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ABSTRACT
We study a novel clustering problem in which the pairwise
relations between objects are categorical. This problem can
be viewed as clustering the vertices of a graph whose edges
are of different types (colors). We introduce an objective
function that aims at partitioning the graph such that the
edges within each cluster have, as much as possible, the same
color. We show that the problem is NP-hard and propose
a randomized algorithm with approximation guarantee pro-
portional to the maximum degree of the input graph. The
algorithm iteratively picks a random edge as pivot, builds a
cluster around it, and removes the cluster from the graph.
Although being fast, easy-to-implement, and parameter free,
this algorithm tends to produce a relatively large number of
clusters. To overcome this issue we introduce a variant algo-
rithm, which modifies how the pivot is chosen and and how
the cluster is built around the pivot. Finally, to address the
case where a fixed number of output clusters is required, we
devise a third algorithm that directly optimizes the objective
function via a strategy based on the alternating minimiza-
tion paradigm.

We test our algorithms on synthetic and real data from
the domains of protein-interaction networks, social media,
and bibliometrics. Experimental evidence show that our al-
gorithms outperform a baseline algorithm both in the task
of reconstructing a ground-truth clustering and in terms of
objective function value.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining
Keywords: Clustering, Edge-labeled graphs.

1. INTRODUCTION
Clustering is one of the most well-studied problems in data

mining. The goal of clustering is to partition a set of objects
in different clusters, so that objects in the same cluster are
more similar to each other than to objects in other clusters.
A common trait underlying most clustering paradigms is the
existence of a function sim(x, y) representing the similarity
between pairs of objects x and y. The similarity function
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Figure 1: An example of chromatic clustering: (a)
input graph, (b) the optimal solution for chromatic-
correlation-clustering (Problem 2).

is either provided explicitly as input, or it can be computed
implicitly from the representation of the objects.

In this paper, we consider a different clustering setting
where the relationship among objects is represented by a re-
lation type, such as a label `(x, y) from a finite set of possible
labels L. In other words, the range of the similarity func-
tion sim(x, y) can be viewed as being categorical, instead of
numerical. Moreover, we model the case where two objects
x and y do not have any relation with a special label l0 /∈ L.
Our framework has a natural graph interpretation: the in-
put can be viewed as an edge-labeled graph G = (V,E, L, `),
where the set of vertices V is the set of objects to be clus-
tered, the set of edges E ⊆ V × V is implicitly defined as
E = {(x, y) ∈ V × V | `(x, y) 6= l0}, and each edge has a
label in L or, as we like to think about it, a color.

The key objective in our framework is to find a partition
of the vertices of the graph such that the edges in each clus-
ter have, as much as possible, the same color (an example
is shown in Figure 1). Intuitively, a red edge (x, y) pro-
vides positive evidence that the vertices x and y should be
clustered in such a way that the edges in the subgraph in-
duced by that cluster are mostly red. Furthermore, in the
case that most edges of a cluster are red, it is reasonable
to label the whole cluster with the red color. Note that a
clustering algorithm for this problem should also deal with
inconsistent evidence, as a red edge (x, y) provides evidence
for the vertex x to participate in a cluster with red edges,
while a green edge (x, z) provides contradicting evidence
for the vertex x to participate in a cluster with green edges.
Aggregating such inconsistent information is resolved by op-
timizing a properly-defined objective function.

Applications. The study of edge-labeled graphs is moti-
vated by many real-world applications and is receiving in-
creasing attention in the data-mining literature [8, 10, 16].
As an example, biologists study protein-protein interaction
networks, where vertices represent proteins and edges repre-
sent interactions occurring when two or more proteins bind
together to carry out their biological function. Those inter-



actions can be of different types, e.g., physical association,
direct interaction, co-localization, etc. In these networks,
for instance, a cluster containing mainly edges labeled as co-
localization, might represent a protein complex, i.e., a group
of proteins that interact with each other at the same time
and place, forming a single multi-molecular machine [11].

As a further example, social networks are commonly rep-
resented as graphs, where the vertices represent individuals
and the edges capture relationships among these individu-
als. Again, these relationships can be of various types, e.g.,
colleagues, neighbors, schoolmates, football-mates.

In bibliographic data, co-authorship networks represent
collaborations among authors: in this case the topic of the
collaboration can be seen as an edge label, and a clus-
ter of vertices represents a topic-coherent community of re-
searchers. In our experiments in Section 5 we show how our
framework can be applied in all the above domains.

Contributions. In this paper we address the problem of
clustering data with categorical similarity, achieving the fol-
lowing contributions:

• We define chromatic-correlation-clustering, a
novel clustering problem for objects with categorical sim-
ilarity, by revisiting the well-studied correlation cluster-
ing framework [3]. We show that our problem is a gen-
eralization of the traditional correlation-clustering
problem, implying that it is NP-hard.

• We introduce a randomized algorithm, named Chromatic
Balls, that provides approximation guarantee propor-
tional to the maximum degree of the graph.

• Though of theoretical interest, Chromatic Balls has some
limits when it comes to practice. Trying to overcome
these limits, we introduce two alternative algorithms: a
more practical lazy version of Chromatic Balls, and an
algorithm that directly optimizes the proposed objective
function via an iterative process based on the alternating
minimization paradigm.

• We empirically assess our algorithms both on synthetic
and real datasets. Experiments on synthetic data show
that our algorithms outperform a baseline algorithm in
the task of reconstructing a ground-truth clustering. Ex-
periments on real-world data confirm that chromatic-
correlation-clustering provides meaningful clusters.

The rest of the paper is organized as follows. In the next
section we recall the traditional correlation clustering prob-
lem and introduce our new formulation. In Section 3 we
introduce the Chromatic Balls algorithm and we prove its
approximation guarantees. In Section 4 we present the two
more practical algorithms, namely Lazy Chromatic Balls and
Alternating Minimization. In Section 5 we report our experi-
mental analysis. In Section 6 we discuss related work.

2. PROBLEM DEFINITION
Given a set of objects V , a clustering problem asks to par-

tition the set V into clusters of similar objects. Assuming
that cluster identifiers are represented by natural numbers,
a clustering C can be seen as a function C : V → N. Typi-
cally, the goal is to find a clustering C that optimizes an ob-
jective function that measures the quality of the clustering
Numerous formulations and objective functions have been
considered in the literature. One of these, considered both
in the area of theoretical computer science and data min-

ing, is that at the basis of the correlation-clustering
problem [3].

Problem 1 (correlation-clustering)
Given a set of objects V and a pairwise similarity func-

tion sim : V × V → [0, 1], find a clustering C : V → N that
minimizes the cost

cost(C) =
∑

(x,y)∈V×V
C(x)=C(y)

(1− sim(x, y)) +
∑

(x,y)∈V×V
C(x)6=C(y)

sim(x, y). (1)

The intuition underlying the above problem is that the
cost of assigning two objects x and y to the same cluster
should be equal to the dissimilarity 1− sim(x, y), while the
cost of assigning the objects in different clusters should cor-
respond to their similarity sim(x, y). A common case is when
the similarity is binary, that is, sim : V × V → {0, 1}. In
this case, Equation (1) reduces to counting the number of
pairs of objects that have similarity 0 and are put in the
same cluster plus the number of pairs of objects that have
similarity 1 and belong to different clusters. Or equivalently,
in a graph-based terminology, the objective function counts
the number of “positive” edges that are cut plus the number
of “negative” (i.e., non-existing) edges that are not cut.

In chromatic-correlation-clustering, which we for-
mally define below, we still have negative edges (i.e., l0-
edges), but the positive edges may have different colors, rep-
resenting different kinds of relations among the objects.

Problem 2 (chromatic-correlation-clustering)
Given a set V of objects, a set L of labels, a special label
l0, and a pairwise labeling function ` : V × V → L ∪ {l0},
find a clustering C : V → N and a cluster labeling function
c` : C[V ]→ L so to minimize the cost

cost(C, c`) =
∑

(x,y)∈V×V,
C(x)=C(y)

(1−I[`(x, y) = c`(C(x))]) +
∑

(x,y)∈V×V,
C(x)6=C(y)

I[`(x, y) 6= l0].

(2)

Equation (2) is composed by two terms, representing
intra- and inter-cluster costs, respectively. In particular, ac-
cording to the intra-cluster cost term, any pair of objects
(x, y) assigned to the same cluster should pay a cost if and
only if their relation type `(x, y) is other than the predom-
inant relation type of the cluster indicated by the function
c`. For the inter-cluster cost, the objective function does
not penalize a pair of objects (x, y) only if they do not have
any relation, i.e., `(x, y) = l0. If `(x, y) 6= l0, the objective
function incurs a cost, regardless of the label `(x, y).

Example 1 For the problem instance in Figure 1(a), the
solution in Figure 1(b) has a cost of 5: there is no intra-
cluster cost, because the two clusters are cliques and their
edges are monochromatic, while we have an inter-cluster cost
of 5 as equal to the number of edges that are cut.

It is trivial to observe that, when |L| = 1, the chro-
matic-correlation-clustering problem corresponds to
the binary version of correlation-clustering. Thus, our
problem is a generalization of the standard problem. Since
correlation-clustering is NP-hard, we can easily con-
clude that chromatic-correlation-clustering is NP-
hard too.



The previous observation motivates us to consider
whether applying standard correlation-clustering algo-
rithms, just ignoring the different colors, is a good solution
to the problem. As we show in the following example, such
an approach does not guarantee to produce good solutions.

Example 2 For the problem instance in Figure 1(a), the
optimal solution for the standard correlation-cluster-
ing which does not consider the different colors, would be
composed by a single cluster containing all the six vertices,
as, according to Equation (1), this solution has a (min-
imum) cost of 4 corresponding to the number of missing
edges within the cluster. Conversely, this solution has a
non-optimal cost 12 when evaluated according to the chro-
matic-correlation-clustering formulation, i.e., accord-
ing to Equation (2). Instead, the optimum in this case would
correspond to the cost 5 solution depicted in Figure 1(b).

Although the example shows that for the chromatic ver-
sion of the problem we cannot directly apply algorithms de-
veloped for the correlation-clustering problem, we can
use such algorithms at least as a starting point, as shown in
the next section.

