uv is non-zero, i.e., the variant where
(ω+uv ,ω

−
uv ) ∈ {(ω

′, 0), (0,ω ′′)}ω′,ω′′∈R+0 , ∀u,v ∈ V [6, 20]. For
this variant, Swamy [20] devises a 0.7666-approximation algorithm
based on a semidefinite-programming, and a further, more practical
0.75-approximation algorithm. Next we show that Swamy’s approx-
imation result carries over to theMax-CC variant underlying our
Max-Interaction-Clustering problem.

Given two interaction graphsG+ = (V ,E, P+) andG− = (V ,E, P−),
for all (u,v) ∈ E, let p̄uv , τ̂+uv and τ̂−uv be defined as:

p̄uv =min
{
E[p+uv ],E[p

−
uv ]

}
, τ̂+uv =E[p

+
uv ]−p̄uv , τ̂

−
uv =E[p

−
uv ]−p̄uv .

Thus, by definition, (τ̂+uv , τ̂−uv ) ∈ {(ω ′, 0), (0,ω ′′)}ω′,ω′′∈R+0 ,∀u,v ∈
V , like in Swamy’s setting. Moreover, the objective function f̄ (·) of
Max-Interaction-Clustering can be rewritten as:

f̄ (GC) =
∑

(u,v )∈E,
C(u)=C(v )

E[p+uv ] +
∑

(u,v )∈E,
C(u),C(v )

E[p−uv ] {Theorem 1}

=
∑

(u,v )∈E,
C(u)=C(v )

(
τ̂ +uv + p̄uv

)
+

∑
(u,v )∈E,
C(u),C(v )

(
τ̂ −uv + p̄uv

)
=

∑
(u,v )∈E,
C(u)=C(v )

τ̂ +uv +
∑

(u,v )∈E,
C(u),C(v )

τ̂ −uv +
∑

(u,v )∈E

p̄uv︸         ︷︷         ︸
H (G+,G−)

=
∑

(u,v )∈E,
C(u)=C(v )

τ̂ +uv +
∑

(u,v )∈E,
C(u),C(v )

τ̂ −uv

︸                                  ︷︷                                  ︸
:= h(GC )

+ H (G+, G−)︸        ︷︷        ︸
constant ≥ 0

. (17)

As a result, Max-Interaction-Clustering’s objective function
f̄ (·) corresponds to the sum of the objective function of Max-CC
(where the weights assigned to every pair (u,v) of vertices are τ̂+uv
and τ̂−uv ) plus a nonnegative constant. Hence,Max-Interaction-
Clustering and Max-CC are equivalent in terms of optimal value.
Specifically, let I1 =

〈
G+,G−

〉
be an instance of Max-Interaction-

Clustering, and I2 =
〈
V , {τ̂+uv }u,v ∈V , {τ̂

−
uv }u,v ∈V

〉
be an instance

of Max-CC derived from I1 by employing the weights defined above.
Let also C∗

f̄
and C∗h be the optimal clusterings for the I1 instance

according to the f̄ (·) and h(·) functions, respectively. Finally, let C̃
denote the clustering yielded by the given α-approximation algo-
rithm forMax-CC on input I2 (e.g., aforementioned factor-0.7666
Swamy’s algorithm [20]). By definition of approximation algorithm,
we know that, for every input: h(G

C̃
) ≥ α ×h(GC∗h

), where α ≤ 1.
Therefore, it holds that:
h(G
C̃
) ≥ α×h(GC∗h

) ⇔ h(G
C̃
)+H (G+,G−) ≥ α×h(GC∗h

)+H (G+,G−)

⇒ h(G
C̃
) + H (G+,G−) ≥ α ×

(
h(GC∗h

) + H (G+,G−)
)

⇔ f̄ (G
C̃
) ≥ α × f̄ (GC∗д ) ⇔ f̄ (G

C̃
) ≥ α × f̄ (GC∗

f̄
).

