
Information Systems Frontiers manuscript No.
(will be inserted by the editor)

GarNLP: A Natural Language Processing Pipeline for
Garnishment Documents

Ilaria Bordino · Andrea Ferretti ·
Francesco Gullo · Stefano Pascolutti

the date of receipt and acceptance should be inserted later

Abstract Basic elements of the law, such as statuses and regulations, are
embodied in natural language, and strictly depend on linguistic expressions.
Hence, analyzing legal contents is a challenging task, and the legal domain is
increasingly looking for automatic-processing support.

This paper focuses on a specific context in the legal domain, which has so
far remained unexplored: automatic processing of garnishment documents. A
garnishment is a legal procedure by which a creditor can collect what a debtor
owes by requiring to confiscate a debtor’s property (e.g., a checking account)
that is hold by a third party, dubbed garnishee.

Our proposal, motivated by a real-world use case, is a versatile natural-
language-processing pipeline to support a garnishee in the processing of a
large-scale flow of garnishment documents. In particular, we mainly focus on
two tasks: (i) categorize received garnishment notices onto a predefined taxon-
omy of categories; (ii) perform an information-extraction phase, which consists
in automatically identifying from the text various information, such as identity
of involved actors, amounts, and dates. The main contribution of this work is
to describe challenges, design, implementation, and performance of the core
modules and methods behind our solution. Our proposal is a noteworthy ex-
ample of how data-science techniques can be successfully applied to a novel
yet challenging real-world context.

Keywords applied data science · natural language processing · legal
documents · garnishment · categorization · information extraction · supervised
learning · word embeddings · named entity recognition

I. Bordino, A. Ferretti, F. Gullo
UniCredit, R&D Department, Italy
E-mail: {ilaria.bordino,andrea.ferretti2,francesco.gullo}@unicredit.eu

S. Pascolutti
Google, Switzerland
E-mail: pazqo@google.com
(Work completed while the author was employed at UniCredit)

2 Bordino et al.

1 Introduction

Natural language processing (NLP) is a field of artificial intelligence that helps
machines “read” and understand text in natural language, such as business
documents, news, emails, social-network posts. NLP technologies bring attrac-
tive benefits to a plethora of industry verticals, including finance, automotive,
healthcare, and law. Entailed advantages encompass savings in terms of time
and working resources, and effectiveness in many real-world tasks.

NLP and the legal domain. The law has language at its heart, thus it is not
surprising that the legal domain is among those more interested in NLP. The
application of artificial intelligence (AI) in the legal domain dates back to the
1960s, when the earliest systems for searching online legal content appeared,
while legal expert systems were a hot topic in the 1970s and 1980s [3]. However,
the last years have witnessed an upsurge of interest in the area.

One of the main obstacles to progress in the field of AI and law is the natural
language barrier [28]. Legal knowledge is heavily intertwined with natural
language and common sense, and law documents are typically characterized
by a peculiar language, and convoluted and unnatural syntax [29]. This makes
accessing the content embedded in legal texts a particularly challenging task,
for which general-purpose NLP engines may not be the appropriate choice.

Garnishment. In simple words, a garnishment is a legal procedure by which
a creditor can collect what a debtor owes by reaching a debtor’s property,
when the property is in the hands of a third party other than the debtor. In
this scenario the creditor can initiate a garnishment judiciary action against
the debtor as a defendant, and the third party holding the property as a gar-
nishee. The most common type of garnishment involves the confiscation of a
due amount from a checking account of the debtor. Therefore, the third party
that acts as a garnishee is typically a bank or another credit institution hold-
ing a checking account of the debtor. During an active garnishment process,
the garnishee is obliged to a truthful collaboration with the judicial author-
ities. Upon receiving due notification, the garnishee is required to block the
garnishment amount in the checking account of the debtor. In fact, should the
debtor withdraw such an amount from her account, the garnishee would be
responsible for this act.

GarNLP: NLP for garnishees. A garnishee typically has to deal with a con-
siderable number of documents related to garnishment procedures.1 Processing
and understanding these documents require to perform classification tasks, or
extract relevant pieces of information from the text. Accomplishing these tasks
on a large-scale flow of documents is complicated and time-consuming, and
may require a lot of (human) effort without a proper technological support.

