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Abstract

Clustering XML documents is extensively used to organize large collections of
XML documents in groups that are coherent according to structure and/or con-
tent features. The growing availability of distributed XML sources and the
variety of high-demand environments raise the need for clustering approaches
that can exploit distributed processing techniques. Nevertheless, existing meth-
ods for clustering XML documents are designed to work in a centralized way.

In this paper, we address the problem of clustering XML documents in a
collaborative distributed framework. XML documents are first decomposed
based on semantically cohesive subtrees, then modeled as transactional data
that embed both XML structure and content information. The proposed clus-
tering framework employs a centroid-based partitional clustering method that
has been developed for a peer-to-peer network. Each peer in the network is al-
lowed to compute a local clustering solution over its own data, and to exchange
its cluster representatives with other peers. The exchanged representatives are
used to compute representatives for the global clustering solution in a collab-
orative way. We evaluated effectiveness and efficiency of our approach on real
XML document collections varying the number of peers. Results have shown
that major advantages with respect to the corresponding centralized clustering
setting are obtained in terms of runtime behavior, although clustering solutions
can still be accurate with a moderately low number of nodes in the network.
Moreover, the collaborativeness characteristic of our approach has revealed to
be a convenient feature in distributed clustering as found in a comparative eval-
uation with a distributed non-collaborative clustering method.
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1. Introduction

The clustering problem is central in data management as it refers to unsu-
pervised learning of the inherent structure of relationships in the data. The
discovered relationships are expressed as a set of groups, or clusters, where data
objects within the same cluster are similar to each other while dissimilar from
objects in different clusters.

Text databases represent a fruitful research area in data clustering. With
the growing availability of large document collections, there has been an in-
creasing demand for fast and accurate organization of such data. In the last
years, research on document clustering has focused on the development of ap-
proaches and methods that aim to address the special requirements for cluster-
ing large document collections, such as high dimensionality, ease for browsing,
meaningfulness of cluster descriptions [26, 36, 12, 30, 21]. Moreover, text data
available from most informative sources, primarily over the Web but also in
digital libraries and scientific repositories, have a semistructured nature. As the
connection point between the natural language text and the rigidly structured
tuples of typed data, semistructured text data enables the modeling of complex
real-world objects and their relationships.

Within this view, XML has become the preeminent way for effectively repre-
senting such data, thanks to its extensible markups and document type descrip-
tors. As a meta-language for markup, XML allows the definition of customized
tags describing the data enclosed by them. This flexibility in the XML syntax
simplifies the deployment of arbitrary languages for domain-specific markup:
just to mention a few domain applications, XML has been used in Web con-
tent syndication and rendering, multimedia and networking, scientific data and
literature, business processes and data exchange.

Particularly, the importance of XML is becoming more and more evident
in high-demand environments, in which clustering large document sets is chal-
lenging as it has to face tight requirements on both processing power and space
resources. One example is represented by some Web news services that need to
apply clustering algorithms to articles in XML format spanning over thousands
of news sources with a frequency of few minutes. In this case, a distributed
clustering approach would divide the capability of processing over several nodes
as opposed to concentrating performance on a single workstation, where tradi-
tional centralized approaches would fail since transferring all data to a central
clustering service is prohibitive in large-scale systems. In the case of news arti-
cles, the objective of a clustering system would be most likely to discover groups
of articles discussing similar contents, regardless of their structures. Actually,
many other real scenarios are even more complicated since XML documents from
heterogeneous sources are typically organized using different logical structures,
and this also holds for sources that may have similar contents. As an example,
consider users in a peer-to-peer network who want to share information about
software encoded in XML format, such as software name, developers’ name,
latest release date, platform, license, reviews and ratings. All such structural
fields would be encoded using the markup vocabulary authored by any spe-
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cific source, and contents might be interleaved with structure in different ways.
For instance, using a text-centric representation approach, an XML document
might contain the full descriptions of the various reviews, including ratings, in
repeated occurrences of the element review. By contrast, using a data-centric
representation approach, a different XML document may follow a more complex
substructure rooted in the element reviews which would include a number of
sub-elements containing a short description for each of selected aspects relevant
to the review (e.g., positive and negative comments, rating, recommendation).
In such a scenario, the partial matchings between different structures (and their
combinations with text values) could be identified based on an XML similar-
ity detection approach properly devised for taking into account heterogeneous
structure as well content information. This way, users would be allowed to
easily access an integrated and more complete information, hence to extract
interesting knowledge patterns.

The scenario described above is just one among the many existing in XML
distributed applications, which range from scientific literature and data to per-
sonal profiles, from book or music reviews to product documentations. As
a matter of fact, XML is being extensively used in peer-to-peer (P2P) net-
works [19, 1, 28, 5], due to the natural combination of a standard way for repre-
senting and exchanging information with a technology for sharing and locating
distributed data which has proven to enable innovative services [29]. However,
despite this synergistic coupling of XML and P2P networks, existing methods
for clustering XML data are designed to work only on a centralized environment.
This partly depends on an inherent difficulty in devising representation models
of both XML structure and content information that are able to effectively sup-
port summarization of XML data, thus favouring the development of clustering
methods that maintain feasibility in large-scale systems. Moreover, most clus-
tering strategies cannot easily be distributed, since there is an additional level
of complexity due to the design and implementation of scalable and effective
protocols for communication that allow nodes to minimize exchanged data. In
this respect, a related issue concerns the type and the form of the information
that need to be selected and exchanged among the nodes, which impacts on the
significance of the obtained clustering solutions.

Contribution
Our proposal is focused on the development of a distributed framework for

efficiently clustering XML documents. Assuming the distributed environment
as a P2P network, the underlying idea is to enable each node in the network
to access a portion of a given document collection and to communicate with all
the other nodes to perform a clustering task in a collaborative fashion. To the
best of our knowledge, we bring for the first time the problem of collaborative
distributed clustering in the XML data domain.

The proposed framework borrows the approach to modeling and clustering
XML documents from our earlier works [33, 32]. Following the lead of these
works, XML documents are transformed into transactional data based on the
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Figure 1: Overview of the collaborative distributed clustering of XML documents: (a) an
example XML distributed environment as a P2P network, and (b) a schematization of data
flows in a single node of the network

notion of tree tuple. XML tree tuples enable a flat, relational-like XML rep-
resentation that is well-suited to meet the requirements for clustering XML
documents according to structure and content information.

We resort to the well-known paradigm of centroid-based partitional clus-
tering [17] to conceive our distributed, transactional clustering framework. It
should be emphasized that such a clustering paradigm is particularly appealing
to a distributed environment. Indeed, the availability of a summarized de-
scription of the clustered data provided by the cluster representatives is highly
desirable especially when the input data is spread across different peers. Cluster
representatives are hence used to describe portions of the document collection
and can conveniently be exchanged with other nodes on the network.

Figure 1 provides an overview of our collaborative distributed clustering
framework. A number of XML information sources is spread over a P2P network
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(Figure 1(a)). Each node in the network has its own local XML repository and
communicates with the other nodes sending and receiving summarized informa-
tion about the local clustering process (i.e., cluster representatives). Figure 1(b)
shows the main processes involved in each single node. A preprocessing phase
produces a transactional representation of the local XML documents based on
tree tuples. At each iteration of the collaborative algorithm, each node yields a
local clustering solution (i.e., a partition of its own set of XML data). For each
local cluster, the corresponding (local) representative is obtained and sent out
to nodes that are in charge of computing the “global” representatives. More
precisely, every node computes a subset of the global representatives; the i-th
node computing the global representative for a set of clusters, receives from
each other node the representative for the corresponding local cluster. Once
computed, the global representatives are finally sent back to all the nodes to
update their local clusters.

Major features and advantages offered by our approach can be summarized
as follows:

� High level of resource distribution — our approach is totally distributed
since both data and (clustering) processes are distributed over several
nodes.

� Collaborativeness — as typical in a P2P network, whose main strength
is its independence of dedicate infrastructure and centralized control [29],
collaborativeness leads to a distributed environment that presents several
advantages mainly in terms of: reliability (no centralized index server
needs to be maintained), resource sharing (i.e., every node locally shares
its resources and administrates its client-server environment), efficiency
and effectiveness (i.e., processing power increases as demands increase, and
transmission rate is higher than a client-server network since resources can
be made available from multiple nodes connected to each other as peers).

� Limited network load — our notion of XML cluster representative is well-
suited for representing structure and content information in XML data,
and ensures an efficient exchange of information.

� Ease of implementation — the logics adopted by every node for processing
the information exchanged with other nodes is simple. This allows an easy
implementation of the processes performed by nodes: indeed, through the
definition of global representatives, this logics exploits the repeated appli-
cation of a procedure very similar to that used for summarizing informa-
tion exchanged among the nodes (local representatives).

We conducted experiments on large, real-world collections of XML docu-
ments, which are particularly suitable for assessing the ability of the proposed
framework in performing collaborative clustering of XML documents by struc-
ture and content. Documents in each of these collections were distributed over
a P2P network, where the number of peers was varied. Results have shown
that, although the final clustering accuracy is typically reduced with respect to
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the centralized case, the parallelism due to a relatively small number of collab-
orating nodes in the network leads to a drastic reduction of the overall runtime
needed for the clustering task. Besides this major strength with respect to a
centralized clustering solution, further experiments have unveiled a remarkable
beneficial impact of the collaborativeness feature of our approach compared to
a non-collaborative distributed clustering method.