B PROOF OF LEMMA 2
Assumingw.l.o.g.E[p+uv ]=E[p−uv ]=0, for all (u,v) < E, it holds that:

ℓ̄(GC) =
∑

u,v∈V ,
C(u)=C(v )

(
M (G+,G−) − E[p+uv ]

)
+
∑

u,v∈V ,
C(u),C(v )

(
M (G+,G−) − E[p−uv ]

)
{Theorem 4}

=
∑

u,v∈V ,
C(u)=C(v )

(
M (G+,G−)−M (G+,G−)τ +uv +

σuv
2

)
+
∑

u,v∈V ,
C(u),C(v )

(
M (G+,G−)−M (G+,G−)τ −uv +

σuv
2

)
= M (G+,G−)

∑
u,v∈V ,
C(u)=C(v )

1
M (G+,G−)

(
M (G+,G−) −M (G+,G−)τ +uv +

σuv
2

)
+

+M (G+,G−)
∑

u,v∈V ,
C(u),C(v )

1
M (G+,G−)

(
M (G+,G−) −M (G+,G−)τ −uv +

σuv
2

)
= M (G+,G−)

∑
u,v∈V ,
C(u)=C(v )

(
1−τ +uv +

σuv
2M (G+,G−)

)
+M (G+,G−)

∑
u,v∈V ,
C(u),C(v )

(
1−τ −uv +

σuv
2M (G+,G−)

)
= M (G+,G−)

∑
u,v∈V ,
C(u)=C(v )

(
1 − τ +uv

)︸     ︷︷     ︸
= τ −uv

+ M (G+,G−)
∑

u,v∈V ,
C(u),C(v )

(
1 − τ −uv

)︸     ︷︷     ︸
= τ +uv

+
∑

u,v∈V

σuv
2︸        ︷︷        ︸

= K (G+,G−)

= M (G+,G−)
( ∑

u,v∈V ,
C(u)=C(v )

τ −uv +
∑

u,v∈V ,
C(u),C(v )

τ +uv
)

︸                              ︷︷                              ︸
= д(GC )

+ K (G+,G−). □

C HILL CLIMBING DETAILS
Algorithm 3 shows the pseudocode of the hill-climbing refinement
for MIL and D-MIL methods (cf. Section 4.3).

Algorithm 3 HillClimbing

Input: Interaction graphs G+ = (V , E, P+), G− = (V , E, P−); A cluster-
ing C of V ; An integer I > 0

Output: A clustering C′ of V
1: C′ ← C
2: for all i = 1, . . . , I do
3: for every u ∈ V let Cu ∈ C′ the cluster of C′ where u belongs to
4: pick u ∈ V and cluster C′u ∈ C′ (C′u , Cu ) that minimize Eq. (16)
5: C′′ ← clustering obtained from C′ by moving u from Cu to C′u
6: if ℓ̄(GC′′ ) < ℓ̄(GC′ ) then
7: C′ ← C′′

D TIME COMPLEXITY
Proposition 1:MIL runs in O(|V |+ |E |) time. The vertex-sampling
step (Line 4 of Algorithm 1) can be implemented so as to take O(|V |)
time overall, by preliminarily generating a random permutation of
V (e.g., via O(|V |)-time Fisher-Yates shuffle algorithm), and picking
vertices u according to the ordering of that permutation. Also, the
computation of τ+uv , τ−uv (Line 1 of Algorithm 1) can be restricted to
the linked (u,v) pairs; in fact, for (u,v) < E, it holds that τ+uv = τ−uv ,
thus, in the next cluster-building step (Line 5 of Algorithm 1) the
vertices v such that (u,v) < E can be discarded. This makes the
weight-computation and cluster-building take O(|E |) time overall.
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Table 3: Summary of real networks used in our evaluation:
original data (cols. 2-5) and preprocessed data (cols. 6-7)

|V |
∑T
t=1 |Et | T edge semantics |E | %{∆+uv > 0}

Amazon 2 146 057 22 728 036 115 co-rating 22 507 680 50
DBLP 1 824 701 11 865 584 80 co-authorship 8 344 615 52
Epinions 120 492 33 412 111 25 co-rating 24 994 363 50
HighSchool 327 47 589 1212 face-to-face 5 818 69
Last.fm 992 4 342 951 77 co-listening 369 973 50
PrimarySchool 242 55 043 390 face-to-face 8 317 66
ProsperLoans 89 269 3 343 271 307 economic 3 330 022 50
StackOverflow 2 433 067 16 200 209 51 Q/A 15 786 816 49
Wikipedia 343 860 18 086 734 101 co-editing 10 519 921 50
WikiTalk 2 863 439 10 335 318 192 communication 8 146 544 54
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Figure 3: Results on BA networks (left side) and on WS
networks, with rewiring probability 0.5 (right side).