In this paper we focus on designing NLP solutions for garnishment, a spe-
cific use case in the legal domain that, to the best of our knowledge, has
so far been overlooked in the NLP literature. Although the tasks for sup-
porting the activities of a garnishee are, from a high-level perspective, rather

1 As an example, the legal office of our partner garnishee receives ∼1k-2k documents/day.

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 3

standard, bringing them to practice and making them work for a specific con-
text such as garnishment requires nontrivial effort. In fact, the garnishment
setting comes with several challenges, such as the vast heterogeneity of gar-
nishment documents, which typically originate from different sources and, as
such, do not follow standard templates; their lack of structure; the use of a
domain-specific language, which may be very different from the common-usage
one; the peculiarities of the information to be classified/extracted. All of this
prevents the adoption of general-purpose NLP solutions or the adaptation
of domain-specific NLP pipelines designed for different application domains.
Instead, there is an eager need for solutions that are ad-hoc suited for the
garnishment context. To satisfy this demand, we introduce GarNLP, a NLP
framework to support a garnishee in the processing of garnishment documents.
The proposed framework can analyze and annotate various kinds of document
exchanged among the actors of a garnishment process, by addressing two tasks:
(i) categorizing received documents onto a predefined taxonomy of categories;
(ii) performing an information extraction phase, which consists in automati-
cally identifying, from the text, information such as identity and attributes of
the main actors involved in the garnishment procedure (i.e., creditor, debtor,
lawyer), the garnishment amount, the hearing date, and so on.

Benefits for the garnishee. Our work is motivated by a concrete request of
UniCredit, which is a big pan-European commercial bank and obviously acts
as a garnishee in a large number of garnishment procedures.2 Prior to building
GarNLP, the office assigned to the processing of garnishment documents was
following a workflow that was mostly paper-based and handled by human op-
erators. Although there was a semi-automatic handling of some functionalities,
the workflow was affected by critical inefficiencies, and the lack of a proper
IT support resulted in a significant amount of manual interventions. Provid-
ing automatic support for some of the required tasks, our pipeline improves
the effectiveness and efficiency of the overall end-to-end process, enabling a
plethora of potential benefits, including: (i) faster and better management
of garnishment notices, reducing uncertainty and variability in the manage-
ment of complex and non-standard cases; (ii) better use of human resources,
reducing data-entry activities (and, consequently, the number of assigned em-
ployees) with the usage of an accurate extraction pipeline; (iii) reduced risks
and losses from human errors.

Applicability. We remark that, although our solution has been conceived
and deployed for a bank, it can be used (with minimal adaptation effort)
by any other type of garnishee, or even actors other than garnishee involved
in garnishment processes. Another remark on the potential (re-)usability of
GarNLP concerns the language. Although we have worked with documents in
Italian, we claim that our methodology is in great part language-indepedent,
and can easily be adapted to other languages (more details on this aspect are
reported in Section 4).

2 The GarNLP framework is currently being productionized by the partner bank.

4 Bordino et al.

Contributions and roadmap. The main contributions of this paper are:

– We address a specific use case of the legal domain that has so far remained
unexplored: automatic processing of garnishment documents (Section 2).

– We devise GarNLP, a NLP pipeline for garnishment documents, perform-
ing document categorization and information-extraction tasks. The main
contribution here consists in designing an end-to-end NLP solution that
is well-suited for the garnishment setting, thus achieving all its domain-
specific challenges. Advancing the literature on the general tasks underly-
ing our solution is instead beyond the scope of this work (Sections 3–4).

– We assess the performance of our GarNLP framework on a real-world use
case and dataset provided by UniCredit, a big pan-European commercial
bank. Results attest the high quality of our methods (Section 5).

Section 6 overviews related work, while Section 7 concludes the paper.

We believe this work is a relevant example of applied data science, i.e.,
how data-science techniques – from the areas of NLP, machine learning, and
information extraction – can be successfully customized, combined, and finally
deployed in a novel yet challenging real-world application context.

2 Application Scenario

A garnishment is a legal procedure by which a creditor can collect what a
debtor owes by reaching a debtor’s property, when the property is in the hands
of a third-party, i.e., a garnishee. The specific procedure underlying a garnish-
ment order depends on state law, and thus may differ from country to country.
However, the main principles of the process are roughly the same everywhere.