Plan of the paper
The rest of the paper is organized as follows. Section 2 discusses related

work. Section 3 provides preliminaries for XML transactional representation,
including the notions of tree tuple and transaction for the XML data domain.
Section 4 describes our XML transactional similarity measure and collabora-
tive clustering algorithm. Section 5 reports experimental evaluation on the
framework from both effectiveness and efficiency viewpoint. Finally, Section 6
presents concluding remarks and pointers for future research.

2. Related Work

Distributed XML data management has received an increasing attention in
the last few years. As usual in emerging database applications, early proposals
have been developed in order to primarily enact efficient distributed query pro-
cessing and optimization. In [2], the Active XML (AXML) language, a logical
language based on the embedding of service calls within XML documents, is
extended to enable the declarative specification and deployment of XML appli-
cations across distributed complex processes. In [5], the distribution of XML
documents across a P2P network is exploited to speed-up query processing. In
contrast to related research studies (e.g., [28]), a clustering-based distribution
scheme is designed to ensure a more homogeneous assignment of documents to
peers, according to the clusters identified in the set of stored XML documents.

The attractiveness of publishing information sources in XML for organi-
zations that want to easily interoperate has also fed an increasing interest in
developing solutions for collaborative creation and editing of XML documents.
For instance, in [16], an approach for the reconciliation of XML documents in
a decentralized P2P environment is presented. In such environment, users can
work off-line on their document versions and, as they reconnect to the network,
synchronize their changes with other users. Consistency over the concurrent
edits on XML documents is maintained by merging XML structures using a
tombstone operational transformation based approach.

As previously mentioned, current methods for clustering XML documents are
designed to offer centralized solutions. In this respect, a first problem arises in
the definition of an XML representation model that is able to effectively handle
both structure and content information in XML data. Representing semistruc-
tured and XML data has been traditionally addressed by labeled rooted trees.
Consequently, dealing with such data has leveraged results from research on tree
matching, including a number of algorithms for computing tree edit distances
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(e.g., [25]). However, due to complexity issues, edit distance based approaches
are infeasible for large data collections. To overcome these issues, summarization
models have been proposed in order to (i) concisely represent XML data while
preserving some structural relationships between XML elements, and (ii) fast
compute XML similarity thus making it efficient in case of large-scaled XML
documents [4, 24, 23, 9, 27]. In [23], an efficient graph-based summarization
model, called s-graph, defines a concise XML representation that can be gen-
eralized to sets (clusters) of XML documents; however, the s-graph model may
incur loose-grained similarity, as two documents may share the same s-graph
prototype and still have significant structural differences (e.g., hierarchical re-
lationships between elements). For instance, in [24], a compact structure is
introduced to summarize the distinct nodes at each level of an XML document,
and a notion of structural match between elements is defined according to the
level information of each tree object. Like [24], the summarized structure pro-
posed in [4] is organized as a vector of levels as well, although it considers the
distinct edges at each level of an XML document. Moreover, it is also able
to preserve the structural relationships between nodes of consecutive levels in
the form of edge lists, which is in principle useful for distinguishing between
semantically/structurally different XML documents.

A different category is provided by subtree mining and matching algorithms [3,
20]. Such algorithms exploit a tree representation of XML documents, however
they compute XML similarity in terms of coverage of frequent substructures
(e.g., subtrees, paths) at a specified support level, instead of calculating the
tree edit distance between any pair of XML documents. The complexity of
algorithms that belong to this category lies on the complexity of mining the
frequent sub structures, which might turn out to be inefficient in case of large
XML document sets.

The development of vector-space models to represent XML data has also
attracted great attention, especially in XML information retrieval contexts [34,
13, 35, 8]. In [35], feature generation concerns properties on the paths, such as
the path length, the root node label, and the number of path nodes. In [8], XML
documents are transformed into sets of attribute-values according to various tree
relationships among the document nodes, such as parent-child and next-sibling
relationships, and path occurrences. In [13], both the XML element names and
their text content values texts are taken into account to form two distinct feature
sets. XML documents are hence represented based on these feature sets and
the K-means algorithm is applied. =⇒chiarire DL06⇐= Another =⇒???⇐=
hybrid clustering algorithm is described in [34], where the content features are
modeled as a vector of terms weighted by their frequency within documents,
and the structural features are modeled as a vector of distinct complete paths
weighted by their appearance within documents. The Euclidean distance is used
to compute the dissimilarity between the corresponding vector representations
of the XML documents.

In our earlier works [33, 32], we originally introduced an XML representation
model that allows for mapping XML document trees into transactional data. In
a generic application domain, a transaction dataset is a multi-set of variable-
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length sequences of objects with categorical attributes; in the XML domain, we
devise a transaction as a set of items, each of which embeds a distinct combi-
nation of structure and content features from the original XML data. Within
this view, XML documents are not directly transformed to transactional data,
rather they are initially decomposed on the basis of the notion of tree tuple.
Intuitively, given any XML document, a tree tuple is a tree representation of a
complete set of distinct concepts that are correlated according to the structure
semantics of the original document tree. Tree tuples extracted from the same
tree maintain similar or identical structure while reflect different ways of associ-
ating content with structure as they can be naturally inferred from the original
tree.

Traditional clustering techniques assume data is memory-resident. However,
this assumption does not hold in many large-scale systems. In this respect,
the development of clustering methods in parallel and distributed environments
is becoming important since clustering and, in general, data mining tasks of-
ten require huge amounts of resources in storage space and computation time.
Moreover, data is often inherently distributed into several databases, making a
centralized analysis of such data inefficient and prone to security risks.

Among the few proposals to parallelize the clustering process in generic data
domains [22], a parallel implementation of the K-means clustering algorithm is
defined in [11], where a multi-processor architecture is assumed based on the
message passing paradigm. Each processor has its own local memory, while the
access to the other processes’ memory is ensured by exploiting a standardized
Message Passing Interface (MPI) library. The dataset is partitioned into equal-
sized blocks among the processes. After selecting k objects as initial cluster
representatives, each process carries out the basic K-means procedure to cluster
its local objects. At the end of each iteration, processes exchange and sum up
the local Sum of Squared-Errors (SSEs) to obtain the global SSE and compute
new cluster representatives. The algorithm stops when the global SSE does not
change in the next iteration.

One of the earliest studies on distributed data mining is proposed in [18],
where an agent-based architecture is defined in such a way that each agent has
a local model of the world and agents cooperate to improve solutions. The
problem of document clustering in a distributed peer-to-peer network has been
addressed recently. For instance, in [14], the significance of centroid-based parti-
tional clustering like K-means is leveraged as an efficient approach to distributed
clustering of documents. In [15], the authors originally propose a collaborative
approach to distributed clustering of unstructured documents. The key idea
underlying that work is to improve the local clustering solutions by exploit-
ing the distributed environment on the basis of recommendations exchanged by
the various peers. Also, document cluster summaries are modeled in form of
keyphrases. Our work shares with [15] the adoption of a collaborative approach
to distributed document clustering. However, our work is significantly different
in that:

� XML documents are far more complex than structure-free texts, since
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the property of being content-bearing belongs to textual elements that
are interleaved with (and contextually dependent on) logical structure
tags; this requires a data representation model capable of embedding both
structure and content information.

� XML cluster summarization needs to go beyond the relative simple extrac-
tion of representative key-phrases that belong to plain documents within
each cluster; our XML cluster summaries are defined as cluster represen-
tative transactions, which are conceived to contain highly representative
items of structure and content information present in the within-cluster
XML document set.

� XML information exchanged among peers is not supplied in the form of
recommendations, but in a simpler way that exploits the definition of
“meta-representatives” for the computation of the global clustering solu-
tion.

3. XML Transactional Representation

3.1. Preliminaries on XML trees and paths
A tree T is a tuple T = 〈rT , NT , ET , λT 〉, where NT ⊆ N denotes the set

of nodes, rT ∈ NT is the distinguished root of T , ET ⊆ NT × NT denotes the
(acyclic) set of edges, and λT : NT 7→ Σ is a function associating a node with
a label in the alphabet Σ. Let Tag, Att, and Str be alphabets of tag names,
attribute names, and strings respectively. An XML tree XT is a pair XT =
〈T, δ〉, such that: i) T is a tree defined on the alphabet Σ = Tag ∪ Att ∪ {S},
where symbol S /∈ Tag ∪ Att is used to denote the #PCDATA content model; ii)
given n ∈ NT , λT (n) ∈ Att ∪ {S} ⇔ n ∈ Leaves(T ); iii) δ : Leaves(T ) 7→ Str
is a function associating a string to a leaf node of T .

An XML path p is a sequence p=s1.s2. . . .sm of symbols in Tag∪Att∪{S}.
Symbol s1 denotes the tag name of the document root element. An XML path
can be categorized into two types: tag path, if sm ∈ Tag, or complete path,
if sm ∈ Att ∪ {S}. We denote by PXT the set of all the complete paths in
XT and by T PXT the set of all the maximal tag paths in XT , i.e., T PXT =
{s1. . . .sm−1|s1. . . .sm−1.sm ∈ PXT }. The length of the longest path in PXT

determines the depth of XT , denoted as depth(XT ).
Let XT = 〈T, δ〉 be an XML tree, and p = s1.s2. . . .sm be an XML path.