3. THE Chromatic Balls ALGORITHM
We present next a randomized approximation algo-

rithm for the chromatic-correlation-clustering prob-
lem. This algorithm, called Chromatic Balls, is motivated by
the Balls algorithm [1], which is an approximation algorithm
for standard correlation-clustering.

For completeness, we briefly review the Balls algorithm.
The algorithm works in iterations. Initially all objects are
considered uncovered. In each iteration the algorithm pro-
duces a cluster, and the objects participating in the cluster
are considered covered. In particular, the algorithm picks
as pivot a random object currently uncovered, and forms a
cluster consisting of the pivot itself along with all currently
uncovered objects that are connected to the pivot.

The outline of our Chromatic Balls is summarized in Algo-
rithm 1. The main difference with the Balls algorithm is that
the edge labels are taken into account in order to build clus-
ters around the pivots. To this end, the pivot chosen at each
iteration of Chromatic Balls is an edge, thus a pair of objects,
rather than a single object. The Chromatic Balls algorithm
employs a set V ′ to keep all the objects that have not been
assigned to any cluster yet; hence, initially, V ′ = V . At
each iteration, a random edge (u, v) such that both objects
u and v are currently in the set V ′ is selected as pivot (line
3). Given the pivot (u, v), a cluster C is formed around it.
Beyond the objects u and v, the cluster C additionally con-
tains all other objects x ∈ V ′ for which the triangle (u, v, x)
is monochromatic, that is, `(u, x) = `(v, x) = `(u, v) (lines
4 and 5). Since the label `(u, v) forms the basis for creating
the cluster C, the cluster is labeled with this label (line 6).
All objects added in C are removed from V ′ (line 7), and the
algorithm terminates when V ′ does not contain any pair of
objects that share an edge, i.e., that is labeled with a label
other than l0 (line 2). All objects remaining in the set V ′,
if any, are eventually made singleton clusters (lines 8-11).

Computational complexity. The complexity of the
Chromatic Balls algorithm is determined by two steps: (i)
picking the pivots (line 3), and (ii) building the clusters (line
4). Choosing the pivots requires O(m logn) time, where
n = |V | and m = |E|, as selecting random edges can be im-
plemented by building a priority queue of edges with random
priorities, and subsequently removing edges; each edge is re-
moved once from the priority queue, whether it is selected as

Algorithm 1 Chromatic Balls

Input: Edge-labeled graph G = (V,E, L, `)
Output: Clustering C : V → N; cluster labeling function

c` : C[V ]→ L
1: V ′ ← V ; i← 1
2: while there exist u, v ∈ V ′ such that (u, v) ∈ E do
3: randomly pick u, v ∈ V ′ such that (u, v) ∈ E
4: C ← {u, v} ∪ {x ∈ V ′ | `(u, x) = `(v, x) = `(u, v)}
5: for all x ∈ C do C(x)← i
6: c`(i) = `(u, v)
7: V ′ ← V ′ \ C; i← i+ 1
8: for all x ∈ V ′ do
9: C(x)← i

10: c`(i)← a random label from L
11: i← i+ 1

pivot or not. Building a single cluster C, instead, requires to
access all neighbors of the pivot edge (u, v). As the current
cluster is removed from the set of uncovered objects at the
end of each iteration, the neighbors of any pivot are not con-
sidered again in the remainder of the algorithm. Thus, the
step of selecting the objects to be included into the current
clusters requires visiting each edge at most once; therefore,
the process takes O(m) time. In conclusion, we can state
that the computational complexity of the Chromatic Balls
algorithm is O(m logn).

3.1 Theoretical analysis
We analyze next the quality of the solutions obtained by

Chromatic Balls. Our main result, given in Theorem 1, shows
that the approximation guarantee of the algorithm depends
on the number of bad triplets incident to a pair of objects in
the input dataset. The notion of bad triplet is defined below;
however, here we note that this result gives a constant-factor
guarantee for bounded-degree graphs.

Even though the Chromatic Balls algorithm is similar to
the Balls algorithm, which can be shown to provide a
constant-factor approximation guarantee for general graphs
too, the theoretical analysis of Chromatic Balls is much more
complicated and requires several additional and nontrivial
arguments. Due to the limited space of this paper, we re-
port next only an outline of our analysis. Further details,
including complete proofs, can be found in the appendix.

We begin our analysis by defining special types of triplets
and quadruples among the vertices of the graph.

Definition 1 (SC-triplet) We say that {x, y, z} is a
same-color triplet (SC-triplet) if the induced triangle is
monochromatic, i.e., `(x, y) = `(x, z) = `(y, z) 6= l0.

Definition 2 (B-triplet) We say that {x, y, z} is a
bad triplet (B-triplet) if the induced triangle is non-
monochromatic and it has at most one pair labeled with l0.

Definition 3 (B-quadruple) A Bad-quadruple is a set
{x, y, z, w} ⊆ V that contains at least one SC-triplet and
at least one B-triplet.

Note that, according to the cost function of our problem
as defined in Equation (2), there is no way to partition a
B-triplet without paying any cost. Next we define the no-
tions of hitting and d-hitting.

Definition 4 (hitting) Consider a pair of objects (x, y)
and a triplet t, which can be either SC-triplet or B-triplet.
We say that t hits (x, y) if x ∈ t and y ∈ t. Additionally, if
q is a B-quadruple, we say that q hits (x, y) if x ∈ q, y ∈ q,
and there exists z ∈ q such that {x, y, z} is a B-triplet.



Definition 5 (d-hitting) Given any pair of objects (x, y)
and any B-quadruple q = {x, y, z, w}, we say that q deeply
hits ( d-hits) (x, y) if q hits (x, y) and either {x, z, w} or
{y, z, w} is an SC-triplet.

In reference to the above notions, we hereinafter denote
by S, T , and Q the sets of all SC-triplets, B-triplets, and
B-quadruples for an instance of our problem. Moreover,
given a pair (x, y) ∈ V × V we define the following sets:
Txy ⊆ T denotes the set of all B-triplets in T that hit (x, y);
Qxy ⊆ Q denotes the set of all B-quadruples in Q that hit
(x, y); Qd

xy ⊆ Qxy ⊆ Q denotes the set of all B-quadruples
in Q that d-hit (x, y).

Let us now consider some events that may arise during the
execution of the Chromatic Balls algorithm. Given an object

x ∈ V , P
(i)
x denotes the event “x is chosen as pivot in the

i-th iteration.” Given a set {x1, . . . , xn} ⊆ V , with n ≥ 2,

A
(i)
x1···xn denotes the event “all objects x1, . . . , xn enter the

i-th iteration of the algorithm, while two of them are chosen
as pivot in the same iteration.”

Additionally, the events T
(i)

z|xy and Q
(i)

zw|xy are defined in

reference to a pair (x, y). Given a B-triplet {x, y, z} ∈ Txy,

T
(i)

z|xy denotes the event “A
(i)
xyz occurs while x and y are

not chosen both as pivots in the i-th iteration.” Given a

B-quadruple {x, y, z, w} ∈ Qd
xy, Q

(i)

zw|xy denotes the event

“A
(i)
xyzw occurs while neither x nor y are chosen as pivots in

i-th iteration.”
For the events A

(i)
x1···xn , T

(i)

z|xy, and Q
(i)

zw|xy, defined above,

we also consider their counterparts that assert that the
events occur at some iteration i. For instance, Ax1···xn de-

notes the event “A
(i)
x1···xn happens at some iteration i,” while

Tz|xy and Qzw|xy are defined analogously. Formally:

Ax1···xn ⇔
∨
i

A(i)
x1···xn

, (3)

Tz|xy ⇔
∨
i

T
(i)

z|xy ⇔
∨
i

(
A(i)

xyz ∧ ¬
(
P (i)
x ∧ P (i)

y

))
, (4)

Qzw|xy ⇔
∨
i

Q
(i)

zw|xy ⇔
∨
i

(
A(i)

xyzw ∧ ¬P (i)
x ∧ ¬P (i)

y

)
. (5)

As reported in the next two lemmas, the probabilities of
the events Tz|xy and Qzw|xy can be expressed in terms of the
probabilities of the events Axyz and Axyzw.

Lemma 1 Given a pair (x, y) ∈ V × V and a B-triplet
{x, y, z} ∈ Txy, it holds that 1

2
Pr [Axyz] ≤ Pr[Tz|xy] ≤

Pr [Axyz].

Lemma 2 Given a pair (x, y) ∈ V × V and a B-quadruple
{x, y, z, w} ∈ Qd

xy, it holds that 1
6

Pr [Axyzw] ≤ Pr[Qzw|xy] ≤
1
4

Pr [Axyzw].

Analyzing carefully the probabilities of events Tz|xy and
Qzw|xy is crucial for deriving the desired approximation fac-
tor, as shown next.

We consider an instance G = (V,E, L, `) of our problem
and rewrite the cost function in Equation (2) as sum of the
costs paid by any single pair (x, y). To this end, in order
to simplify the notation, we hereinafter write the cost by
omitting C and c` while keeping G only:

c(G) =
∑

(x,y)∈V×V

cxy(G), (6)

where cxy(G) denotes the aforementioned contribution of the
pair (x, y) to the total cost. Moreover, let E[c(G)] denote

the expected cost of Chromatic Balls over the random choices
made by the algorithm. By the linearity of expectation, the
expected cost E[c(G)] can be expressed as

E[c(G)] =
∑

(x,y)∈V×V

E [cxy(G)] . (7)

Finally, let c∗(G) be the cost of the optimal solution on G.
To derive an approximation factor r(G) on the perfor-

mance of the Chromatic Balls algorithm, we look for an upper
bound Ub(G) on the expected cost E[c(G)] of the algorithm,
and a lower bound Lb(G) on the cost c∗(G) of the optimal
solution, so that

E[c(G)]

c∗(G)
≤ Ub(G)

Lb(G)
= r(G). (8)

We next show how to derive such upper and lower bounds.

Deriving the upper bound Ub(G). For a pair (x, y) we
define the collection of events Ωxy = {Tz|xy | {x, y, z} ∈
Txy} ∪ {Qzw|xy | {x, y, z, w} ∈ Qd

xy}. As the following two
lemmas show, if pair (x, y) contributes to the cost paid by
the algorithm, then exactly one of the events in Ωxy occurs.