Proposition 2: Sampling a vertex u with probability proportional
to its (current) dV ′(u) degree (cf. line 4 in Algorithm 2) can be
implemented with a priority queue Q with priorities dV ′(u) × rnd ,
where rnd is a random number. At the beginning, all verticesV are
added to Q . Pivots are sampled following the order upon which
vertices are extracted from Q , discarding vertices that have been
assigned to clusters beforehand. Initializing Q and extracting all
vertices from it takes O(|E | + |V | log |V |) time. Building all the
clusters takes O(|E |) time overall, as each cluster requires accessing
the neighbors of the pivot O(1) times. Updating the degrees and
the priorities of vertices in Q after a cluster has been built (and
removed) takes O(|E | log |V |) time. As a result, the overall time
complexity of D-MIL is O(|E | log |V |).
Proposition 3: Computing Equation (16) for all vertices takes
O(|V | + |E |) time, as, for every vertex u, it requires processing u’s
neighbors only. Hence, denoting by I the number of iterations of the
process, the overall time complexity of Algorithm 3 isO(I (|V |+ |E |)).

E DATA AND SETTINGS
Table 3 summarizes main structural characteristics of the real-
world networks used in our evaluation. Each of the input tem-
poral networks is treated as a sequence of undirected snapshot
graphs ⟨G1, . . . ,GT ⟩, where each Gt = (V ,Et ) (t = 1..T ) models
the vertex interactions at time t . We defined the interaction graphs
G+ = (V ,E, P+) and G− = (V ,E, P−) as follows. The topology
of the two graphs was derived by “flattening” the temporal net-
work, i.e., (u,v) ∈ E if u and v are linked in at least one graph
from ⟨G1, . . . ,GT ⟩; For each pair u,v ∈ V , if (u,v) < E we assume
that the two vertices will have no interaction with probability one,
otherwise (i.e., (u,v) ∈ E) we define the distributions p+uv , p−uv as:

p+uv (w ) =
Pr[wG (u, v) = w ∧ C(u) = C(v)]

Pr[C(u) = C(v)]
(18)

p−uv (w ) =
Pr[wG (u, v) = w ∧ C(u) , C(v)]

Pr[C(u) , C(v)]
(19)

forw ∈D(puv ), withG ⊑ GC possible world induced by C from G.
To estimate the above probabilities, we first derived a clustering

solution on each graph from ⟨G1, . . . ,GT ⟩, by initially assigning
each vertex to a singleton cluster (i.e., starting from a solution totally
biased towards the distributions in P−), then iteratively performing
agglomerative hierarchical clustering based on the minimization of
a criterion function defined as the absolute value of the difference
between the sum of the number of edges internal to each cluster and
the sum of the number of edges external to each cluster. Although
simple, this criterion function is better suited to our setting than
classic community-detection approaches, such asmodularity-based
optimization criteria, which compares the actual within-community
connectivity with the expected one based on a null model.

Once obtained the clustering solution on each Gt , we finally
estimated p+uv (w), resp. p−uv (w), as the fraction of the timestamped
graphs where u and v shared the same cluster, resp. were not in the
same cluster, that corresponds to the interaction strength equal tow .
The intuition for the definition ofp+uv (w) is that the more frequently
u and v were grouped into the same cluster and their observed
strength of interaction wasw , the higher the probability that they
will interact with strengthw if they would be assigned to the same
group; analogously for the functions p−uv . In our evaluation, we
considered binary distribution functions; in this regard, note that
the last column in Table 3 denotes the percentage of edges (u,v),
in each network, such that E[p+uv ] > E[p−uv ].

For both BA and WS models, we generated networks with 1000
vertices. For the BA model, we variedm from 0 to 1000, with steps
of 5, for a total of 200 BA networks generated; analogously, for the
WS model, we varied neiдh from 0 to 1000/2=500, for a total of 100
WS networks generated. The expected values of interaction were
randomly generated (uniformly) between 0 and 1.

F COMPETITORS ON SYNTHETIC DATA
Figures 3(a)-(b) show the percentage loss decrease of D-MIL_R
against each competitor, which is always positive. Both CPM and
GJA produce fewer clusters than the othermethods, whereasCPMap,
except for lowm and neiдh, yields the highest number of clusters
(c.f. Figs. 3(c)-(d)). CPMap is the fastest method among competitors,
followed by CPM and GJA (c.f. Figs. 3(e)-(f)). All competitors are
anyway outperformed byMIL_R and D-MIL_R.
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