The application of p to XT identifies the set p(XT ) = {n1, . . . , nh} of all nodes
such that, for each i ∈ [1..h], there exists a sequence of nodes, or node path,
npp

i = [ni1 , . . . , nim ] with the following properties: ni1 = rT and nim = ni; nij+1

is a child of nij , for each j ∈ [1..m-1]; and, λ(nij ) = sj , for each j ∈ [1..m].
The application of a given path to an XML tree is called answer. Formally,

given an XML tree XT and a path p, the answer of p on XT is defined as either
AXT (p) ≡ p(XT ) (i.e., the set of node identifiers p(XT )) if p is a tag path, or
AXT (p) = {δ(n) | n ∈ p(XT )} (i.e., the set of string values associated to the
leaf nodes identified by p) if p is a complete path.
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3.2. XML tree tuples
Tree tuple resembles the notion of tuple in relational databases and has

been proposed to extend functional dependencies to the XML setting [6]. In a
relational database, a tuple is a function assigning each attribute with a value
from the corresponding domain. Given an XML tree XT , a maximal subtree of
XT is an XML tree tuple τ if the answer of each (tag or complete) path p in
XT on τ has size not greater than 1, i.e., |Aτ (p)| ≤ 1.

We hereinafter denote the set of tree tuples from any given tree XT as
T XT , and the set of tree tuples from the tree collection XT simply as T . Also,
following the notation introduced in Section 3.1, we use Pτ to denote the set of
all the complete paths in a tree tuple τ .

Example 1. Figure 2(a) shows a simplified XML document (from the DBLP
archive) concerning two conference papers. Such a document is graphically
represented by the XML tree in Figure 2(b). In the tree, any internal node has
a unique label denoting a tag name. Each leaf node corresponds to either an
attribute or #PCDATA content, and is labeled with either name and value of the
attribute, or symbol S and the string corresponding to #PCDATA. As examples of
path answers, (tag) path dblp.inproceedings.title yields the set of node identifiers
{n8, n20}, whereas (complete) path dblp.inproceedings.author.S yields the set of
strings {‘M. J. Zaki’, ‘C. C. Aggarwal’}.

As shown in Figure 3, three tree tuples can be extracted from the tree of
Figure 2(b). One tree tuple is from the right subtree rooted in the dblp element
(Figure 3(c)). Two distinct tree tuples are extracted from the left subtree rooted
in dblp, as in this subtree there are two paths dblp.inproceedings.author, each of
which yields a distinct path answer corresponding to one author of a paper.
Suppose now that node n3 is pruned from the subtree of Figure 3(a): in this
case, the resulting tree is no more a tree tuple as it is not a maximal subtree.

3.3. A transactional model for XML tree tuples
In the generic categorical domain, a transactional dataset is a multi-set of

transactions over a set of categorical values, or items. In our XML setting, the
item set is built over all the leaf elements in a given collection of XML tree tuples,
hence it corresponds to the set of answers of complete paths applied to the tree
tuples. A transaction is then modeled with the set of items associated to the leaf
elements of any specific tree tuple. Formally, given an XML tree tuple τ , the
XML transaction corresponding to τ is the set Iτ ={〈p,Aτ (p)〉 | p∈Pτ}, where
each pair 〈p,Aτ (p)〉 is referred to as an XML tree tuple item. The rationale
behind this model is that each path applied to a tree tuple yields a unique
answer, thus each item in a transaction indicates information on a concept that
is distinct from that of other items in the same transaction. We also denote
with S the XML transaction set for a given collection XT of XML trees, which
is defined as S =

⋃
XT∈XT SXT , where SXT = {Iτ | τ ∈ T XT }.

Example 2. In order to model XML tree tuples as transactions, we can decom-
pose each tree tuple into its distinct paths and respective answers, as shown in
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<dblp>
<inproceedings key="conf/kdd/ZakiA03">

<author>M. J. Zaki</author>
<author>C. C. Aggarwal</author>
<title>XRules: an effective structural

classifier for XML
</title>
<pages>316-325</pages>
<year>2003</year>
<booktitle>KDD</booktitle>

</inproceedings>
<inproceedings key="conf/kdd/Zaki02">

<author>M. J. Zaki</author>
<title>Efficiently mining

frequent trees in a forest
</title>
<pages>71-80</pages>
<year>2002</year>
<booktitle>KDD</booktitle>

</inproceedings>
</dblp>
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Figure 2: Example DBLP XML document and its tree

Figure 4(a). For example, in tree tuple τ1, the application of path dblp.inproceedings.@key

yields the attribute value ‘conf/kdd/ZakiA03’ corresponding to node n3. Then,
item e1 is associated to the above pair path-answer. Yet, the answer of path
dblp.inproceedings.booktitle.S is the string ‘KDD’ corresponding to two nodes, n13

of tree tuples τ1 and τ2, and n25 of tree tuple τ3.
Once the item domain has been completely defined, a transaction is assigned

with each tree tuple by mapping its pairs path-answer into the corresponding
items. A transactional representation of the tree tuples of Figure 3 is shown
in Figure 4(c). Notice that, in the example, all the transactions contain the
same number of tree tuple items, as their corresponding tree tuples have the
same number of leaf nodes. Clearly, transactions might be differently sized,
depending on the specific structure of the associated tree tuples.
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Figure 3: The tree tuples extracted from the XML tree of Figure 2(b)

4. XML Transactional Clustering

In this section, we describe how XML tree tuples modeled as transactions
can be compared to each other and clustered by applying a centroid-based par-
titional algorithm suitably designed for a collaborative environment.

4.1. XML tree tuple item similarity
XML transactions are compared according to both their structure and con-

tent features, by computing the similarity between their respective tree tuple
items. Given two tree tuple items ei and ej , the tree tuple item similarity is
computed by the function:

sim(ei, ej) = f × simS(ei, ej) + (1− f)× simC(ei, ej), (1)

where simS (resp. simC) denotes the structural (resp. content) similarity be-
tween the items, and f ∈ [0, 1] is a factor that tunes the influence of the struc-
tural part to the overall similarity.

Moreover, two XML tree tuple items ei and ej are said to be γ-matched if

sim(ei, ej) ≥ γ (2)

where γ ∈ [0, 1] is a similarity threshold introduced to set the minimum degree
of matching of the combinations of structure and content features embedded in
the two tree tuple items.

Similarity by Structure
Structural similarity between two tree tuple items ei and ej is evaluated by

comparing their respective tag paths.
Computing the similarity between any two paths is essentially accomplished

by referring to it as a simple case of string matching of their respective element
names, and finally averaging the (weighted) matchings. To this end, given any
two tags t and t′, the Dirichlet function (∆) is applied in such a way that ∆(t, t′)
is equal to one if the tags match, otherwise ∆(t, t′) is equal to zero.
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path (p) Aτ1(p) node ID

dblp.inproceedings.@key ‘conf/kdd/ZakiA03’ n3

dblp.inproceedings.author.S ‘M. J. Zaki’ n5

dblp.inproceedings.title.S ‘XRules: an effective ...’ n9

dblp.inproceedings.year.S ‘2003’ n11

dblp.inproceedings.booktitle.S ‘KDD’ n13

dblp.inproceedings.pages.S ‘316-325’ n15

path (p) Aτ2(p) node ID

dblp.inproceedings.@key ‘conf/kdd/ZakiA03’ n3

dblp.inproceedings.author.S ‘C. C. Aggarwal’ n7

dblp.inproceedings.title.S ‘XRules: an effective ...’ n9

dblp.inproceedings.year.S ‘2003’ n11

dblp.inproceedings.booktitle.S ‘KDD’ n13

dblp.inproceedings.pages.S ‘316-325’ n15

path (p) Aτ3(p) node ID

dblp.inproceedings.@key ‘conf/kdd/Zaki02’ n17

dblp.inproceedings.author.S ‘M. J. Zaki’ n19

dblp.inproceedings.title.S ‘Efficiently mining ...’ n21

dblp.inproceedings.year.S ‘2002’ n23

dblp.inproceedings.booktitle.S ‘KDD’ n25

dblp.inproceedings.pages.S ‘71-80’ n27

(a)

item ID associated
node IDs

e1 n3

e2 n5, n19

e3 n9

e4 n11

e5 n13, n25

e6 n15

e7 n7

e8 n17

e9 n21

e10 n23

e11 n27

(b)

tr1 e1 e2 e3 e4 e5 e6

tr2 e1 e7 e3 e4 e5 e6

tr3 e8 e2 e9 e10 e5 e11

(c)

Figure 4: Transactional representation of the tree tuples of Figure 3: (a) paths and answers,
(b) item domain, and (c) transaction set

Given two XML tree tuple items ei and ej , let pi = ti1 .ti2 . . . . .tin and
pj = tj1 .tj2 . . . . .tjm be their respective tag paths. The structural similarity
between ei and ej is defined as

simS(ei, ej) =
1

n + m

(
n∑

h=1

s(tih
, pj , h) +

m∑

k=1

s(tjk
, pi, k)

)
(3)

such that, for each tag t and path p = t1.t2. . . . .tL, s(t, p, a) = maxl=1..L(1 +
|a− l|)−1 ×∆(t, tl).
Above, the tag matchings are corrected by a factor which is inversely propor-
tional to the absolute difference of location of the tags in their respective paths.
Essentially, this factor penalizes the similarity of two paths that have the same
tags but are differently located.