Lemma 3 If cxy(C, c`, G) > 0 then at least one of the events
in Ωxy occurs.

Lemma 4 The events within the collection Ωxy are disjoint.

Combining Lemmas 3 and 4 with the expressions of the
probabilities of the events Tz|xy (Lemma 1) and Qzw|xy
(Lemma 2) we can derive an upper bound on the expected
contribution E[cxy(G)] of a pair (x, y) to the total cost.

Lemma 5 For a pair (x, y) ∈ V × V the following bound
holds.

E[cxy(G)] ≤
∑

{x,y,z}∈Txy

Pr [Axyz] +
∑

{x,y,z,w}∈Qd
xy

1

4
Pr [Axyzw] .

The bound in Lemma 5 together with Equation (7) can be
used to give the desired (upper) bound on the overall ex-
pected cost E[c(G)].

Lemma 6 The expected cost E[c(G)] of the Chromatic Balls
algorithm can be bounded as follows

E[c(G)] ≤ Ub(G) =
∑

{x,y,z}∈T

(
3 Pr [Axyz] +

3

4
Xxyz +

1

2
Yxyz

)
,

where:

Xxyz =
∑

w∈Wxyz

Pr [Axyzw]

τxyzw
, Yxyz = Y xy

xyz + Y xz
xyz + Y yz

xyz,

Y xy
xyz =

∑
w∈Wxy

xyz

Pr [Axyzw]

τxyzw
, Y xz

xyz =
∑

w∈Wxz
xyz

Pr [Axyzw]

τxyzw
,

and Y yz
xyz =

∑
w∈Wyz

xyz

Pr [Axyzw]

τxyzw
.

Finally, τxyzw denotes the number of B-triplets contained in
any B-quadruple {x, y, z, w}.



Deriving the lower bound Lb(G). Recalling that a
B-triplet incurs a non-zero cost in any solution, a lower
bound on the cost of the optimal solution c∗(G) can be ob-
tained by counting the number of disjoint B-triplets in the
input. Considering the set T of B-triplets we can restate
the following result of Ailon et al. [1] that provides a lower
bound on the optimal by “fractionally assigning” all pairs of
objects in V × V to the triplets in T .

Lemma 7 (Ailon et al. [1]) Let {αxyz | {x, y, z} ∈ T } be
any assignment of nonnegative weights to the B-triplets in
T satisfying

∑
{x,y,z}∈Tx′y′

αxyz ≤ 1 for all (x′, y′) ∈ V ×V .

It holds that c∗(G) ≥
∑
{x,y,z}∈T αxyz.

We can then obtain a lower bound on the optimal solution
by finding a suitable set of weights αxyz that satisfies the
conditions of the previous lemma. We derive such a set of
weights in the following further lemma.

Lemma 8 For any pair (x, y) ∈ V ×V the following condi-
tion holds.∑
{x,y,z}∈Txy

1

1 + |Txy|

(
1

2
Pr [Axyz] +

1

6
Xxyz +

1

6
Yxyz

)
≤ 1.

Thus, combining Lemmas 7 and 8, we can obtain the desired
lower bound Lb(G) as follows.

Lemma 9 The cost c∗(G) of the optimal solution on any
input instance G is lower bounded as follows

c∗(G) ≥ Lb(G) =

=
∑

{x,y,z}∈T

1

1 + tmax

(
1

2
Pr [Axyz] +

1

6
Xxyz +

1

6
Yxyz

)
,

where tmax = max(x,y)∈V×V |Txy| is the maximum number
of B-triplets that hit a pair of objects.

The approximation ratio r(G). The upper and lower
bounds obtained in Lemmas 6 and 9 are at the basis if the
final form of the approximation ratio of Chromatic Balls.

Theorem 1 The approximation ratio of the Chromatic Balls
algorithm on any input instance G is

r(G) =
E[c(G)]

c∗(G)
≤ 6 (1 + tmax),

where tmax = max(x,y)∈V×V |Txy| is the maximum number
of B-triplets that hit a pair of objects.

Theorem 1 shows that the approximation factor of the
Chromatic Balls algorithm is bounded by the maximum num-
ber tmax of B-triplets that hit a pair of objects. The result is
meaningful as it quantifies the quality of the performance of
the algorithm as a property of the input graph. For exam-
ple, as the following corollary shows, the algorithm provides
a constant-factor approximation for bounded-degree graphs.

Corollary 1 The approximation ratio of the Chromatic
Balls algorithm on any input instance G is

r(G) ≤ 6 (2Dmax − 1) ,

where Dmax = maxx∈V |{y | y ∈ V ∧ `(x, y) 6= l0}| is the
maximum degree in the problem instance.

4. OTHER ALGORITHMS
In this section we present two additional algorithms for

the chromatic-correlation-clustering problem. The
first one is a variant of the Chromatic Balls algorithm that
attempts to overcome some weaknesses of Chromatic Balls
by employing two heuristics, one for pivot selection and one
for cluster selection. The second one is an alternating min-
imization method that is designed to optimize directly the
objective function.

4.1 Lazy Chromatic Balls
The algorithm we present next is motivated by the follow-

ing example, in which we discuss what may go wrong during
the execution of the Chromatic Balls algorithm.

Example 3 Consider the graph in Figure 2: it has a fairly
evident green cluster formed by vertices {U,V,R,X,Y,W,Z}.

X Y 

U V 

W Z 

R 

S 

T 

Figure 2: An example of an edge-labeled graph.

However, as all the edges have the same probability of be-
ing selected as pivots, Chromatic Balls might miss this green

cluster, depending on which edge is selected first. For in-
stance, suppose that the first pivot chosen is (Y,S). Chromatic
Balls forms the red cluster {Y,S,T} and removes it from the
graph. Removing vertex Y makes the edge (X,Y) missing,
which would have been a good pivot to build a green clus-
ter. At this point, even if the second selected pivot edge is
a green one, say (X,Z), Chromatic Balls would form only a
small green cluster {X,W,Z}.

Motivated by the previous example we introduce the Lazy
Chromatic Balls heuristic, which tries to minimize the risk
of bad choices. Given a vertex x ∈ V , and a label l ∈
L, let d(x, l) be the number of edges incident to x having
label l. Also, we denote by ∆(x) = maxl∈L d(x, l), and
λ(x) = arg maxl∈L d(x, l). Lazy Chromatic Balls differs from
Chromatic Balls in two ways:

Pivot random selection. At each iteration Lazy Chro-
matic Balls selects a pivot edge in two steps. First, a vertex
u is picked up with probability directly proportional to ∆(u).
Then, a second vertex v is selected among the neighbors of
u with probability proportional to d(v, λ(u)).

Ball formation. Given the pivot (u, v), Chromatic Balls
forms a cluster by adding all vertices x such that 〈u, v, x〉
is a monochromatic triangle. Lazy Chromatic Balls instead,
iteratively adds vertices x in the cluster as long as they form
a triangle 〈X,Z,w〉 of color `(u, v), where X is either u or v,
and Z can be any other vertex already belonging to the
current cluster.

Example 4 Consider again the example in Figure 2. Ver-
tices X and Y have the maximum number of edges of one
color: they both have 5 green edges. Hence, one of them is
chosen as first pivot vertex u by Lazy Chromatic Balls with
higher probability than the remaining vertices. Suppose that



Algorithm 2 Alternating Minimization (AM)

Input: Edge-labeled graph G = (V,E, L, `);
number K of output clusters

Output: Clustering C : V → N; cluster labeling function
c` : C[V ]→ L

1: initialize A = [a1, . . . ,aN ] and C = [c1, . . . , cK ] at ran-
dom

2: repeat
3: for all x ∈ V compute optimal ax according to Propo-

sition 1
4: for all k ∈ [1..K] compute optimal ck according to

Proposition 2
5: until neither A nor C changed

X is picked up, i.e., u = X. Given this choice, the second
pivot v is chosen among the neighbors of X with probabil-
ity proportional to d(v, λ(u)), i.e., the higher the number of
green edges of the neighbor, the higher the probability for
it to be chosen. In this case, hence, Lazy Chromatic Balls
would likely choose Y as a second pivot vertex v, thus making
(X,Y) the selected pivot edge. Afterwards, Lazy Chromatic
Balls adds to the being formed cluster the vertices {U,V,Z}
because each of them forms a green triangle with the pivot
edge. Then, R enters the cluster too, because it forms a
green triangle with Y and V, which is already in the cluster.
Similarly, W enters the cluster thanks to Z.

Computational complexity. Like Chromatic Balls, the
running time of the Lazy Chromatic Balls algorithm is deter-
mined by picking the pivots and building the various clus-
ters. Picking the first pivot u can be implemented with a
priority queue with priorities ∆ × rnd, where rnd is a ran-
dom number. This requires computing ∆ for all objects,
which takes O(nh+m) (where h = |L|). Managing the pri-
ority queue itself requires instead O(n logn), as each object
is put into/removed from the queue only once during the
execution of the algorithm. Given u, the second pivot v is
selected by probing all (non-chosen) neighbors of u. This
takes O(m) time, as for each pivot u, its neighbors are ac-
cessed only once throughout the execution of the algorithm.
Finally, building the current cluster takes O(m) time, as it
requires a visit of the graph, where each edge is accessed
O(1) times. In conclusion, the computational complexity of
Lazy Chromatic Balls is O(n(logn+h)+m), which, for small
h, is better than the complexity of Chromatic Balls.

4.2 An alternating-minimization approach
A nice feature of the previous algorithms is that they are

parameter-free: they produce clusterings by using informa-
tion that is local to the pivot edges, without forcing the num-
ber of output clusters in any way. However, in some cases,
it could be desired having an output clustering composed
by a pre-specified number K of clusters. To this purpose,
we present here an algorithm based on the alternating mini-
mization paradigm [7], that receives in input the number K
of output clusters and attempts to minimize Equation (2)
directly. The pseudocode of the proposed algorithm, called
Alternating Minimization, is given in Algorithm 2.