The two main types of garnishment are wage or attachment. The former
deducts money from an employee’s monetary compensation: in this case, the
garnishee is usually the debtor’s employer. Attachment garnishment, instead,
requires the garnishee to deliver the defendant’s money in the hands of the
garnishee at the time of process to the court. Attachment garnishees are typ-
ically banks, or other credit institutions. In this work we focus on attachment
garnishment, paying attention to the actions required by a garnishee.

A garnishment procedure is initiated by the creditor, who must be in pos-
session of an enforceable order, i.e., a document attesting the credit against
the debtor. The garnishment of the debtor’s property starts when the debtor
receives the notification of the enforceable order and the confiscation order, an
order of payment that the debtor must fulfil within a specified time interval.
The foreclosure order is then notified to the debtor and the garnishee.

During a garnishment procedure, a garnishee is obliged to a truthful col-
laboration with the judicial authorities. Upon receiving the foreclosure noti-
fication, the garnishee must block the garnishment amount in the debtor’s
property. The garnishment procedure is ruled by a judge in a court hearing,
which takes place on a date indicated in the foreclosure notice.

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 5

2.1 Target context: garnishment from a garnishee perspective

We aim at supporting the tasks a garnishee should perform upon receiving a
garnishment document. This procedure consists of two phases: (i) Document
processing, i.e., categorizing the document and extracting relevant information
from it; (ii) Implementation, i.e., taking the actions requested in the text, e.g.,
providing information to a legal entity, or seizure/release of a bank account.

The focus of this work is right on the document-processing tasks. We devise
a framework that supports the daily activities of employees who are devoted
to those tasks. We term our framework GarNLP, as an obvious allusion to
application of NLP techniques to the garnishment domain.

Specifically, the document-processing phase typically consists of two main
subtasks: (i) categorization, and (ii) information extraction.

Categorization. This task deals with assigning the document at hand the
correct garnishment-specific category, which is a critical initial step of the
overall garnishment process for a garnishee, as different categories may imply
totally different ways of dealing with the document.

Given a garnishment document D, the goal of categorization is to assign
D a category from a pre-defined set C of garnishment-specific categories. Cat-
egories C mainly depend on the garnishment legislation in place. For the use
case we consider here, i.e., garnishment in Italy as of 2018-2019, they are:

– practice, whose main purpose is for a legal entity to ask a garnishee infor-
mation about the debtor of the underlying garnishment process, such as
debtor’s available money (in the form of account balance/payment/wage).

– assignment, i.e., a court order that requires a garnishee to seize a certain
amount of money for a debtor.

– renunciation, which denies a previous assignment order, because, e.g., the
creditor has changed her mind about the garnishment proceeding or the
garnishment amount has been finally assigned to a different garnishee.

Set C may also contain further garnishee-specific categories, like, e.g., subcat-
egories defined based on the creditor/lawyer of the underlying proceeding.

Information extraction. The second task is to extract relevant information
from a garnishment document. The main types of information we consider are:

– Actors of the garnishment procedure. Here the goal is to identify creditor,
debtor, and lawyer of the procedure, extracting first/last names (for natural
persons) or business names (for legal persons). A desideratum may be to
extract further information, e.g., date/place of birth, address, and so on.

– Amounts, e.g., the debt owed to the creditor, or the amount to be seized.3

– Dates, such as notification date (when the garnishment document has been
notified to the garnishee) or hearing date (when the hearing will take place).

– Codes, i.e., specific codes that are typically assigned to certain parts of the
garnishment document (e.g., injunction number), and whose tracking may
be useful for, e.g., reconstructing the history of a garnishment process.

3 Owed amount and seized amount may differ as a court order may require to seize an amount
that is (slightly) more than the owed one (for tax or interest reasons).

6 Bordino et al.

3 The GarNLP framework

Fig. 1: Overview of the proposed GarNLP framework.