It should also be noted that information on structural similarity could be
semantically enriched with the support of a knowledge base, like in our previous

13



works; however, in this work, we deliberately intended to consider only syntactic
similarity aspects to concentrate on the clustering phase and on the investigation
of the benefits deriving from a collaborative distributed approach. Therefore,
we leave this point as a future development of the proposed framework.

Similarity by Content
We refer to a textual content unit (for short, TCU) as the preprocessed text1

of a tree tuple item, i.e., a #PCDATA element content or an attribute value. To
weight the relevance of terms in TCUs, we defined a function which represents an
adaptation of the popular tf .idf (term frequency - inverse document frequency)
to our XML transactional domain.

Given a collection XT of XML trees , let wj be an index term occurring in
a TCU ui of a tree tuple τ ∈ T extracted from a tree XT ∈ XT . The ttf .itf
(Tree tuple Term Frequency - Inverse Tree tuple Frequency) weight of wj in ui

with respect to τ is defined as

ttf .itf (wj , ui|τ ) = tf (wj , ui)× exp
(

nj,τ

Nτ

)
× nj,XT

NXT
× ln

(
NT
nj,T

)

where tf (wj , ui) denotes the number of occurrences of wj in ui, and the other
symbols denote the number of TCUs appearing in τ (Nτ ) and in the portion
containing wj (nj,τ ), in XT (NXT ) and in the portion containing wj (nj,XT ),
in T (NT ) and in the portion containing wj (nj,T ). Note that, the ttf .itf
weight increases by increasing each of the factors in the function, i.e., the term
frequency within the specific TCU, the term popularity across the TCUs of the
same XML transaction and across the TCUs of the same document tree, and
the term rarity across the whole collection of TCUs.

Content similarity between two tree tuple items is computed by measuring
the text similarity of their respective TCUs. We adopt a vector-space model
to represent the TCUs, therefore any TCU ui is modeled with a vector ~ui

whose j-th component corresponds to an index term wj and contains the ttf .itf
relevance weight. The size of TCU vectors is equal to the size of the vocabulary
V, i.e., the set of index terms extracted from all TCUs in the collection T of tree
tuples. Clearly, from a point of view of data structure implementation, proper
structures can be exploited to drastically reduce the actual dimensionality of
each TCU vector, since TCU vectors are typically sparse. To measure the
similarity between TCU vectors, the well-known cosine similarity [31] is used.

4.2. The CXK-means clustering algorithm
XML tree tuples modeled as transactions are efficiently clustered by carrying

out a partitional algorithm devised for the XML transactional domain. Gen-
erally, given a set of objects and a positive number k, a partitional clustering

1Text preprocessing is usually accomplished by means of language-specific operations such
as lexical analysis, removal of stopwords and word stemming [7].
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algorithm identifies k non-empty, disjoint groups each containing a homoge-
neous subset of objects. An important class of partitional approaches is based
on the notion of representative, or centroid, of cluster: each object is assigned
to a cluster C according to its distance from a specific data point c, which is
the representative of C.

In [33, 32], we developed a centroid-based partitional clustering algorithm,
which is essentially a variant of the K-means algorithm for the XML transac-
tional domain. From clustering strategy viewpoint, this algorithm works as a
traditional centroid-based method to compute k + 1 clusters: starts choosing
k objects as the initial cluster representatives, then iteratively reassigns each
remaining object to the closest cluster until all cluster representatives do not
change. The (k+1)-th cluster, called trash cluster, is created to contain unclus-
tered objects.

Two major aspects in the XML transactional clustering algorithm are (i)
the notion of proximity used to compare XML transactions and (ii) the notion
of cluster representative.

In generic transactional domains, a widely used proximity measure is the
Jaccard coefficient, which determines the degree of matching between any two
transactions as directly proportional to their intersection (i.e., number of com-
mon items) and inversely proportional to their union. However, computing
exact intersection between XML transactions is not effective, since XML tree
tuple items may share structural or content information to a certain degree
even though they are not identical. For this purpose, the notion of standard
intersection between sets of items is enhanced to capture non-exact similarities
in structure and content XML features. Let us now introduce our notion of
enhanced intersection between XML transactions.

Given two XML transactions tr1, tr2, and a similarity threshold γ ∈ [0, 1],
the set of γ-shared items between tr1 and tr2 is defined as

matchγ(tr1, tr2) = matchγ(tr1 → tr2) ∪ matchγ(tr2 → tr1),

where

matchγ(tr i → tr j) = {e∈ tr i | ∃eh∈ tr j , sim(e, eh) ≥ γ,

@e′∈ tr i, sim(e′, eh) > sim(e, eh)}.

The set of γ-shared items hence resembles the intersection between transac-
tions at a degree greater than or equal to a similarity threshold γ. Being defined
this notion of enhanced intersection, we define the XML transaction similarity
function between tr1 and tr2 as

simγ
J(tr1, tr2) =

|matchγ(tr1, tr2)|
|tr1 ∪ tr2| (4)

We now present our proposed XML transactional clustering algorithm for a
collaborative distributed environment, called CXK-means. Figure 5 sketches the
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Global Input:
A set S of XML transactions distributed over m nodes;
The desired number k of clusters; A similarity threshold γ.

Global Output:
A partition C of S in k clusters distributed over m nodes.

Process N0

Method:

define a partition of {1, . . . , k} into m subsets Z1, . . . , Zm;
send ({Z1, . . . , Zm}, k, γ) to Ni, ∀i ∈ [1..m];

Process Ni

Input:
A set Si ⊂ S of XML transactions.

Output:
A partition Ci = {Ci

1, . . . , C
i
k} of Si into k clusters.

Method:

receive ({Z1, . . . , Zm}, k, γ) from N0;
let Zi = {j1, . . . , jqi}, with 0 ≤ qi ≤ k,

∑m
i=1 qi = k;

/* select qi initial global clusters */
select {tr1, . . . , trqi} from Si coming from distinct original trees;
let gjs = trs, ∀s ∈ [1..qi];
Ci

j = {};
repeat
send (broadcast) {gj |j ∈ Zi} to N1, ..., Nm;
receive {gj |j ∈ Zh} from Nh;
repeat /* transaction relocation */

Ci
k+1 = {tr ∈ Si|simγ

J(tr, gj) = 0}; {Eq. (4)}
for each j ∈ [1..k] do

Ci
j = {tr ∈ Si \ Ci

k+1|simγ
J(tr, gj) ≥ simγ

J(tr, gt)},∀t ∈ [1..k]}; {Eq. (4)}
`i
j = ComputeLocalRepresentative(Ci

j);
end for

until no transaction is relocated;
if no `i

j changes then
send (broadcast) ({}, Vi = done);

else
send ({(`i

j , |Ci
j |)|j ∈ Zi′}, Vi = continue) to all other Ni′ , i′ 6= i;

receive ({(`h
j , |Ch

j |)|j ∈ Zi}, Vi′) from all other Ni′ , i′ 6= i;
if (∃h ∈ [1..m] s.t. Vh = continue) then

gj = ComputeGlobalRepresentative({(`1j , |C1
j |), . . . , (`m

j , |Cm
j |)});

until V1 = · · · = Vm = done;

Figure 5: The CXK-means algorithm

main phases of the algorithm, and Figure 6 shows the main functions involved
in the algorithm execution. Major characteristics of CXK-means are described
in the following.

The input set S of all XML transactions is distributed over m nodes. Each
node stores a local subset Si and communicates with all the other nodes sending
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Function ComputeLocalRepresentative(C) : rep;
IC = {e | e ∈ tr ∧ tr ∈ C};
PC = {〈p, h〉 | ∃h items (p, u) ∈ IC};
for each e ∈ IC do

rankS(e) = sum{h | ∃e′=(p′, u′) ∈ IC ∧ 〈p′, h〉 ∈ PC∧ simS(e, e′) ≥ γ}/|PC |;
rankC(e) = sume′∈IC

{(~u · ~u′)/(‖~u‖ × ‖~u′‖)}, where ~u and ~u′ are the TCU vectors
of e and e′, respectively;
rank(e) = f × rankS(e) + (1− f)× rankC(e); {Eq. (1)}

end for

let IC be the list containing the elements in IC ordered by rank values;

return GenerateTreeTuple(IC , C);

Function ComputeGlobalRepresentative(T ) : rep;
Given any set X = {(x1

1, x
2
1), . . . , (x

1
S , x2

S)} of pairs,
let X[q] be the projection {xq

1, . . . , x
q
S} of X, with q ∈ {1, 2};

let T = {ti, . . . , tm}, where ti = (tri, wi), i ∈ [1..m];
IT = {(e, w) | ∃(tr, w) ∈ T ∧ e ∈ tr ∧ w = sum{w′ | (tr′, w′) ∈ T ∧ e ∈ tr′}};
PT = {〈p, h〉 | ∃h items (p, u) ∈ IT [1]};
for each e s.t. (e, w) ∈ IT do

g rankS(e) = sum{h | ∃e′=(p′, u′) ∈ IT [1] ∧ 〈p′, h〉 ∈ PT ∧ simS(e, e′) ≥ γ}/|PT |;
g rankC(e) = sume′∈IC