In a nutshell, AM tries to produce a solution by alternat-
ing between two optimization steps. In the first step the
algorithm finds the best cluster assignment for every x ∈ V
given the assignments of every other y ∈ V and the current

cluster labels. In the second step, it finds the best label for
every cluster given the current assignment of objects to clus-
ters. Below we show that both steps can be solved optimally.
As a consequence the value of Equation (2) is guaranteed to
decrease in every step, until convergence. Finding the global
minimum is obviously hard, but the algorithm is guaranteed
to converge to a local optimum.

Definitions. For presentation sake, we adopt matrix no-
tation. We denote matrices by uppercase boldface romans
and vectors by lowercase boldface romans. We write Xij

for the (i, j) coordinate of matrix X, and x(i) for the i-th
coordinate of vector x.

The parameter space of Problem 2 consists of a cluster as-
signment for every object x ∈ V , given by the binary matrix
A, and a label assignment for every cluster k ∈ {1, . . . ,K},
given by the binary matrix C. We have Akx = 1 when object
x is assigned to cluster k, and Akx = 0 otherwise. Similarly,
we set Clk = 1 when label l is assigned to cluster k, and
Clk = 0 otherwise. Since every object must belong to one
and only one cluster, and every cluster must have one and
only one label assigned, both A and C are constrained to
consist of all zeros with a single 1 on every column. Denote
by ax the column of A that corresponds to object x.

The input is represented by a set of binary matrices, with
a matrix Zx for every x ∈ V . These matrices encode the
labeling function ` as follows. Let zxy denote the column of
Zx that corresponds to the object y ∈ V . We have zxy(l) = 1
if and only if `(x, y) = l, otherwise zxy(l) = 0. Every Zx

consists thus of zeros, with exactly one 1 on every column.
Finally, denote by b a special binary vector where b(l) = 1
when l = l0 and b(l) = 0 otherwise. We have then zT

xyb = 1
if and only if `(x, y) = l0.

The above formulation of the problem assumes that the
input is represented by many large matrices. Note however
that this representation is only conceptual. In the actual im-
plementation we do not have to materialize these matrices
and we can represent the input with the minimal amount of
space required, as shown next. The benefit of our formula-
tion is that it allows to write our objective function and our
optimization process using linear-algebra operations, and ar-
gue about the optimality of the local optimization steps.

Optimal cluster assignment. Denote by N−xk the num-
ber of objects y ∈ V in cluster k that have `(x, y) = l0.
Since `(x, y) = l0 ⇔ zxyb = 1, we have N−xk = (AZxb)(k).
Similarly, let N+

xk denote the number of objects y ∈ V
in cluster k that have `(x, y) = c`(k). Since y ∈ k,
we have `(x, y) = c`(k) ⇔ zxyCay = 1 and can write
N+

xk = (Awx)(k), where wx = [zT
x1Ca1 . . . z

T
xnCan].

Proposition 1 The optimal cluster assignment for x ∈ V
given A and C is k∗ = arg minkN

−
xk −N

+
xk.

Proof. We can rewrite Equation (2) as follows:∑
x,y aT

x ay(1− zT
xyCay) + (1− aT

x ay)(1− zT
xyb) = (9)

=
∑

x aT
x A(1−wx) + (1T − aT

x A)(1− ZT
x b),

where wx is defined as above, and 1 denotes the |V |-
dimensional vector of all 1s. Terms that correspond to a
fixed x ∈ V further simplify to

aT
x ATZxb− aT

x Awx + dx,

where the constant dx = 1T1 − 1TZT
x b is the “degree” of

object x, the number of objects y ∈ V where `(x, y) 6= l0.



Since we must assign exactly one cluster for x, the above
expression is minimized simply by assigning x to the cluster
k that minimizes (AZT

x b)(k)− (Awx)(k) = N−xk −N
+
xk.

The result is quite intuitive. The best cluster for x is the
one having the least “push” in terms of l0 connections, and
the most “pull” given by connections having the appropriate
label. However, evaluating N−xk in practice is very slow, as it
involves checking all l0 connections of x. Ideally the update
rule should only require access to edges having some label
other than l0. This is easy to achieve, however.

Let N0
xk denote the remaining objects in cluster k, that is,

those with `(x, y) 6= c`(k) 6= l0. Also, let Sk denote the size
of cluster k. Clearly we have Sk = N+

xk+N0
xk+N−xk for every

x ∈ V . Using this we obtain N−xk−N
+
xk = Sk− 2N+

xk−N
0
xk,

which is much faster to evaluate.

Optimal label assignment. The update rule for the clus-
ter label is intuitive as well. Denote by Ek the number of
ordered (x, y) pairs so that both x and y belong to cluster
k, and `(x, y) = c`(k).

Proposition 2 The optimal label assignment for cluster k
given A is l∗ = arg minl S

2
k − Ek.

Proof. We can partition the cost in Equation (9) as a
sum over clusters. That is, for a fixed cluster k we sum
only over those x and y that belong both to k. Also, the
second term in Equation (9) does not depend on C and can
therefore be omitted. This leaves us with the sum∑

x∈k,y∈k

(1− zT
xyCay),

where we can replace Cay with the binary vector ck that
indicates the label assigned to cluster k. Clearly we have∑

x∈k,y∈k 1 = S2
k, and it is easy to see that

∑
x∈k,y∈k zxyck

counts all (x, y) pairs having the same label that is currently
assigned to k, which is by definition equal to Ek.

This means that the optimal label for cluster k is simply the
label shared by the majority of the pairs in k.

Computational complexity. The running time of
Alternating Minimization depends on the (optimal) cluster
and label assignment steps. Cluster assignment requires two
sub-steps: evaluating Sk − 2N+

xk −N
0
xk for each vertex and

cluster, which can be performed in O(m) by a simple visit
of the input graph, and looking at all clusters to choose
the best one for each vertex, which clearly takes O(Kn).
Label assignment requires to compute the number of intra-
cluster edge labels for each cluster k and label l. This takes
O(m), as it can be performed, again, by visiting the input
graph. Then, the assignment of labels to clusters by evalu-
ating S2

k − Ek can be performed in O(Kh). In conclusion,
as usually h = |L| � n, the computational complexity of
Alternating Minimization is O(s(Kn + m)), where s is the
number of iterations to convergence.

5. EXPERIMENTAL EVALUATION
In this section, we report our empirical assessments. We

experiment with all three proposed algorithms, Chromatic
Balls, Lazy Chromatic Balls, and Alternating Minimization, to
which we refer by CB, LCB, and AM, respectively. We also
evaluate the performance of the baseline described in the
Introduction, namely the “standard”Balls algorithm [1] that
ignores colors. We refer to this baseline as B. All measure-
ments reported are averaged over 50 runs.

Algorithm 3 Synthetic data generator

Input: number of vertices n, number of clusters K, number
of labels h, probability p of intra-cluster edges, proba-
bility q of inter-cluster edges, probability w that an edge
inside a cluster has a color different from the cluster

Output: edge labeled graph G = (V,E, L, `)
1: V ← [1, n], E ← ∅, L← {l1, . . . , lh}
2: assign each vertex x ∈ V to a randomly selected cluster
3: assign to each cluster a randomly selected label from L
4: for all pairs (x, y) ∈ V × V do
5: pick 3 random numbers r1, r2, r3 ranging within [0, 1]
6: if C(x) = C(y) then
7: if r1 < p then
8: if r2 < w then
9: E ← E ∪ (x, y)

10: `(x, y)← a random label from L \ {c`(C(x))}
11: else
12: E ← E ∪ (x, y)
13: `(x, y)← c`(C(x));
14: else if r3 < q then
15: E ← E ∪ (x, y)
16: `(x, y)← a random label from L

5.1 Experiments on synthetic data
We evaluate our algorithms on synthetic datasets gener-

ated by the process outlined in Algorithm 3. In a nutshell,
the generator initially assigns vertices and labels to clusters
uniformly at random, and then adds noise according to the
probability parameters p, q, and w. Given the assignment
of vertices to clusters, intra-cluster edges are sampled with
probability p, and they are given the correct label (the label
of the cluster they are assigned to) with probability 1 − w,
while, inter-cluster edges are sampled with probability q.

The initial assignment of objects and labels to clusters can
be interpreted as a ground truth underlying the correspond-
ing synthetic dataset. We compare the resulting clusterings
with the ground-truth clustering using the well-known F -
measure external cluster-validity criterion. Given a ground-
truth clustering Ĉ and a clustering solution C having K̂ and
K clusters, respectively, F -measure is defined in terms of
precision and recall as follows:

F (C, C̃) =
1

n

K̂∑
k̂=1

Sk̂ max
k∈[1..K]

Fk̂k,

where Fk̂k = (2Pk̂kRk̂k)/(Pk̂k + Rk̂k) such that Pk̂k =
Sk̂∩k/Sk and Rk̂k = Sk̂∩k/Sk̂, while Sk̂∩k denotes the num-

ber of common objects between the k̂-th cluster of C̃ and the
k-th cluster of C, and Sk̂ and Sk̂ are the sizes of clusters k̂
and k, respectively. It easy to see that F ∈ [0, 1].

We generate datasets with a fixed number of objects (n =
1000), and we vary (i) the noise level (controlled by playing
with p, q, and w); (ii) the number of labels h; and (iii)
the number of clusters K in the ground truth. Even though
we perform tests by varying all parameters p, q, and w,
due to space limitations we only report results obtained for
varying q and keeping p and w equal to 0.5.

For the number of clusters required as input for the AM
algorithm, we consider two options: the average number of
clusters produced by the CB algorithm, and the number of
clusters in the ground truth. We refer to these two settings
by AM and AM∗, respectively. In Figure 3 we report the
performance of our algorithms in terms of F -measure, as
well as solution cost (Equation (2)).
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Figure 3: Accuracy on synthetic datasets in terms
of F -measure (left) and solution cost (right), by
varying level of noise (1st row), number of labels
(2nd row), and number of ground-truth clusters (3rd
row).

All trends observed by varying the parameters q, h, and
K are intuitive. Indeed, for all methods, the performance
decreases as the noise level q increases (Figure 3, 1st row).
On the other hand, all methods give better solutions, in
terms of cost, as the number of ground truth clusters K
increases (Figure 3, 3rd row right). The reason is that since
CB and LCB tend to produce a large number of clusters, by
setting a larger K the difference tends to disappear.