In this section we describe the solution we propose for handling the ap-
plication scenario presented in Section 2. The main components of the pro-
posed framework are depicted in Figure 1. A preliminary common step of the
framework consists in performing optical character recognition (OCR), as it
is not uncommon that a garnishee is provided with non-digital garnishment
documents, and, as such, they have to be preliminarily scanned and, indeed,
OCR-ized to get to a textual, machine-readable format. After this prelimi-
nary step, a raw garnishment document D̃ may be represented as a sequence
D = [w1, . . . , wn] of n tokens (i.e., terms or punctuation symbols), where
n = |D|, and passed to the two core components that are in charge of catego-
rization and information extraction, i.e., the categorizer and the information
extractor, respectively.

3.1 Categorizer

Given a garnishment document D = [w1, . . . , wn] and a set C = {C1, . . . , Cm}
of categories, the goal of the categorizer module is to assign D a category
from C. In this work we assume the availability of a ground truth of docu-
ments whose category has been manually assigned, and cast the problem at
hand as a (multi-class) supervised-learning task. As a result, our categorization
happens in two phases: training, where the ground truth is exploited (offline)
to build a proper model, and inference, where the trained model is exploited
(online) to ultimately perform category assignment. Orthogonally to this dis-
tinction between training and inference, the categorizer is logically split into
two subcomponents, i.e., document-feature builder and document classifier.

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 7

Document-feature builder. The very first step of our categorizer is to rep-
resent a garnishment documents by a suitable format that can be handled by
(standard) machine learning. To this end, we adopt a frequentist approach
and represent a document D by a k-dimensional integer vector (k defined be-
low), which encodes the frequency of the terms that help the most discern
between any two categories in C. The main intuition here is that, for every
pair Ci, Cj ∈ C of categories, the terms whose frequency within (documents
of) category Ci is considerably higher than the frequency in category Cj (or
vice versa) are the most discriminant ones to distinguish between Ci and Cj .

Formally, let G be a set of ground-truth documents, where, for every D̂ ∈ G,
c(D̂) ∈ C denotes the category manually-assigned to D̂, and, for every category
C ∈ C, let GC = {D̂ ∈ G | c(D̂) = C} be the subset of G whose category
corresponds to C. For a term w, let tf(w, D̂) be the term frequency of w
within document D̂ (i.e., the number of occurrences of w within D), and
tf(w,C) =

∑
D̂∈GC tf(w, D̂) the term frequency of w within GC . The relative

frequency of a term w with respect to categories Ci, Cj ∈ C is defined as:

tf(w,Ci, Cj) = max

{
1 + tf(w,Ci)

1 + tf(w,Cj)
,

1 + tf(w,Cj)

1 + tf(w,Ci)

}
.

Given an integer h > 0, for every pair Ci, Cj ∈ C of categories, we compute the
top-h frequent terms Tij(h) by sorting the various terms w in non-increasing
order of their tf(w,Ci, Cj) relative frequency, and taking the first h terms of
such a resulting ordered list (ties broken randomly). Ultimately, for an input
garnishment document D, we compute the overall set of terms of interest as:

T (h) =
⋃

Ci,Cj∈C
Tij(h), (1)

while the k-dimensional integer vector v(D), k = |T (h)| ≤ h m(m−1)
2 , used for

representing document D is defined as:

v(D) = [tf(w,D)]w∈T (h) . (2)

To summarize, the training phase of the document-feature builder takes
h as input and computes the term set T (h). This way, the document-feature
model in Figure 1 simply corresponds to T (h). To handle class imbalance,
the training is performed a ground truth with the same number of documents
for every class. Given a document D, the inference phase instead consists in
computing vector v(D) (Equation (2)) based on the term set (model) T (h).

Document classifier. During training, the document classifier exploits the
vectorial representation v(D̂) of every ground-truth document D̂ ∈ G, along
with the corresponding c(D̂) label, to learn a document-classifier model (as
termed in Figure 1). Here training is carried out on a ground truth where
the number of documents of every class is kept proportional to the original
frequency of that class in the whole dataset. This was purposely done to help
the model better learn the representativity of each class.

8 Bordino et al.

Once it has been built, the document-classifier model is exploited in the
inference phase to ultimately assign a category to the target input garnishment
document D (represented by its vector v(D)).

Both training and inference are carried out with standard supervised-
learning techniques. Specifically, each document belongs to exactly one cat-
egory: therefore, the underlying learning task is a classic multi-class classifica-
tion one. More details in this regard are reported in Sections 4–5.