{(~u · ~u′)/(‖~u‖ × ‖~u′‖)}, where ~u and ~u′ are the TCU
vectors of e and e′, respectively;
g rank(e) = w × (f × g rankS(e) + (1− f)× g rankC(e)); {Eq. (1)}

end for;

let IT [1] be the list containing the elements in IT [1] ordered by g rank values;

return GenerateTreeTuple(IT [1], T [1]);

Function GenerateTreeTuple(IC , C) : rep;
let |trmax| be the maximum length of transaction within C;
rep′ = ∅; s′ = 0;
repeat

let I∗C ⊆ IC be the set of items in IC with the highest rank;
rep = rep′; s = s′;
rep′ = conflateItems(rep ∪ I∗C);
s′ = sumtr∈C{simγ

J(tr, rep′)}; {Eq. (4)}
IC = IC \ I∗C ;

until (IC = ∅ ∨ |rep| > |trmax| ∨ s′ < s)
return rep;

Figure 6: Functions employed by the CXK-means algorithm

“local” representatives and receiving “global” representatives. An initial process
corresponding to a node N0 defines a partition of the set {1, . . . , k} of cluster
identifiers into m subsets Zj , j ∈ [1..m]. Each set Zj contains the identifiers
of the clusters for which the node Nj has the responsibility of computing the
global representatives. It should be noted that the presence of node N0 does not
contrast the collaborative nature of the proposed CXK-means. Indeed, N0 is
not responsible of summarizing the information coming from the various peers
N1, . . . , Nm and, therefore, does not act as a coordinator; rather, N0 performs
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only trivial startup operations which, in principle, can be performed by any
peer.

Each node Ni (i ∈ [1..m]) is in charge of computing local clusters Ci
1, . . . , C

i
k

and local representatives `i
1, . . . , `

i
k, but also a subset {gj |j ∈ Zi} of the global

representatives (using the local representatives computed by all nodes). Each
node has a process that executes a classical K-means-like partitional clustering
scheme on its local data in Si. The clustering process employs global repre-
sentatives received from each other node in the network and terminates when
transaction assignments to local clusters do not change.

For each node Ni, the local representative of a cluster Ci
j (function Com-

puteLocalRepresentative) is computed by starting from the set of γ-shared items
among all the transactions within Ci

j . More precisely, for each transaction in
Ci

j , the union of the γ-shared item sets with respect to all the other transactions
in Ci

j is obtained; this guarantees no dependence of the order of examination
of the transactions. Then, the set of γ-shared items is involved into function
GenerateTreeTuple to compute a representative having the form of a tree tuple.
According to such a function, a raw representative is firstly defined by selecting
the items from these union sets with the highest frequency: the raw represen-
tative, however, may not have the form of a tree tuple, as some items therein
may refer to the same path but with different answers. Any raw representative
is transformed into a tree tuple by conflateItems procedure. This procedure is
applied to a set I of items and yields a tree tuple composed by all the distinct
paths p involved into the items in I; the content associated to each path p is
the union of the contents of the items in I having p as a path. A greedy heuris-
tic refines the current representative by iteratively adding the remaining most
frequent items until the sum of pair-wise similarities between transactions and
representative cannot be further maximized. By involving again conflateItems
procedure, any refinement ensures that the resulting representative is actually
a tree tuple.

The global representative gj of a cluster Cj (function ComputeGlobalRep-
resentative) is computed in a way similar to that employed for local represen-
tatives. A major difference is that global representatives exploit the m local
representatives `1j , . . . , `

m
j along with their respective weights |C1

j |, . . . , |Cm
j |, in

order to take also into account the size of the clusters summarized by each node.
The rationale is that the greater is the weight |Ci

j | (i.e., the greater the num-
ber of transactions belonging to the cluster Cj stored into the local repository
Si at node i), the greater is the information in the local representative `i

j in
summarizing cluster Cj .

Nodes communicate their local state by sending a flag to other nodes in the
network. In particular, a node sends a termination signal (i.e., “done”) if, at
the end of its local clustering process, all its local cluster representatives do
not change with respect to the ones computed in the previous execution. In
this way, the collaborative clustering process continues until each node Ni in
the network reaches a stable clustering solution (i.e., each flag Vi′ is “done”,
∀i′ ∈ [1..m]).
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4.3. Complexity
In the following, we discuss the computational complexity of the proposed

CXK-means, by analyzing the costs of the (i) similarity functions exploited by
the algorithm, (ii) main memory operations, and (iii) communications among
nodes. We conclude this section by providing a comparison between centralized
and distributed cases, paying special attention to the impact of the network size
and the dataset size on efficiency improvements.

Complexity of similarity functions. The cost of the various similarity func-
tions exploited by CXK-means are summarized in the following.

� The cost Ce
S of evaluating function simS (Eq. (3)), which computes the

structural similarity between any two items ei = 〈pi, ui〉 and ej = 〈pj , uj〉,
is as follows. It is bounded by O(|pi| × |pj | × C∆), where |pi| and |pj |
are the lengths of paths pi and pj , respectively, and C∆ is the cost of
computing the Dirichlet function between any two tags. Since the lengths
of paths pi and pj are bounded by depth(XT ), i.e., the depth of the XML
tree XT from which the input transactions are extracted (cf. Section 3.1),
it results that Ce

S = O((depth(XT ))2 × C∆) = O((depth(XT ))2), since
C∆ can be reasonably assumed to be a constant.

� Evaluating content similarity between any two items ei and ej by means
of function simC consists in performing cosine similarity between TCU
vectors ~ui and ~uj of ei and ej , respectively; this cost, denoted as Ce

C , is
linear with respect to to the dimensionalities |~ui| and |~uj | of vectors ~ui

and ~uj , respectively, i.e., Ce
C = O(|~ui|+ |~uj |). More generally, this cost is

bounded by the maximum TCU size |umax| over all the input transactions,
i.e., it holds that Ce

C = O(|umax|). This bound depends on the content
of the TCUs either initially contained within the input transactions or
generated during the computation of representatives. Clearly, |umax| is
O(|V|), where |V| denotes the size of the vocabulary (cf. Section 4.1), but
in practice it holds that |umax| ¿ |V|.

� The cost Ce = Ce
S + Ce

C of computing function sim (Eq. (1)) is bounded
by O(|umax| + (depth(XT ))2) = O(|umax|), as it typically holds that
depth(XT ) ¿ |umax|.

� The cost Cγ of computing function simγ
J between transactions tr1 and

tr2 (Eq. (4)) depends on the set of γ-shared items between tr1 and tr2.
This is computed by evaluating the similarity between each pair ei ∈
tr1, ej ∈ tr2 of items according to function sim; thus, it is bounded by
O(|tr1|×|tr2|×Ce) = O(|trmax|2×|umax|), where |trmax| is the maximum
length of a transaction in S.

Complexity of main memory operations. We analyze in the following the
complexity of the main memory operations performed by CXK-means algorithm
in each node Ni, i ∈ [1..m]. Clearly, the global complexity depends on the
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number of iterations performed; however, this number is usually a small constant
(in our experiments, for instance, it was always smaller than 10). To this end,
our focus here is on the study of the complexity of a single iteration.

Essentially, each iteration of CXK-means involves (i) a relocation phase, in
which the transactions are assigned to the closest local representative, and (ii)
the computation of local and global representatives (ComputeLocalRepresentative
and ComputeGlobalRepresentative functions, respectively). The costs of such
phases are summarized next.

� The relocation phase requires a comparison between each transaction
within Si (i.e., the subset of transactions stored into node Ni) and each of
the k global representatives by means of function simγ

J ; thus, the cost of
such a phase is bounded byO(k×|Si|×Cγ) =O(k×|Si|×|trmax|2×|umax|).

� In the ComputeLocalRepresentative function, two sub-phases can be distin-
guished: (a) computing item ranking, and (b) generation of the tree tuple
representatives:

– given any cluster Ci
j (j-th cluster in the i-th node), phase (a) re-

quires the computation of structural and content rankings. Struc-
tural ranking (rankS) involves the computation of the structural
similarity simS(ei, ej), ∀ei, ej ∈ ICi

j
(ICi

j
is the set containing the

items belonging to all the transactions within Ci
j). The cost of this

operation is in principle bounded by O(|ICi
j
|2×Ce

S); however, as the
input XML tree XT is fixed, one can pre-compute the structural
similarity between every pair of maximal tag paths of XT only once,
and exploit these pairwise similarities for computing structural rank-
ing. This leads to a reduced cost bounded by O(|T PXT |2 × Ce

S +
|ICi

j
|×|PCi

j
|) = O(|T PXT |2×(depth(XT ))2+|ICi

j
|×|T PXT |), where

|PCi
j
| is O(|T PXT |) and T PXT denotes the set of maximal tag paths

in XT (cf. Section 3.1). As |ICi
j
| is O(|Ci

j | × |trmax|) and |T PXT |
can be reasonably assumed to be O(|trmax|), the cost of structural
ranking is bounded by O(|trmax|2× (depth(XT ))2 + |Ci

j |× |trmax|2).
On the other hand, the complexity of content ranking (rankC) is
O(|ICi

j
|2 ×Ce

C) = O(|Ci
j |2 × |trmax|2 × |umax|). It can be noted that

the cost O(|ICi
j
| × log |ICi

j
|) = O(|Ci

j | × |trmax| × log(|Ci
j | × |trmax|))

for sorting the set ICi
j

is not considered as it is dominated by the cost
of content ranking;

– phase (b) is performed by the function GenerateTreeTuple, which con-
sists of three main operations: (i) selecting the items with the highest
rank, which is bounded by O(|ICi

j
|) = O(|Ci

j | × |trmax|), (ii) joining
the TCUs of items having the same path (conflateItems procedure),
whose cost is bounded by O(|ICi

j
| × |umax|) = O(|Ci

j | × |trmax| ×
|umax|), and (iii) computing the sum of similarities between the cur-
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rent representative and all the transactions within the cluster, whose
cost is bounded O(|ICi

j
| × |Ci

j | ×Cγ) = O(|trmax|3 × |Ci
j |2 × |umax|).