All proposed methods generally achieve both F -measure
and solution cost results evidently better than the baseline.
Particularly, in terms of solution cost, CB, LCB, and AM
perform very close to each other and generally better than
AM∗. In terms of F -measure, instead, LCB is recognized as
the best method in most cases.

5.2 Experiments on real data
We experiment with three real datasets (Table 1).

String. A protein-protein interaction (PPI) network ob-
tained from string-db.org, i.e., a database of known pro-
tein interactions for a large number of organisms. The
dataset is an undirected graph where vertices represent pro-
teins and edges represent protein interactions. Edges are
labeled with 4 types of interactions. The PPI datasets are
usually very sparse, therefore, we keep only the 30-core of
the entire network, i.e., we recursively remove the vertices
with degree less than 30 until a fix-point has been reached.

Youtube. This dataset represents a network of associations
in the youtube site. The vertices of the network represent
users, videos, and channels. Entities in the network have
five different types of associations: contact, co-contact, co-
subscription, co-subscribed, and favorite; these are the edge

Table 1: Characteristics of real data. n: number of
vertices; m: number of edges; d: average degree; |L|:
number of labels; c: clustering coefficient.

dataset n m d |L| c
String 18 152 401 582 44.25 4 0.731
Youtube 15 088 19 923 067 2 640.92 5 0.495
DBLP 312 416 2 110 470 13.51 100 0.204

labels considered by our algorithms. For edges with multiple
labels we picked one label at random from the available ones.
The dataset has been compiled by Tang et al. [14] and it is
available at http://www.public.asu.edu/~ltang9/.

DBLP. We obtain a recent snapshot of the DBLP
co-authorship network (http://dblp.uni-trier.de/xml/).
For each co-authorship edge, we consider the bag of words
obtained by merging the titles of all papers coauthored
by the two authors. Words are stemmed and stop-words
are removed. We then apply Latent Dirichlet Allocation
(LDA) [5] to automatically identify 100 topics on each edge.
After LDA topic-modeling, for each edge, we assign its most
prominent topic discovered as edge label.

Results. Table 2 summarizes the results obtained on real
data. Like in synthetic data, all proposed algorithms clearly
outperform the baseline B. CB is the best method on Youtube
and DBLP, achieving up to 27.74% of improvement with
respect to the baseline in terms of solution cost. Instead,
CB is slightly outperformed by LCB and AM on String, while
LCB outperforms AM on String and DBLP.

As far as the runtime, we observe that the baseline is faster
than the proposed methods, as expected. This is mainly
due to a smaller complexity in choosing vertex pivots com-
pared to choosing edge pivots. However, all proposed meth-
ods remain very efficient, as they take a few seconds (CB
and LCB) or minutes (AM) on large and dense graphs like
Youtube and DBLP. All runtimes comply with the computa-
tional complexity analysis reported previously. Indeed, AM
is the slowest method, mostly due to the typically high num-
ber of iterations needed to convergence, while LCB is faster
than CB, especially on dense datasets like Youtube.

Finally, Figure 4 shows an example cluster from the
DBLP co-authorship network recognized by the LCB al-
gorithm, containing 23 authors (vertices). Among the
71 intra-cluster edges, 58 have the same label, i.e.,
Topic 18, whose most representative (stemmed) keywords
are: queri, effici, spatial, tempor, search, index,

similar, data, dimension, aggreg. Other topics (edge
colors) that appears are“sensor networks”, “frequent pattern
mining”, “algorithms on graphs and trees”, “support vector
machines”, “classifiers and Bayesian learning”.

6. RELATED WORK
Edge-labeled graphs and multidimensional net-
works. Graphs in which edges are labeled with a type of re-
lation occurring among the connected vertices are receiving
increasingly attention. To the best of our knowledge no pre-
vious work has investigated the problem of clustering in such
graphs. The problems studied so far on this kind of graphs
are mainly on label-constrained reachability queries [8, 10,
12, 16], whose main goal is to answer whether a vertex u can
reach vertex v trough a path whose edge labels belong to a
given set. Clustering has been studied, instead, in so called
multidimensional networks, i.e., networks defined as a col-



Table 2: Results on real datasets: average cost, runtime (s), and average number of output clusters
cost runtime (s) #clusters

dataset B CB LCB AM B CB LCB AM B CB LCB AM
String 163 305 160 060 155 881 156 976 0.5 1.4 1.3 21.0 1 086 1 451 784 1 451
Youtube 23 550 213 18 956 000 22 644 858 19 670 899 22.4 117.8 40.5 1 038.9 568 1 078 672 1 078
DBLP 2 260 065 1 633 149 1 678 714 2 018 952 4.3 10.2 5.5 2 116.1 66 276 123 197 99 948 123 197
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Figure 4: An example cluster from DBLP.

lection of multiple networks over the same set of actors. In
our jargon these are simply graphs where each edge can have
more than one color [4, 13, 15]. Although the input of that
problem might seem close to ours, the objective is seman-
tically far away. In clustering multidimensional networks,
the objective is to find a partitioning of vertices which is
meaningful and relevant in all dimensions at the same time.
Taking again the colors metaphor, in that setting is a clus-
tering is considered as good if it makes sense in the green

network and as well as the red network, and so on. In our
work, we are rather interested in finding groups of objects
that induce color-coherent clusters while looking at all the
colors together.

Correlation Clustering. The problem of correlation-
clustering was first defined by Bansal et al. [3] in its bi-
nary version. Ailon et al. [1] proposed the Balls algorithm
that achieves expected approximation factor 5 if the weights
obey the probability condition. If the weights Xij obey also
the triangle inequality, then the algorithm achieves expected
approximation factor 2. Giotis and Guruswami [9] consider
correlation clustering when the number of clusters is given,
while Ailon and Liberty [2] study a variant of correlation
clustering where the goal is to minimize the number of dis-
agreements between the produced clustering and a given
ground truth clustering. We recently extended correlation
clustering to allow overlaps, i.e., objects belonging to more
than one cluster [6].

7. CONCLUSIONS
In this paper, we introduce a variant of the correlation-

clustering problem, in which the pairwise relations between
objects are categorical. The problem has interesting appli-
cations, such as clustering social networks where individuals
are connected with different types of relations, or clustering

protein networks, where proteins are associated with differ-
ent types of interactions. We propose three algorithms that
we evaluate on synthetic and real datasets.

Our problem is a novel clustering formulation well-suited
for mining multi-labeled and heterogeneous datasets that
are becoming increasingly common. We believe that there
are many interesting extensions and fruitful future research
directions. For example, we would like to extend the prob-
lem formulation in order to capture overlapping clusters as
well as multiple-labeled edges.
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APPENDIX
A. DETAILS ABOUT THE THEORETICAL

ANALYSIS OF THE Chromatic Balls
ALGORITHM

A.1 Proofs of Lemmas 1–2
To prove Lemmas 1 and 2, we need to introduce the fol-

lowing additional Lemma 10 and Corollaries 2-3 to show the

disjointness of the events A
(i)
x1···xn , T

(i)

z|xy, and Q
(i)

zw|xy with

respect to the iterations of the algorithm.

Lemma 10 Given any {x1, . . . , xn} ⊆ V , n ≥ 2, it holds

that A
(i)
x1···xn and A

(j)
x1···xn are disjoint, for any two iterations

i and j of Chromatic Balls such that i 6= j.

Proof. As soon as A
(i)
x1···xn happens at any iteration i,

exactly two objects in {x1, . . . , xn} are chosen as pivots and
therefore removed from the set of non-chosen objects that
inputs the next iteration(s). Thus, the set {x1, . . . , xn} is
no longer available as a whole after i; this implies that no

A
(j)
x1···xn may occur for any j 6= i, because this would require

that all objects within {x1, . . . , xn} input iteration j. 2

Corollary 2 Given any B-triplet {x, y, z}, it holds that

T
(i)

z|xy and T
(j)

z|xy are disjoint, for any two iterations i and j

such that i 6= j.

Corollary 3 Given any B-quadruple {x, y, z, w}, it holds

that Q
(i)

zw|xy and Q
(j)

zw|xy are disjoint, for any two iterations

i and j such that i 6= j.

Lemma 1 Given a pair (x, y) ∈ V × V and a B-triplet
{x, y, z} ∈ Txy, it holds that 1

2
Pr [Axyz] ≤ Pr[Tz|xy] ≤

Pr [Axyz].

Proof. Given the disjointness conditions proved in
Lemma 10 and Corollary 2, it can be noted that:

Pr [Axyz] = Pr

[∨
i

A(i)
xyz

]
=
∑
i

Pr
[
A(i)

xyz

]
and

Pr[Tz|xy] = Pr

[∨
i

T
(i)

z|xy

]
=
∑
i

Pr
[
T

(i)

z|xy

]
Thus, it holds that:

Pr[Tz|xy] = Pr

[∨
i

T
(i)

z|xy

]
=
∑
i

Pr
[
T

(i)

z|xy

]
=

=
∑
i

Pr
[
A(i)

xyz ∧ ¬
(
P (i)
x ∧ P (i)

y

)]
=

=
∑
i

Pr
[
¬
(
P (i)
x ∧ P (i)

y

)
| A(i)

xyz

]
︸ ︷︷ ︸

p

Pr[A(i)
xyz] (10)

The probability p = Pr
[
¬
(
P

(i)
x ∧ P (i)

y

)
| A(i)

xyz

]
depends on

how the B-triplet {x, y, z} is composed. Three cases may
arise:

1. No pair of objects within {x, y, z} is labeled with l0. In
this case, all possible outcomes concerning the choice
of the pivots are three: (x, y), (x, z), and (y, z). Among

these, only the last two make the event ¬
(
P

(i)
x ∧ P (i)

y

)
true. All outcomes have equal probability as the ran-
dom choice of the pivot is uniform in Chromatic Balls.
This gives p = 2

3
probability.

2. (x, y) is an l0-labeled pair. In this case, there are only
two possible outcomes for the pivot choice, because an
l0-labeled pair cannot be picked up. These choices cor-
respond to the pairs (x, z) and (y, z) which both make

the event ¬
(
P

(i)
x ∧ P (i)

y

)
true. Thus, p = 1 in this

case.