3.2 Information extractor

The information-extractor component of GarNLP identifies relevant informa-
tion from a garnishment document D, by employing a filter-and-verify, two-
step approach. The first step performs named entity recognition (NER) [32],
whose main goal is to extract all named entities from the document. The sec-
ond step classifies every named entity as an entity of interest or not, while also
identifying its type (e.g., creditor/debtor/lawyer name, hearing date, seized
amount, etc.). Between such two main steps is entity cleaning, which aims at
filtering out named entities that are easily recognizable as non-interesting.

NER. The NER module is devoted to a coarse-grained identification of the
parts of the input document that are potentially of interest. Specifically, it
performs the well-established NLP task of recognizing named entities, and clas-
sifying them into pre-defined, general categories. The categories considered by
GarNLP are persons, organizations, places, dates, amounts, and (alpha)numeric
codes, as these are the main types of information to be extracted in the gar-
nishment scenario. Further types can however be included with minimal effort.
Formally, given an input garnishment document D = {w1, . . . , wn}, the NER’s
output is a set E = {〈e1, `ner(e1), so1, eo1〉, . . . , 〈e|E|, `ner(e|E|), so|E|, eo|E|〉, where,
for all i ∈ [1..|E|], ei is an entity of D, i.e., a set of consecutive terms drawn
from D, `ner(ei) denotes the NER category of ei, while soi and eoi are the
start and end offset of the mention of ei in the text (needed to retrieve the
context of ei in the entity-feature-builder module, see next). We accomplish
the NER task by resorting to well-established techniques. However, as the lan-
guage used in garnishment documents is rather ad-hoc and different of the one
used in generic texts, we also perform an ad-hoc retraining of state-of-the-art
models on (a random sample of) our real dataset used in the experiments.
As expected, this retraining was really beneficial, as the resulting model is
recognized as our best one (see Sections 4–5 for more details on this).

Entity cleaner. The cleaner module extracts a subset E∗ ⊆ E of entities,
by discarding entities from E that are easily recognizable as non-relevant in-
formation. We accomplish this by exploiting simple rules of two kinds: (i)
ground-truth-driven, i.e., derived from simple analyses/statistics on the avail-
able ground-truth documents, and (ii) language-specific, i.e., syntactic rules
of the specific language of the input garnishment documents at hand. An ex-
ample of ground-truth-driven rule is stop-entity removal : We run NER on

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 9

the ground-truth documents, and, for every entity e extracted from docu-
ment D̂, we compute its stop-frequency as the number of times e does not
match any ground-truth information for D̂. Our entity cleaner ultimately re-
moves the top-f entities exhibiting the highest stop-frequency (with f = 100
in our implementation). A second ground-truth-driven rule removes entities
whose length (in terms of number of characters) is not within an [lb, ub] range,
where lb and ub are computed according to the distribution of the length of the
ground-truth entities. Specifically, in our implementation lb and ub correspond
to the 5th and 95th percentiles of such a distribution

Language-specific rules include filtering the candidate actors of the gar-
nishment process by taking a list of proper names and a list of company legal
endings, and discarding entities that do not match any proper name or do not
end with any valid legal endings. A second rule of this kind is discarding enti-
ties containing literal patterns that cannot comply with the language at hand
(e.g., in our use case where documents are written in Italian, entities having
no vowels). This rule basically allows for detecting obvious OCR mistakes.

Entity annotator. This is the core subcomponent of our GarNLP’s infor-
mation extractor. It basically takes the filtered set E∗ = {〈e1, `ner(e1)〉, . . . ,
〈e|E∗|, `ner(e|E∗|)〉 of entities (and corresponding NER categories) and assigns
a proper garnishment label to every entity ei, i = [1..|E∗|], that classifies
it as (a specific type of) relevant garnishment information or not. Particu-
larly, recall that the main types of garnishment information to be extracted
are T = {actors, amounts, dates, codes} (Section 2). For every type T ∈ T ,
let L(T) be the set of garnishment labels for T . For instance, L(actors) =
{creditor, debtor, lawyer}, L(dates) = {hearing date}, and so on (the actual
L(T) labels considered in our use case are discussed in Section 5). Also, for
a type T ∈ T , let E∗(T) ⊆ E∗ be the subset of entities ei ∈ E∗ that are rele-
vant for T based on NER category `ner(ei). Specifically, E∗(actors) consists of
all entities ei ∈ E∗ whose NER category `ner(ei) ∈ {person, organization}, as
actors may only be persons or organizations. Likewise, E∗(dates) = {ei ∈ E∗ |
`ner(ei) = date}, E∗(amounts) = {ei ∈ E∗ | `ner(ei) = money}, E∗(codes) =
{ei ∈ E∗ | `ner(ei) /∈ {person, organization}}.