As the costs of phase (a) are dominated by those of phase (b), the overall
complexity of performing ComputeLocalRepresentative function over a sin-
gle cluster Ci

j is O(|trmax|3× |Ci
j |2× |umax|). Since this function is called

for all k clusters, we have a global cost of O(
∑k

j=1 |trmax|3×|Ci
j |2×|umax|

= O(|trmax|3 × |umax| ×
∑k

j=1 |Ci
j |2) = O(|trmax|3 × |umax| × |Si|2).

� The analysis of ComputeGlobalRepresentative function is similar to that
carried out for local representatives. The only difference is that, at each
step, this function is performed over a set of m transactions (i.e., the local
representatives computed by all the m nodes), rather than a set of size
|Ci

j |. Hence, the cost of computing a single global representative by a node
Ni can be trivially obtained by replacing |Ci

j | with m in the formula ex-
pressing the cost of computing local representatives. Therefore, this cost
is bounded by O(|trmax|3 × m2 × |umax|). Assuming that the responsi-
bilities of computing global representatives are uniformly distributed over
the nodes, the number |Zi| = qi of global representatives computed by
node Ni is bounded by O(dk/me). Therefore, the global cost by node Ni

is bounded by O(k ×m× |trmax|3 × |umax|).
In conclusion, we can state that the global complexity of the main memory

operations performed by CXK-means in each node Ni is equal to the sum of
the complexities discussed above; therefore, it is O(|trmax|2 × |umax| × (|Si| ×
k + (

∑k
j=1 |Ci

j |2 + k×m)× |trmax|)). In this respect, it is reasonable to assume
that |Si| ≥ k, otherwise the clustering process is trivial; this leads to |Si| × k ≤∑k

j=1 |Ci
j |2 and, therefore, to the following overall complexity of main memory

operations performed by CXK-means:

Cmem = O
(
|trmax|3 × |umax| ×

(∑k
j=1 |Ci

j |2 + k ×m
))

=

= O(|trmax|3 × |umax| × (|Si|2 + k ×m))

Complexity of communications. To analyze the cost of communications,
we note that the cost of transferring a single transaction from any node to
another one is bounded by O(|trmax| × (|umax| + depth(XT ))) = O(|trmax| ×
|umax|). Indeed, any transaction has at most |trmax| elements and any element
is composed by a path having size at most equal to depth(XT ) and a |umax|-
dimensional TCU vector. Assuming again that the responsibilities of computing
global representatives are uniformly distributed over the nodes, we note that any
node Ni sends out at each iteration of CXK-means:

� qi = dk/me transactions (i.e., global representatives) to all other m − 1
nodes, with a cost of O((m− 1)/m× k × |trmax| × |umax|);

� (m − 1)/m × k transactions (i.e., local representatives) to a single node,
with a cost of O((m− 1)/m× k× |trmax| × |umax|). Indeed, any node Ni
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sends each local representative only to the node having the responsibility
of computing the corresponding global representative; the total number
of local representatives sent by Ni is (m− 1)/m× k as we do not have to
consider the representatives of the clusters for which Ni is responsible for
computing global representatives.

Analogously, each node Ni receives from all other nodes (m − 1)/m × k trans-
actions (i.e., global representatives) at a cost of O((m − 1)/m × k × |trmax| ×
|umax|)), along with (m−1)/m×k transactions (local representatives) at a cost
of O((m− 1)/m×k×|trmax|× |umax|). Therefore, we can state that the global
complexity of communications by each node Ni is equal to

Ccomm = O
(

m− 1
m

× k × |trmax| × |umax|
)

It should be noted that, although (m − 1)/m is obviously O(1), we report the
fraction (m − 1)/m in the above formula to highlight the differences between
centralized and distributed cases; indeed, for the centralized case, m = 1 implies
no communications.

Distributed vs. centralized CXK-means. Once derived the complexity of
main memory operations and communications by each node, we focus on the
analysis of time consumptions, distinguishing between the centralized (m = 1)
and distributed (m > 1) cases. To this end, we denote by tmem and tcomm the
time needed to perform a single main memory operation and the time needed
for a single communication between any pair of nodes, respectively. Thus, the
time needed by each node for performing CXK-means is bounded by O(Cmem×
tmem+Ccomm×tcomm), i.e., O(|trmax|3×|umax|×(

∑k
j=1 |Ci

j |2+k×m)×tmem+
|trmax| × |umax| × k × (m− 1)/m× tcomm) = O(|trmax| × |umax| × (|trmax|2 ×
(
∑k

j=1 |Ci
j |2 + k×m)× tmem + k× (m− 1)/m× tcomm)). As we can reasonably

assume that k × m is O(
∑k

j=1 |Ci
j |2)—both k and m are usually much lower

than |Si| = ∑k
j=1 |Ci

j |—we can state that the global time spent over all the m

nodes is bounded by O(|trmax|×|umax|×(|trmax|2×m×(
∑k

j=1 |Ci
j |2)× tmem +

k × (m− 1)× tcomm)). To better comprehend this formula, two limit cases can
be considered:

� Case 1: |Ci
j | is O(|Si|/k) (i.e., clusters have roughly the same size), that

is
∑k

j=1 |Ci
j |2 is O(|Si|2/k) = O(|S|2/(k ×m2)).

� Case 2: ∃j such that |Ci
j | = O(|Si|) (i.e., there exists a cluster containing

most of the transactions), that is
∑k

j=1 |Ci
j |2 is O(|Si|2) = O(|S|2/m2).

Within this view, we can finally express the global time consumption by CXK-
means as O(f(m)), where:

f(m) = |trmax| × |umax| ×
( |trmax|2 × |S|2 × tmem

h×m
+ k × tcomm × (m− 1)

)
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where 1 ≤ h ≤ k takes into account the distribution of transactions over the
various clusters. It can be easily noted that the above function f(m) is a sum
of an hyperbolic function and a linear function; thus, it has a global minimum
located in:

m =
|S|√

h
×

√
|trmax|2 × tmem

k × tcomm

This enables us to draw the following conclusions:

� The global minimum of function f(m) represents an upper-bound for the
number m to guarantee efficiency improvements with respect to the cen-
tralized case; this essentially means that distributing transactions over m
nodes is in general more convenient than having a single node storing the
whole set of transactions until m becomes equal to the global minimum
of function f(m).

� While the upper-bound for m is not reached, it holds that the larger the
number m of nodes, the larger the “efficiency gain” of distributed CXK-
means with respect to centralized CXK-means. In particular, the im-
provement of the efficiency follows an hyperbolic trend: it is more evident
for small m values, while decreasing as m approaches the upper-bound.

� The value of the upper-bound for m (i.e., the global minimum of function
f(m)) is directly (resp. inversely) proportional to the size |S| of the input
dataset of transactions (resp. the parameter h ∈ [1..k] that takes into ac-
count the distribution of the cluster sizes). Thus, the larger the set and/or
the smaller the distribution of transactions over the various clusters, the
larger the value of the upper-bound for m and, therefore, the greater the
(maximum reachable) efficiency improvements of the distributed case with
respect to the centralized case.

5. Experimental Evaluation

5.1. Experimental setting
We assessed the proposed framework in performing clustering according to

structure, content, or both information. We hereinafter refer to these kinds
of solutions as structure-driven, content-driven, and structure/content-driven
clustering, respectively. The first two types of clustering concern the detection of
groups of XML that are homogeneous by either structure or content. The third
type (i.e., structure/content-driven clustering) includes a variety of scenarios,
ranging from detecting common structures across different topics, or conversely,
to identifying classes of tree tuples that both cover common topics and belong
to the same structural category.

The three types of clustering correspond to different settings of the pa-
rameters f and γ, which control the XML transaction similarity function (cf.
Eqs. (1)-(2)). We varied f within [0,1] with step 0.1, and γ within [0.5,1) with
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step 0.05—we chose γ = 0.5 as the maximum tolerance threshold in comput-
ing similarities. Also, since the setting of f depends on the clustering goal, we
decided to partition the (discrete) interval [0,1] as follows: [0,0.3] for content-
driven clustering, [0.4,0.6] for structure/content-driven clustering, and [0.7,1]
for structure-driven clustering.

Network topology was characterized by the type and number of nodes. In
particular, the architecture of each node was composed by an Intel Itanium 2
64bit 1,400 MHz (dual core), 4 GB memory RAM and GigaBit network interface,
running Debian New Linux 4.0 64bit. We performed experiments by varying
the number of nodes from 1 to a maximum of 19; note that a network size equal
to 1 refers to centralized clustering, which represents the baseline case.