3. Either (x, z) or (y, z) is an l0-labeled pair. Suppose
`(x, z) = l0 (an analogous reasoning holds if `(y, z) =
l0). Again, there are only two possible choices for the
pivot, that are in this case (x, y) and (y, z). Among

these, only the latter make the event ¬
(
P

(i)
x ∧ P (i)

y

)
true. This gives p = 1

2
.

The above reasoning implies 1
2
≤ p ≤ 1; hence, Equation

(10) can be rewritten as follows:

Pr[Tz|xy] =
∑
i

Pr
[
¬
(
P (i)
x ∧ P (i)

y

)
| A(i)

xyz

]
Pr[A(i)

xyz]⇒

⇒ 1

2

∑
i

Pr[A(i)
xyz] ≤ Pr[Tz|xy] ≤

∑
i

Pr[A(i)
xyz]⇔

⇔ 1

2
Pr

[∨
i

A(i)
xyz

]
≤ Pr[Tz|xy] ≤

[∨
i

A(i)
xyz

]
⇔

⇔ 1

2
Pr[Axyz] ≤ Pr[Tz|xy] ≤ Pr[Axyz]

2

Lemma 2 Given a pair (x, y) ∈ V × V and a B-quadruple
{x, y, z, w} ∈ Qd

xy, it holds that 1
6

Pr [Axyzw] ≤ Pr[Qzw|xy] ≤
1
4

Pr [Axyzw].

Proof. The proof is similar to Lemma 1. Indeed, we ex-
ploit the disjointness results shown in Lemma 10 and Corol-
lary 3, and note that:

Pr[Qzw|xy] = Pr

[∨
i

Q
(i)

zw|xy

]
=
∑
i

Pr
[
Q

(i)

zw|xy

]
=

=
∑
i

Pr
[
A(i)

xyzw ∧ (¬P (i)
x ∧ ¬P (i)

y )
]

=

=
∑
i

Pr
[
(¬P (i)

x ∧ ¬P (i)
y ) | A(i)

xyzw

]
Pr[A(i)

xyzw]⇒

⇒ 1

6

∑
i

Pr[A(i)
xyzw] ≤ Pr[Qzw|xy] ≤ 1

4

∑
i

Pr[A(i)
xyzw]⇔ (11)

⇒ 1

6
Pr

[∨
i

A(i)
xyzw

]
≤ Pr[Qzw|xy] ≤ 1

4
Pr

[∨
i

A(i)
xyzw

]
⇔

⇔ 1

6
Pr[Axyzw]

where (11) is derived in a way similar to Lemma 1. Indeed,

givenA
(i)
xyzw, all possible choices of pivots may vary from four

of the six pairs of objects within {x, y, z, w} (if two of them
are labeled with l0), up to all six pairs (if none of them is
labeled with l0). Among these choices, only one (i.e., (z, w))

guarantees ¬P (i)
x ∧¬P (i)

y true. This gives probability values
ranging from 1

6
to 1

4
. 2



A.2 Proof of Lemma 3
Lemma 3 If cxy(C, c`, G) > 0 then at least one of the events
in Ωxy occurs.

Proof. According to the cost function defined in Equa-
tion (2), cxy(G) > 0 if and only if either 1) x and y are put
in different clusters while `(x, y) 6= l0, or 2) x and y belong
to the same cluster C while `(x, y) is not equal to the label
of C. Let us analyze both cases next.

1) According to the outline of Chromatic Balls, (x, y) is
split when, at some iteration i, it happens that x is put
into the being formed cluster C, while y does not or
vice versa. Assuming that the object chosen to belong
to C is x (an analogous reasoning holds considering y
as belonging to C), we have two further cases:

(a) x is chosen as pivot at the iteration i, along with
any other object z 6= y. Thus, both the events

A
(i)
xyz and ¬

(
P

(i)
x ∧ P (i)

y

)
are true. Also, as (x, y)

is split, either `(x, y) 6= `(x, z) or `(x, z) 6= `(x, z)
(cf. Line 5 in Algorithm 1); hence, {x, y, u}must be
a B-triplet hitting (x, y). Combining these results
and resorting to Equation (4), it results that:(

A(i)
xyz ∧ ¬

(
P (i)
x ∧ P (i)

y

))
⇒

⇒
∨
i

(
A(i)

xyz ∧ ¬
(
P (i)
x ∧ P (i)

y

))
⇔

⇔
∨
i

T
(i)

z|xy ⇔ Tz|xy.

(b) The pivots chosen at the iteration i are z and w,
with z 6= x, z 6= y, w 6= x,w 6= y. In this case, it is
easy to see that {x, z, w} is a SC-triplet and both

A
(i)
xyzw and ¬P (i)

x ∧ ¬P (i)
y are true. Also, {y, z, w}

must be a B-triplet, because y is not chosen as be-
longing to the current cluster and, therefore, either
`(y, z) 6= `(z, w) or `(y, w) 6= `(z, w). As a result,
{x, y, z, w} must be a B-quadruple d-hitting (x, z),
which implies that (cf. Equation (5)):

A(i)
xyzw ∧ ¬P (i)

x ∧ ¬P (i)
y ⇒

⇒
∨
i

(
A(i)

xyzw ∧ ¬P (i)
x ∧ ¬P (i)

y

)
⇔

⇔
∨
i

Q
(i)

zw|xy ⇔ Qzw|xy.

2) Two further cases may arise in this case too.

(a) Either x or y is chosen as pivot at the iteration i,
along with any other object z. This situation is
analogous to case 1)-(a); therefore, it is easy to see
that the event Tz|xy is true in this case too.

(b) The pivots chosen at the iteration i are z and w,
with z 6= x, z 6= y, w 6= x,w 6= y. As both x and y
are chosen as being part of the current cluster C,
then both {x, z, w} and {x, y, w} are SC-triplets.
Moreover, denoting by lC the label of C, by hypoth-
esis it holds that `(x, y) 6= lC = `(z, w), which im-
plies that both {x, y, z} and {x, y, w} are B-triplets.
This is sufficient to recognize {x, y, z, w} as a
B-quadruple d-hitting (x, y) and have a situation
analogous to case 1)-(b). Thus, the event Qzw|xy
is true in this case too.

In conclusion, we can state that cxy(G) > 0 only if either
Tz|xy occurs for any z (cases 1)-(a) and 2)-(a)) or Qzw|xy
occurs for any z, w (cases 1)-(b) and 2)-(b)). This proves
the lemma. 2

A.3 Proof of Lemma 4
To prove Lemma 4 we first need to show:

• Some straightforward implications arising from the

probability events T
(i)

z|xy and Q
(i)

zw|xy, i.e., (i) if T
(i)

z|xy
occurs, then the pivots chosen at iteration i must be
z along with either x or y (Lemma 11), and (ii) when

Q
(i)

zw|xy happens, the pivots chosen at iteration i are z

and w (Lemma 12).

• The disjointness of the events T
(i)

z|xy with respect to

each other in reference to both the same iteration
(Lemma 13) and different iterations (Lemma 14).

• The disjointness of the events Q
(i)

zw|xy with respect to

each other in reference to both the same iteration
(Lemma 15) and different iterations (Lemma 16).

• The disjointness of the events T
(i)

z|xy and Q
(i)

zw|xy with re-

spect to one another in the same iteration (Lemma 17)
as well as among different iterations (Lemma 18)

Lemma 11 It holds that T
(i)

z|xy ⇒
(
P

(i)
x ⊕ P (i)

y

)
∧ P (i)

z .

Proof. By definition, T
(i)

z|xy ⇔ A
(i)
xyz ∧ ¬

(
P

(i)
x ∧ P (i)

y

)
and A

(i)
xyz ⇒ (P

(i)
x ∧P (i)

y )⊕(P
(i)
x ∧P (i)

z )⊕(P
(i)
y ∧P (i)

z ). Thus,

T
(i)

z|xy ⇒
(

(P
(i)
x ∧ P (i)

y )⊕ (P
(i)
x ∧ P (i)

z )⊕ (P
(i)
y ∧ P (i)

z )
)
∧

¬
(
P

(i)
x ∧ P (i)

y

)
⇔ (P

(i)
x ∧ P

(i)
z ) ⊕ (P

(i)
y ∧ P

(i)
z ) ⇔(

P
(i)
x ⊕ P (i)

y

)
∧ P (i)

z . 2

Lemma 12 It holds that Q
(i)

zw|xy ⇒ P
(i)
z ∧ P (i)

w .

Proof. By definition, A
(i)
xyzw implies that the pivots cho-

sen at iteration i correspond to one of the (six) unordered
pairs that may be defined over the set {x, y, z, w}. However,

as Q
(i)

zw|xy ⇔ A
(i)
xyzw ∧ ¬P (i)

x ∧ ¬P (i)
y , the pairs containing

either x or y clearly make Q
(i)

zw|xy false. Thus, the only re-

maining choice is the pair (z, w), which leads to the event

P
(i)
z ∧ P (i)

w . 2

Lemma 13 It holds that T
(i)

z|xy ⇒ ¬T
(i)

z′|xy, for all z′ 6= z.

Proof. According to Lemma 11, T
(i)

z|xy implies that the

pair of pivots chosen in i is either (x, z) or (y, z), whereas

T
(i)

z′|xy implies one among (x, z′) and (y, z′). These two situ-

ations are clearly conflicting as z′ 6= z. 2

Lemma 14 It holds that T
(i)

z|xy ⇒ ¬T
(j)

z′|xy, for all j 6= i, and

for all z′.

Proof. The Chromatic Balls algorithm always removes
the pivots from the set of objects available in the next it-

erations. Thus, if T
(i)

z|xy occurs, either x or y are no longer

available for any next iteration j, as Lemma 11 states that
one of them must be chosen as pivot; this clearly implies

that T
(j)

z′|xy cannot be true in any iteration j 6= i, even for

z′ 6= z. 2



Lemma 15 It holds that Q
(i)

zw|xy ⇒ ¬Q(i)

z′w′|xy, for all

(z′, w′) 6= (z, w).1

Proof. According to Lemma 12, it holds that Q
(i)

zw|xy ⇒
P

(i)
z ∧P (i)

w andQ
(i)

z′w′|xy ⇒ P i
z′∧P i

w′ ; but, P
(i)
z ∧P (i)

w and P i
z′∧

P i
w′ are mutually exclusive as (z′, w′) 6= (z, w) by hypothesis.