The goal of the information extractor is, for every information type T ∈ T
and entity ei ∈ E∗(T), to yield a garnishment label `i ∈ L(T) ∪ {⊥}, where
`i =⊥ denotes the fact that ei is not relevant information. To accomplish this,
we exploit a ground-truth set of documents, and adopt a supervised-learning
approach that is similar to the one used for the categorization task (Sec-
tion 3.1). Our approach basically consists in first building suitable (numerical)
representations for entities in E∗(T) (entity-feature builder module), and then
classifying them based on such a representation (entity classifier module). We
discuss the details of such two steps in the following.

Entity-feature builder. We resort to the well-established word embedding
technique, whose goal is to represent textual units (words, sentences, para-
graphs, etc.) by means of numerical vectors such that (semantically) similar
units are assigned vectors that are close in the corresponding vector space [4].

10 Bordino et al.

Our intuition is that entities of the same type share semantically similar con-
texts in the various garnishment documents where they appear, i.e., entities
of the same type are likely mentioned in sentences/paragraphs that are se-
mantically similar to each other, at least for what concerns a number of key,
discriminating terms. For instance, all entities recognized as debtor will likely
be mentioned in proximity of terms like “owe to”, or “seizure”. Motivated by
this, in our entity-feature builder we adopt the paragraph vector approach [23],
which is an extension of word2vec [31] suitable for learning representations for
words and their contexts simultaneously, The basic word2vec learns a model
that is able to assign vector representations to single words. Paragraph vector,
instead, learns vector representations for both single words and paragraphs (or
whatever proper textual unit, such as phrases, sentences, entire documents),
where that word appears in, producing a more general model. This way, para-
graph vector learns a more general model, which allows to assign vectors to
any (previously unseen) combination of (seen) words.

More precisely, the training phase of our entity-feature builder takes every
document D̂ within the given ground truth G, and, for every ground-truth
entity ê of D̂, builds a context ω(ê) by considering every mention of ê within
D̂ and concatenating all windows of words that are in the neighborhood of
such mentions. In particular, for every mention mê, the corresponding window
W (mê) is given by the Wr terms preceding mê and the Wr terms following
mê (Wr = 10 in our implementation). The context ω(ê) is thus computed by
concatenating the W (mê) windows, for all mentions mê. The set {ωê}ê∈D̂,D̂∈G
of all these contexts form the base paragraphs to be used for training paragraph
vector, and ultimately yielding what in GarNLP is referred to as the entity-
feature model (Figure 1). At inference time, given a document D and an entity
e extracted from D, the context ω(e) of e is first built (again, by concatenating
the windows W (me) of all mentions of e within D), and the context ω(e) is
provided to the trained entity-feature model, which ultimately outputs the
desired vector representation for e. We denote such a vector by p(e).

Entity classifier. This module takes the numerical representations p(e) of
every entity e ∈ E∗(T), and employs standard supervised-learning, for both
training and inference (more details in Sections 4–5). Specifically, we formulate
the entity-classification problem as a multi-class classification one. As only a
tiny fraction (2%) of our dataset contained entities with multiple (i.e., creditor
and lawyer) roles, the adoption of a more sophisticated formulation such as
multi-label classification was not considered as necessary. In the training phase
the numerical representations {p(e)}e∈E∗(T), along with their ground-truth
labels, are exploited to build a document-classification model. Such a model is
then exploited at inference time to assign a label to unseen entities.

4 Implementation and Technology

In this section we discuss implementation details and technology behind the
proposed GarNLP. We implemented the OCR component and the categorizer

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 11

in Python, while the information-extractor component is written in Scala. In
the following we report such details for each GarNLP’s component one by one.