Data partitioning is a crucial aspect in distributed environments. For this
reason, we considered two scenarios in our experiments: the first consists in
partitioning data in such a way that the entire set S is equally distributed over
the m nodes (i.e., |Si| = |S|/m,∀i ∈ [1..m]); in the second scenario, a half of
the nodes hold a portion of the data that is the half of the one held by the
remaining ones (i.e., there are m/2 nodes with 4|S|/3m transactions and other
m/2 nodes with 2|S|/3m transactions).

5.2. Data description
We used four real word document collections for the evaluation. A short de-

scription for each of these datasets is given next—further information, including
the XML structures as DTDs, can be found in [33].

The DBLP collection is a subset of the popular DBLP digital bibliography on
computer science.2 DBLP is comprised of 3,000 documents which correspond to
5,884 transactions and 8,231 distinct items. It contains short text descriptions
(e.g., author names, paper titles, conference names), and covers 4 main cat-
egories, namely “journal articles” (article), “conference papers” (inproceedings),
“books” (book), and “book chapters” (incollection). Six topical classes are instead
identified, which are “multimedia”, “logic programming”, “web and adaptive
systems”, “knowledge based systems”, “software engineering”, and “formal lan-
guages”. If both content and structure information are taken into account, 16
classes are identified.

The IEEE dataset is the IEEE collection version 2.2, which has been used
as a benchmark in the INEX document mining track 2008.3 IEEE consists of
4,874 articles originally published in 23 different IEEE journals from 2002 to
2004. Documents in this collection conform to a complex schema which in-
cludes front matter, back matter, section headings, text formatting tags and
mathematical formulas. For our experiments, stylistic and other non-logical
markups were filtered out. In our XML transactional domain, the IEEE col-
lection has 211,909 transactions and 135,869 distinct items. Also, the number
of leaf nodes is 228,869, the maximum fan out is 43, and the average depth

2http://dblp.uni-trier.de/xml/
3http://www.inex.otago.ac.nz/documentcollection.asp

24



is about 5. In IEEE, the article journals determine the categories that were
used to partition the collection, which strictly follow the original INEX catego-
rization. Precisely, two structural categories correspond to “transactions” and
“non-transactions” articles, whereas the classification by content organizes the
articles by the following 8 topic-classes: “computer”, “graphics”, “hardware”,
“artificial intelligence”, “internet”, “mobile”, “parallel”, and “security”. More-
over, 14 hybrid classes are identified according to these structural and content
classes.

The Shakespeare collection is a subset of Shakespeare 2.00,4 an archive of
Shakespeare’s plays in XML format. Shakespeare is comprised of seven (long)
documents which correspond to the plays Henry the Sixth (Part 1, 2 and 3),
Henry the Eighth, Hamlet, Macbeth and Othello. All lines corresponding to
the same speech in the original document were concatenated to form a unique
speech.line element. Three structural classes were identified according to the pres-
ence/absence of discriminatory paths, namely personae.pgroup, act.prologue, and
act.epilogue. Moreover, as found in [33], tree tuples were preferably grouped into
5 classes for content-driven clustering, and into 12 classes for structure/content-
driven clustering.

Finally, Wikipedia is a subset of 10,000 documents from the Wikipedia XML
Corpus used in the INEX contest 2007 [10]. This collection contains very long
articles, which are organized in 21 thematic categories, each corresponding to a
Wikipedia portal [10]. Analogously to IEEE, we removed non-logical markups
from the documents. Due to the absence of evident or frequent structural dif-
ferences among the individual Wikipedia articles, we mainly used this set for
content-driven clustering; for purposes of clustering evaluation, we referred to a
21-class thematic organization [33].

5.3. Cluster validity measures
To assess the quality of clustering solutions for the datasets, we exploited the

availability of reference classifications for XML documents. The objective was
to evaluate how well a clustering fits a predefined scheme of known classes (nat-
ural clusters). For this purpose, we resorted to the well-known F-measure [21],
which is defined as the harmonic mean of values that express two notions from
Information Retrieval, namely Precision and Recall. F-measure ranges within
[0, 1], where higher values refer to better quality results. Since we perform tree
tuple decomposition of XML documents and then transactional modeling, the
evaluation process takes into account the set S of XML transactions.

Given a set S = {tr1, . . . , trm} of XML transactions, let Γ = {Γ1, . . . , ΓH}
be the reference classification of the transactions in S, and C = {C1, . . . , CK}
be the output partition yielded by a clustering algorithm. Precision of cluster
Cj with respect to class Γi is the fraction of the transactions in Cj that has
been correctly classified, whereas Recall of cluster Cj with respect to class Γi is

4http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
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the fraction of the objects in Γi that has been correctly classified. Formally,

Pij =
|Cj ∩ Γi|
|Cj | , Rij =

|Cj ∩ Γi|
|Γi| , Fij =

2PijRij

Pij + Rij

In order to score the quality of C with respect to Γ by means of a single value, the
overall F-measure F (C, Γ) is computed using the weighted sum of the maximum
Fij score for each class Γi.

F (C, Γ) =
1
|S|

H∑

i=1

|Γi| max
j∈[1..K]

Fij

5.4. Evaluation goals
As the problem of collaborative distributed clustering of XML documents is

addressed for the first time in this work, there is no strictly competing method to
be compared to our CXK-means. For this purpose, our experimental evaluation
was mainly conceived to evaluate the performance of CXK-means with respect
to the centralized case (which arises when the number m of peer nodes is equal
to one), as well as to a non-collaborative distributed approach, in terms of both
efficiency and effectiveness. In this respect, we identified the following main
evaluation goals:

1. Efficiency : Evaluation of the runtime performance of CXK-means with
respect to the centralized case, by varying the number of nodes in the
distributed environment (P2P network). According to the study on the
computational complexity reported in Section 4.3, it is expected that, as
the number of nodes increases, the computation time required in each node
decreases, but also the network traffic (i.e., exchange of cluster represen-
tatives) increases. This behavior leads to the identification of a certain
number of nodes that acts as a “saturation point”, meaning that fur-
ther increasing the number of nodes does not guarantee any significant
efficiency gain; within this view, a major objective is to evaluate the sat-
uration (stabilization) point in every executed test. Note also that such
a saturation point should in principle be close to the global minimum of
function f(m) discussed in Section 4.3.

2. Effectiveness: Evaluation of accuracy of CXK-means with respect to the
centralized case by varying the number of nodes. The algorithm perfor-
mance is expected to be inversely proportional to the number of nodes,
since increasing this number leads to a reduction of the distribution ratio
of the transactions over the nodes; as a consequence, each node produces,
at each step of the distributed algorithm, a local clustering solution over
a small portion of data, which cannot really represent the final overall so-
lution. In this respect, it is crucial to assess the loss of accuracy of CXK-
means with respect to the centralized case when the number of nodes is
equal (or close) to the number of nodes recognized as a stabilization point
in the efficiency evaluation.
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(a) (b)

(c) (d)

Figure 7: Clustering time performances varying the number of nodes and the dataset size: (a)
DBLP, (b) IEEE, (c) Shakespeare, and (d) Wikipedia

3. Impact of collaborativeness: We conducted a further experimental session
to compare our CXK-means with an existing parallel/distributed related
work, which was suitably adapted to handle XML transactional data.

5.5. Results
Efficiency. Figure 7 shows time performances on the four evaluation sets by
increasing the number of nodes and also varying the size of the datasets. Results
refer to structure/content-driven clustering experiments (i.e., f ∈ [0.4, 0.6]) and
equally distributed in the network.

These results highlight the major advantage of CXK-means with respect to a
centralized setting, which concerns a better runtime behavior. In fact, a higher
number of nodes in the network leads to more parallelism, which results in a
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drastic reduction of the overall time needed for the clustering task. However,
as highlighted by the complexity analysis reported in Section 4.2, when the
number of nodes grows up, the data exchanged among nodes grows up as well.
This fact clearly affects negatively the network traffic (i.e., exchange of cluster
representatives) which might not be negligible anymore. Indeed, as we can see in
Figure 7 for all datasets, after a drastic reduction of the runtime due to just a few
nodes, the runtime remains roughly constant for a certain range, then it starts
to slightly increase when the number of nodes becomes significantly higher. It
should be noted that the trends shown in Figure 7 are close to those expected,
i.e., those theoretically derived by the complexity analysis in Section 4.2; in
fact, after an initial hyperbolic decreasing behavior, the efficiency follows an
increasing linear function.

Concerning the evaluation of the stabilization (saturation) points, we ob-
served that time performances on IEEE tend to stabilize for 6 and 4 nodes,
respectively in the case of full and halved datasets; similar trends are found for
Wikipedia (8 and 6) and Shakespeare (9 and 5). On DBLP, time performances
tend to stabilize for a smaller number of nodes (4 and 2, respectively) which is
probably due to a smaller size of DBLP with respect to IEEE, in terms of both
transactions and vocabulary of terms.

Another important remark is that as the dataset size is halved, the minimum
number of nodes to bring down the clustering times tends to decrease. This
further supports our study on the computational complexity of CXK-means
reported in Section 4.2, in that the advantage of the distributed collaborative
approach with respect to the centralized one tends to become less significant as
the dataset size is reduced.

Effectiveness. Tables 1(a)–(c) report on accuracy results obtained on the var-
ious datasets by CXK-means when data is equally partitioned over the nodes.
We varied the number of nodes and the type of clustering setting (i.e., structure-,
content-, and structure/content-driven clustering). For the sake of presentation,
here we show results for a maximum number of nodes equal to 9, since accuracy
results for nodes from 11 to 19 followed similar trends.