2

Lemma 16 It holds that Q
(i)

zw|xy ⇒ ¬Q
(j)

z′w′|xy, for all j 6= i,

and for all z′, w′.

Proof. The proof is similar to Lemma 14. By defini-

tion, any event Q
(i)

zw|xy involves a B-quadruple {x, y, z, w} ∈
Qd

xy, thus implying that either {x, z, w} or {y, z, w} is a

SC-triplet. This, along with the fact that, given Q
(i)

zw|xy, the

pivots chosen are necessarily z and w (Lemma 12), is suf-
ficient for the Chromatic Balls algorithm to put either x or
y in the cluster being formed at iteration i and, therefore,
make it/them not available in any next iteration j. 2

Lemma 17 It holds that T
(i)

z|xy ⇒ ¬Q
(i)

z′w′|xy, for all z′, w′

and Q
(i)

zw|xy ⇒ ¬T
(i)

z′|xy, for all z′.

Proof. According to Lemma 11, it holds that T
(i)

z|xy ⇒
P

(i)
x ⊕ P

(i)
y ; this contradicts Q

(i)

z′w′|xy ⇒ ¬P
(i)
x ∧ ¬P (i)

y ⇔

¬
(
P

(i)
x ∨ P (i)

y

)
, which holds by definition. Thus, T

(i)

z|xy and

Q
(i)

z′w′|xy are mutually exclusive. 2

Lemma 18 It holds that T
(i)

z|xy ⇒ ¬Q
(j)

z′w′|xy, for all j 6= i,

for all z′, w′ and Q
(i)

zw|xy ⇒ ¬T
(j)

z′|xy, for all j 6= i, and for

all z′.

Proof. If T
(i)

z|xy happens, either x or y is chosen as pivot

(Lemma 11) and, therefore, no longer available for making

any Q
(j)

z′w′|xy true in any next iteration j. On the other

hand, if Q
(i)

zw|xy happens, according to the same reasoning

explained in Lemma 16, either x or y is put in the cluster
being formed at iteration i and, therefore, not available for

T
(j)

z′|xy to be true in any next j. 2

Given the results shown in Lemma 11-18, we can now
prove Lemma 4.

Lemma 4 The events within the collection Ωxy are disjoint.

Proof. As Ωxy = {Tz|xy | {x, y, z} ∈ Txy} ∪ {Qzw|xy |
{x, y, z, w} ∈ Qd

xy}, to prove the theorem, we need to
demonstrate that 1) the events Tz|xy are each other dis-
joint, 2) the events Qzw|xy are each other disjoint, and 3)
the events in Tz|xy are disjoint from the events Qzw|xy and
vice versa. We account for these three cases separately.

1) We need to prove that Tz|xy ⇒ ¬Tz′|xy, for all z′ 6=
z. Denoting by i and j two generic iterations of the

1(z′, w′) 6= (z, w) ⇔ (z′ 6= z∧z′ 6= w) ∨ (w′ 6= z∧w′ 6= w)

Chromatic Balls algorithm, we note that:(
Tz|xy ⇒ ¬Tz′|xy, ∀z′ 6= z

)
⇔

⇔

(∨
i

T
(i)

z|xy ⇒ ¬

(∨
j

T
(j)

z′|xy

)
, ∀z′ 6= z

)
⇔

⇔

(
T

(i)

z|xy ⇒
∧
j

¬T (j)

z′|xy, ∀i,∀z
′ 6= z

)
⇔

⇔

T (i)

z|xy ⇒ ¬T (i)

z′|xy ∧
∧
j 6=i

¬T (j)

z′|xy, ∀i,∀z
′ 6= z

.
The latter is true as, given any iteration i, T

(i)

z|xy ⇒
¬T (i)

z′|xy, for all z′ 6= z according to Lemma 13, while

T
(i)

z|xy ⇒ ¬T
(j)

z′|xy, for all j 6= i, and for all z′ according

to Lemma 14.

2) It should be demonstrated that Qzw|xy ⇒ ¬Qz′w′|xy,

for all (z′, w′) 6= (z, w), which is equivalent to Q
(i)

zw|xy ⇒
¬Q(i)

z′w′|xy ∧
∧

j 6=i ¬Q
(j)

z′w′|xy, ∀i,∀(z
′, w′) 6= (z, w),

according to a similar reasoning to the previous case.
Again, the latter is true given the results derived pre-

viously, i.e., in Lemma 15 (Q
(i)

zw|xy ⇒ ¬Q
(i)

z′w′|xy, for all

(z′, w′) 6= (z, w)) and Lemma 16 (Q
(i)

zw|xy ⇒ ¬Q
(j)

z′w′|xy,

for all j 6= i, and for all z′, w′).

3) Here, we need to derive Tz|xy ⇒ ¬Qz′w′|xy, for
all z′, w′ and Qzw|xy ⇒ ¬Tz′|xy, and for all z′.

The former is equivalent to T
(i)

z|xy ⇒ ¬Q(i)

z′w′|xy ∧∧
j 6=i ¬Q

(j)

z′w′|xy, ∀i, z
′, w′, which holds according to

Lemma 17 and 18. Analogously, the other state-

ment can be rewritten as Q
(i)

zw|xy ⇒ ¬T (i)

z′|xy ∧∧
j 6=i ¬T

(j)

z′|xy, ∀i, z
′ and proved to be true by resorting

again to the same lemmas (i.e., Lemma 17 and 18).

2

A.4 Proofs of Lemmas 5–6

Lemma 5 For a pair (x, y) ∈ V × V the following bound
holds.

E[cxy(G)] ≤
∑

{x,y,z}∈Txy

Pr [Axyz] +
∑

{x,y,z,w}∈Qd
xy

1

4
Pr [Axyzw] .

Proof. According to Lemma 3, any pair (x, y) pays a
cost only if an event in Ωxy occurs, while Lemma 4 shows
that all events in Ωxy are each other disjoint. This is suf-
ficient for stating that E[cxy(G)] =

∑
ω∈Ωxy

Pr[ω] cxy|ω,

where cxy|ω denotes the cost paid by (x, y) if the event ω
happens. Clearly, cxy|ω ≤ 1, as Lemma 3 gives only a nec-
essary condition. Hence, it holds that:

E[cxy(G)] =
∑

ω∈Ωxy

Pr[ω] cxy|ω ≤

≤
∑

{x,y,z}∈Txy

Pr[Tz|xy] +
∑

{x,y,z,w}∈Qd
xy

Pr[Qzw|xy] ≤

≤
∑

{x,y,z}∈Txy

Pr [Axyz] +
∑

{x,y,z,w}∈Qd
xy

1

4
Pr [Axyzw] ,



where the latter comes from the results shown in Lemma 1
(Pr[Tz|xy] ≤ Pr [Axyz]) and Lemma 2 (Pr[Qzw|xy] ≤
1
4

Pr [Axyzw]). 2

To prove Lemma 6 , we need to first introduce the follow-
ing, additional Lemmas 19 and 20, and Corollary 4

Lemma 19 It holds that:∑
(x,y)∈V×V

∑
{x,y,z,w}∈Qd

xy

Pr [Axyzw] =

=
∑

{x,y,z}∈T

∑
(x′,y′)∈{x,y,z}

∑
w∈V \{x,y,z},
{x,y,z,w}∈Qd

x′y′

Pr [Axyzw]

τxyzw
,

where τxyzw denotes the number of B-triplets contained in
any B-quadruple {x, y, z, w}.

Proof. By definition, any B-quadruple that d-hits a pair
(x, y) must contain a B-triplet that hits in turn (x, y).
Therefore, for any (x, y), any sum over all B-quadruples
within Qd

xy can be split into two sums, one over all B-triplets
that hit (x, y) and one over all objects w that make these
B-triplets B-quadruples too:∑

(x,y)∈V×V

∑
{x,y,z,w}∈Qd

xy

Pr [Axyzw] =

=
∑

(x,y)∈V×V

∑
{x,y,z}∈Txy

∑
w∈V \{x,y,z},
{x,y,z,w}∈Qd

xy

Pr [Axyzw]

τxyzw
=

=
∑

{x,y,z}∈T

∑
(x′,y′)∈{x,y,z}

∑
w∈V \{x,y,z},
{x,y,z,w}∈Qd

x′y′

Pr [Axyzw]

τxyzw
,

where the scaling factor τxyzw is introduced because, in the
original sum, any B-quadruple within Qd

xy is taken into ac-
count only once, while in the split sum it is considered as
many times as the number of its B-triplets. 2

Lemma 20 Given any B-triplet {x, y, z} ∈ T , it holds that:∑
(x′,y′)∈{x,y,z}

∑
w∈V \{x,y,z},
{x,y,z,w}∈Qd

x′y′

Pr [Axyzw]

τxyzw
= 3 Xxyz + 2 Yxyz,

where

Xxyz =
∑

w∈Wxyz

Pr [Axyzw]

τxyzw
, (12)

Yxyz = Y xy
xyz + Y xz

xyz + Y yz
xyz, (13)

Y xy
xyz =

∑
w∈Wxy

xyz

Pr [Axyzw]

τxyzw
,

Y xz
xyz =

∑
w∈Wxz

xyz

Pr [Axyzw]

τxyzw
,

Y yz
xyz =

∑
w∈Wyz

xyz

Pr [Axyzw]

τxyzw
.

Proof. For each (x, y) ∈ V × V , the internal sum in the
statement of the lemma is over all w that make {x, y, z, w} a
B-quadruple d-hitting (x, y). We split this sum as described
next. In order to satisfy the general B-quadruple conditions,
at least one SC-triplet may be contained in {x, y, z, w}. In
principle, {x, y, z, w} may contain up to three SC-triplets as
at most four distinct triplets can be defined over any set of
four objects and at least one of them is not an SC-triplet
(i.e., {x, y, z}, which is a B-triplet by definition); however,
the case where exactly three SC-triplets are contained in
{x, y, z, w} cannot arise, as it is easy to verify that this would
imply {x, y, z} to be an SC-triplet too. Thus, we can define
four possible sets of objects which w should belong to in
order to make {x, y, z, w} a B-quadruple:

1. Wxyz = {w ∈ V \ {x, y, z} s.t. two among {x, y, w},
{x, z, w}, {y, z, w} are SC-triplets}.

2. W xy
xyz = {w ∈ V \{x, y, z} s.t. {x, y, w} is an SC-triplet,

while {x, z, w} and {y, z, w} are not}.