For each dataset and clustering setting, results refer to multiple (10) runs of
the algorithm and correspond to F-measure scores averaged over the range of f
values specific of the clustering setting. Moreover, the best setting of parameter
γ was found to be close to high values (typically above 0.85), for each dataset
and type of clustering [33].

As it is reasonable to expect, the centralized case (i.e., one node) corre-
sponds to an upper bound in terms of clustering quality for the collaborative
distributed approach. While our focus is not on the effectiveness evaluation of
the centralized case—the interested reader can find details in [33]—it can be
noted how the clustering accuracy decreases as the number of nodes increases,
regardless of the set and the type of clustering. However, this performance
degradation remains relatively acceptable for a distributed environment, which
is partly due to our model of cluster representative in achieving good quality
summaries for the clusters. Indeed, loss of accuracy of CXK-means with respect
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Table 1: Clustering accuracy results for data equally distributed over the nodes: (a) f ∈
[0, 0.3] (content-driven similarity), (b) f ∈ [0.4, 0.6] (structure/content-driven similarity), (c)
f ∈ [0.7, 1] (structure-driven similarity)

(a)

set # of clusters # of nodes F-measure
(avg)

1 0.795
3 0.730

DBLP 6 5 0.701
7 0.639
9 0.574
1 0.629
3 0.552

IEEE 8 5 0.514
7 0.440
9 0.396
1 0.964
3 0.902

Shakespeare 5 5 0.861
7 0.832
9 0.790
1 0.834
3 0.793

Wikipedia 21 5 0.768
7 0.724
9 0.698

(b)

set # of clusters # of nodes F-measure
(avg)

1 0.803
3 0.750

DBLP 16 5 0.716
7 0.641
9 0.585
1 0.598
3 0.524

IEEE 14 5 0.478
7 0.423
9 0.375
1 0.772
3 0.734

Shakespeare 12 5 0.701
7 0.682
9 0.659

(c)

set # of clusters # of nodes F-measure
(avg)

1 0.991
3 0.971

DBLP 4 5 0.935
7 0.855
9 0.751
1 0.655
3 0.572

IEEE 2 5 0.527
7 0.453
9 0.406
1 0.681
3 0.653

Shakespeare 3 5 0.638
7 0.599
9 0.572

to the centralized setting was always lower than 0.2 in relation to the number
of nodes leading to the stabilization of efficiency performance determined in
the previous paragraph (i.e., 4, 6, 9, and 8 for DBLP, IEEE, Shakespeare, and
Wikipedia, respectively); precisely, the decrease in accuracy was roughly equal
to 0.08 (DBLP), 0.14 (IEEE), 0.17 (Shakespeare), and 0.13 (Wikipedia).

We also evaluated clustering accuracy in case of data unequally distributed
over the nodes in the network. As shown in Tables 2(a)–(c), results followed
similar trends to those observed in the case of equal distribution of data over
the nodes. For each set and type of clustering, we observed a slight degradation
of accuracy with respect to the corresponding results achieved in the equally
distributed case (Tables 1(a)–(c)). This can be explained since the local ex-
ecution of CXK-means on nodes with few transactions produces a clustering
solution that is less accurate with respect to the one produced by nodes having
a higher number of transactions. However, as this performance degradation re-
mains pretty small (from about 0.01 to 0.10), there is evidence to suggest that
the global representative function is still able to produce high-accuracy cluster
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Table 2: Clustering accuracy results for data unequally distributed over the nodes: (a) f ∈
[0, 0.3] (content-driven similarity), (b) f ∈ [0.4, 0.6] (structure/content-driven similarity), (c)
f ∈ [0.7, 1] (structure-driven similarity)

(a)

set # of clusters # of nodes F-measure
(avg)

1 0.795
3 0.657

DBLP 6 5 0.631
7 0.575
9 0.516
1 0.629
3 0.541

IEEE 8 5 0.504
7 0.432
9 0.388
1 0.964
3 0.857

Shakespeare 5 5 0.818
7 0.790
9 0.751
1 0.834
3 0.737

Wikipedia 21 5 0.714
7 0.673
9 0.649

(b)

set # of clusters # of nodes F-measure
(avg)

1 0.803
3 0.675

DBLP 16 5 0.645
7 0.577
9 0.527
1 0.598
3 0.514

IEEE 14 5 0.468
7 0.414
9 0.367
1 0.772
3 0.697

Shakespeare 12 5 0.667
7 0.648
9 0.626

(c)

set # of clusters # of nodes F-measure
(avg)

1 0.991
3 0.874

DBLP 4 5 0.841
7 0.769
9 0.676
1 0.655
3 0.560

IEEE 2 5 0.516
7 0.444
9 0.398
1 0.681
3 0.620

Shakespeare 3 5 0.606
7 0.569
9 0.543

representatives even for nodes associated with a small portion of the data; a
key role in this respect is played by the local cluster sizes (i.e., weights) that
are taken into account by function ComputeGlobalRepresentative along with the
local representatives outputted by each node.

In order to give just a brief summary of the accuracy results for nodes from
11 to 19, they continued to follow a decreasing trend, but the degradation was
quite small with respect to the ones achieved by our CXK-means in a network
with 9 nodes. In particular, the loss of accuracy for 19 nodes with respect to 9
nodes was of about 0.10 on average for all datasets.

Comparison with a non-collaborative distributed approach. Since our
proposal is, to the best of our knowledge, the first that addresses a distributed
collaborative approach to clustering XML documents, we resorted to parallel
partitional clustering to select a competitor for this analysis. Specifically, we
referred to the parallel K-means algorithm [11] as a baseline, non-collaborative
method. While this algorithm and our CXK-means share the clustering strategy
(i.e., centroid-based partitional clustering), we needed to adapt the former to
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(a) (b)

Figure 8: Clustering time performances of CXK-means and PK-means by varying the number
of nodes on (a) DBLP and (b) IEEE

allow it (i) to handle XML transactions and (ii) to cluster them in a P2P
network.

To enable the parallel K-means (for short, PK-means) to deal with XML
transactions, the algorithm was equipped with the notions of XML transaction
similarity (instead of Euclidean distance) and XML cluster representative com-
putation (instead of simple mean of vectors). As far as the second aspect, we
adapted PK-means, which has been designed for multi-processor systems, to be
executed in a distributed environment, particularly a P2P network. For this
purpose, the multi-process architecture was mapped to the network nodes, each
of which was associated with a local memory to store the data (to simulate
the distributed memory environment), whereas the message passing paradigm
adopted by the algorithm was implemented by exploiting the network commu-
nications.

Moreover, to ensure the performance of the two algorithms were compared
fairly, the same initial configuration of clustering was set while varying the
other parameters. Specifically, for each node in the network, the initial local
cluster representatives were randomly chosen among the transactions in the local
dataset, then both CXK-means and PK-means were fed with such transactions.

Figure 8 shows time performances of our CXK-means and PK-means on
DBLP and IEEE by varying the number of nodes in the network. Results refer
to the structure/content-driven clustering case (i.e., f ∈ [0.4, 0.6]) and data
equally distributed in the network. In the figure, we can observe that our CXK-
means behaved better than PK-means on both sets. The time performances of
the two algorithms remained quite comparable for a relatively small number of
nodes (i.e., from 1 to 11 on DBLP, and from 1 to 9 on IEEE), whereas the gap
became larger when the number of nodes in the network increased (i.e., from 13
to 19 on DBLP, and from 11 to 19 on IEEE). This result emphasizes that the
higher amount of information exchanged among the nodes when PK-means is
carried out has a remarkable impact on the runtimes; in fact, the performance
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degradation of PK-means is mainly due to the higher network traffic required
for the communications. In addition, time profiles (on both the datasets) of our
CXK-means followed a decreasing trend, which did not change significantly for
a higher number of nodes; on the contrary, PK-means time performances had
a notably increasing trend for network configurations with many nodes, which
limits the algorithm execution to relatively smaller networks.

While efficiency analysis highlighted the advantage of our CXK-means with
respect to PK-means, the accuracy results revealed the two algorithms are
substantially comparable—actually, CXK-means performed slightly better than
PK-means, with an average improvement of 0.03 over all datasets and network
configurations. This result confirms that the collaborative strategy adopted by
CXK-means in exchanging information among the nodes is extremely advanta-
geous over a non-collaborative distributed approach.

6. Conclusion and Future Work

We presented a collaborative distributed framework for clustering XML doc-
uments; to the best of our knowledge, this is the first collaborative approach
to clustering XML documents by structure and content in a distributed P2P
environment. We developed a distributed, centroid-based partitional clustering
algorithm, where cluster representatives are used to describe portions of the
document collection and can conveniently be exchanged with other peers on the
network. Each peer yields a local clustering solution over its own set of XML
data, and exchanges the cluster representatives with other nodes. This sort of
recommendation is used to compute global representatives, thus finally obtain-
ing an overall clustering solution in a collaborative way. Experimental evidence
has shown that the collaborative distributed approach outperforms the corre-
sponding centralized clustering setting in terms of runtime behavior, paying a
limited loss of accuracy.

We plan to extend our collaborative framework to deal with semantic in-
formation of both structural and content type from XML data according to
the study provided in [33]. Also, it would be interesting to investigate how
the proposed distributed clustering approach can help in the integration and
classification of heterogeneous XML sources.
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