3. W xz
xyz = {w ∈ V \{x, y, z} s.t. {x, z, w} is an SC-triplet,

while {x, y, w} and {y, z, w} are not}.

4. W yz
xyz = {w ∈ V \{x, y, z} s.t. {y, z, w} is an SC-triplet,

while {x, y, w} and {x, z, w} are not}.

Now, it can easily be verified that:

• w ∈ Wxyz implies that {x, y, z, w} d-hits all (x, y),
(x, z), (y, z).

• w ∈ W xy
xyz implies that {x, y, z, w} d-hits (x, z) and

(y, z), but not (x, y).

• w ∈ W xz
xyz implies that {x, y, z, w} d-hits (x, y) and

(y, z), but not (x, z).

• w ∈ W yz
xyz implies that {x, y, z, w} d-hits (x, y) and

(x, z), but not (y, z).

Within this view, it holds that:∑
(x′,y′)∈{x,y,z}

∑
w∈V \{x,y,z},
{x,y,z,w}∈Qd

x′y′

Pr [Axyzw]

τxyzw
=

= 3 Xxyz + 2 Y xy
xyz + 2 Y xz

xyz + 2 Y yz
xyz = 3 Xxyz + 2 Yxyz.

2

Combining the results in Lemmas 19 and 6 leads to the
following straightforward corollary.

Corollary 4 It holds that:∑
(x,y)∈V×V

∑
{x,y,z,w}∈Qd

xy

Pr [Axyzw] =
∑

{x,y,z}∈T

(3 Xxyz + 2 Yxyz) .

Lemma 6 The expected cost E[c(G)] of the Chromatic Balls
algorithm can be bounded as follows

E[c(G)] ≤ Ub(G) =
∑

{x,y,z}∈T

(
3 Pr [Axyz] +

3

4
Xxyz +

1

2
Yxyz

)
.



Proof.

E[c(G)] =
∑

(x,y)∈V×V

E[cxy(G)] ≤

≤
∑

(x,y)∈V×V

 ∑
{x,y,z}∈Txy

Pr [Axyz] +

+
∑

{x,y,z,w}∈Qd
xy

1

4
Pr [Axyzw]

 = (14)

=
∑

(x,y)∈V×V

∑
{x,y,z}∈Txy

Pr [Axyz] +

+
∑

(x,y)∈V×V

∑
{x,y,z,w}∈Qd

xy

1

4
Pr [Axyzw] =

=
∑

{x,y,z}∈T

Pr [Axyz]
∑

(x′,y′)∈{x,y,z}

1 +

+
1

4

∑
{x,y,z}∈T

(3 Xxyz + 2 Yxyz) = (15)

=
∑

{x,y,z}∈T

(
3 Pr [Axyz] +

3

4
Xxyz +

1

2
Yxyz

)
= Ub(G),

where (14) and (15) hold according to Lemma 5 and Corol-
lary 4, respectively. 2

A.5 Proofs of Lemmas 8–9 and Theorem 1
Lemma 21 For any (x, y) ∈ V × V , it holds that:∑
{x,y,z}∈Txy

(
1

2
Pr [Axyz] +

1

6
Xxyz +

1

6
Y xz
xyz +

1

6
Y yz
xyz

)
≤ 1.

Proof. The events in the collection Ωxy are disjoint
(Lemma 4), hence it holds that:

Pr

 ∨
ω∈Ωxy

ω

 =
∑

{x,y,z}∈Txy

Pr[Tz|xy] +
∑

{x,y,z,w}∈Qd
xy

Pr [Axyzw] ≤ 1.

As Pr[Tz|xy] ≥ 1
2

Pr [Axyz] (Lemma 1) and Pr [Axyzw] ≥
1
6

Pr [Axyzw] (Lemma 2), the latter leads to the following:∑
{x,y,z}∈Txy

1

2
Pr [Axyz] +

1

6
Pr [Axyzw] ≤ 1.

Recalling the reasoning exploited in Lemmas 19 and 20, it
results that:∑
{x,y,z,w}∈Qd

xy

Pr [Axyzw] =
∑

{x,y,z}∈Txy

(
Xxyz + Y xz

xyz + Y yz
xyz

)
.

Thus, we have that:∑
{x,y,z}∈Txy

1

2
Pr [Axyz ] +

1

6
Pr [Axyzw] ≤ 1⇔

⇔
∑

{x,y,z}∈Txy

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Y xz
xyz +

1

6
Y yz
xyz

)
≤ 1.

2

Lemma 22 For any B-triplet {x, y, z}, it holds that:

1

6
Y xy
xyz ≤ 1,

1

6
Y xz
xyz ≤ 1,

1

6
Y yz
xyz ≤ 1.

Proof. For a pair (x′, y′), according to Lemma 21, it
holds that:

∑
{x′,y′,z′}∈Tx′y′

(
1

2
Pr
[
Ax′y′z′

]
+

1

6
Xx′y′z′ +

1

6
Y x′z′
x′y′z′ +

1

6
Y y′z′

x′y′z′

)
≤ 1,

and, hence:

1

6
Y x′z′
x′y′z′ ≤ 1,

1

6
Y y′z′

x′y′z′ ≤ 1, ∀{x′, y′, z′} ∈ Tx′y′ . (16)

By definition, any B-triplet {x, y, z} hits pairs that can be
defined over {x, y, z}; then it follows that {x, y, z} ∈ Txy,
{x, y, z} ∈ Txz, {x, y, z} ∈ Tyz, and, therefore, according to
Equation (16):

{x, y, z} ∈ Txy ⇒
1

6
Y xz
xyz ≤ 1,

1

6
Y yz
xyz ≤ 1,

{x, y, z} ∈ Txz ⇒
1

6
Y xy
xyz ≤ 1,

1

6
Y xz
xyz ≤ 1,

{x, y, z} ∈ Tyz ⇒
1

6
Y xy
xyz ≤ 1,

1

6
Y xz
xyz ≤ 1.

2

Lemma 8 For any pair (x, y) ∈ V × V , it holds that:∑
{x,y,z}∈Txy

1

1 + |Txy|

(
1

2
Pr [Axyz] +

1

6
Xxyz +

1

6
Yxyz

)
≤ 1.

Proof. As Yxyz = Y xy
xyz + Y xz

xyz + Y yz
xyz (Equations (12)

and (13)), it holds that:

∑
{x,y,z}∈Txy

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Yxyz

)
=

=
∑

{x,y,z}∈Txy

(
1

2
Pr [Axyz ]+

1

6
Xxyz+

1

6
Y xz
xyz+

1

6
Y yz
xyz

)
+

∑
{x,y,z}∈Txy

1

6
Y xy
xyz .

The first sum in the latter expression is ≤ 1 according to
Lemma 21. As far as the second sum, Lemma 22 states that
1
6
Y xy
xyz ≤ 1; this implies that

∑
{x,y,z}∈Txy

1
6
Y xy
xyz ≤ |Txy|.

Hence:

∑
{x,y,z}∈Txy

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Yxyz

)
≤ 1 + |Txy | ⇒

⇒
∑

{x,y,z}∈Txy

1

1 + |Txy |

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Yxyz

)
≤ 1.

2

Lemma 9 The cost c∗(G) of the optimum solution on any
input instance G is lower bounded as follows:

c∗(G) ≥ Lb(G) =

=
∑

{x,y,z}∈T

1

1 + tmax

(
1

2
Pr [Axyz] +

1

6
Xxyz +

1

6
Yxyz

)
,

where tmax = max(x,y)∈V×V |Txy| is the maximum number
of B-triplets that hit a pair of objects.



Proof. According to Lemma 8, it holds that (for all
(x, y) ∈ V × V ):∑
{x,y,z}∈Txy

1

1 + tmax

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Yxyz

)
≤

≤
∑

{x,y,z}∈Txy

1

1 + |Txy |

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Yxyz

)
≤ 1.

Thus, we note that, setting

αxyz =
1

1+ tmax

(
1

2
Pr [Axyz ]+

1

6
Xxyz +

1

6
Yxyz

)
, ∀{x, y, z}∈T .

the condition about fractionally assigning each pair of ob-
jects within V ×V to the B-triplets in T stated by Lemma 7
is satisfied. Thus, Lemma 7 can be applied here to derive
the following:

c∗(G) ≥
∑

{x,y,z}∈T
αxyz =

=
∑

{x,y,z}∈T

1

1+ tmax

(
1

2
Pr [Axyz ]+

1

6
Xxyz +

1

6
Yxyz

)
= Lb(G).

2

Theorem 1 The approximation ratio of the Chromatic Balls
algorithm on any input instance G is

r(G) =
E[c(G)]

c∗(G)
= ≤ 6 (1 + tmax).

Proof. Given the expressions for Ub(G) and Lb(G) de-
rived in Lemmas 6 and 9, respectively, Equation (8) be-
comes:

E[c(G)]

c∗(G)
≤

Ub(G)

Lb(G)
=

=

∑
{x,y,z}∈T

(
3 Pr [Axyz ] +

3

4
Xxyz +

1

2
Yxyz

)
∑

{x,y,z}∈T

1

1 + tmax

(
1

2
Pr [Axyz ] +

1

6
Xxyz +

1

6
Yxyz

) ≤
≤ 6 (1 + tmax).

2

Corollary 1 The approximation ratio of the
Chromatic Balls algorithm on any input instance G is

r(G) ≤ 6 (2 Dmax − 1) .

where Dmax = maxx∈V |{y | y ∈ V ∧ `(x, y) 6= l0}|.

Proof. By definition, at least two objects within any
B-triplet must have a label other than l0. Thus, the num-
ber of B-triplets hitting any pair (x, y) is upper bounded
by the number of neighbors of x plus the neighbors of
y minus 2, which is clearly ≤ 2 ∆ − 2. This leads to
tmax ≤ 2 Dmax − 2 ⇒ 6 (1 + tmax) ≤ 6 (2 Dmax − 1),
which proves the corollary. 2