OCR. Every page of a (non-textual) garnishment document is preliminarily
converted to a .png image by making use of ImageMagick (www.imagemagick.
org) and GhostScript (www.ghostscript.com). After that, every page is OCR-
ized by employing Tesseract (github.com/tesseract-ocr/tesseract) as a
library wrapped in ctypes (docs.python.org/3/library/ctypes.html).

We adopt a number of tricks to improve the OCR performance. Specifi-
cally, we first apply a blur filter to enhance the connectedness of pixels within
the same character, then a maxfilter to drop the noisy background pixels,
and finally an unsharp mask to make the overall image tidier. We also at-
tempted a language-model-based approach to fix spelling mistakes. Specifi-
cally, we trained a character-level language model on a mixture of a general
Italian corpus and a corpus extracted from a subset of our documents where
the OCR quality was high (as measured by the percentage of tokens that are
part of a dictionary). The resulting language model was applied on the ex-
tracted text, and characters were corrected whenever the prediction of the
language model would differ from the actual character and the confidence of
the prediction exceeded a threshold. This helped fix many common spelling
mistakes. During the development of GarNLP, however, the OCR software was
upgraded from Tesseract v3 to Tesseract v4. Version 4 of Tesseract includes an
OCR which is based on an LSTM neural network applied to the output of a
convolutional network. This helps the model learn at once both the graphical
features of the text and the statistical properties of the language of the doc-
ument. In some sense, the LSTM OCR already features a language model as
part of its structure. After switching to Tesseract v4, applying an additional
language model on top of the Tesseract output was not giving significant im-
provements anymore, so it was removed from the final version of GarNLP.

Document-feature builder. The feature set associated with a document is
the set T (h) of terms of interest defined in Equation (1). Apart from term
frequency and unigrams, we also experimented with tf-idf and n-grams (up to
n = 5), without noticing any significant difference.

Document classifier. For document categorization we use a classic Logistic
Regression classifier (although we have tried several others; see Section 5).
To this purpose, the module involves scikit-learn (scikit-learn.org/stable)
and pandas (pandas.pydata.org) libraries. The scikit-learn library is exploited
in both training and inference, while pandas is utilized in training only, just to
pass the datasets around. To train the Logistic Regression classifier we use a
multinomial loss (as the problem at hand is multi-class), with newton-cg as
a solver (i.e., an implementation of the Newton-Conjugate-Gradient method).

NER. We use the well-established StanfordNER library (nlp.stanford.edu/
software/CRF-NER.html), which is part of the StanfordCoreNLP suite. It im-
plements a conditional random field sequence model, together with additional
well-engineered features, and provides models to recognize seven NER cat-

12 Bordino et al.

egories (i.e., location, person, organization, money, percent, date, time), for
four different languages (i.e., English, Chinese, German, and Spanish). The
library gives also the chance of training a model on another language. For our
use case, we use the Italian model offered within Tint (http://tint.fbk.eu),
a (Java-based) pipeline for NLP in Italian that is built on top of Stanford-
CoreNLP. We also perform an ad-hoc retraining on a random sample of our
dataset of garnishment documents, and the resulting model is recognized as
our best one (see Section 5, Table 5).

Entity annotator. As for the paragraph-vector technique, we use the Doc2Vec
implementation within the Deeplearning4J library (deeplearning4j.org), for
both training and inference. The parameters used for training (after an ex-
tensive tuning) are: 0.025 as learning rate, 10−4 as minimum learning rate,
500 as batch size, 100 as number of epochs, 100 as dimensionality of the
output p(·) vectors, 10 as context-window radius Wr. As far as the entity
classifier, we perform both training and inference with the well-known Weka
suite (www.cs.waikato.ac.nz/ml/weka). Although we experimented with a
variety of well-established classifiers (including Näıve Bayes, Random Forest,
LinearSVM, J48), we ultimately stick to Logistic Regression, as it yielded the
most accurate results in our assessment. Specifically, we use the Weka wrap-
per of the LibLINEAR library [18], available at wiki.pentaho.com/display/
DATAMINING/LibLINEAR, and set L2-regularized logistic regression as a solver.

Multilinguality. Our GarNLP framework is in great part language-independent,
given that most of its components and algorithms make little or no assumption
on the language of the input text. As for OCR, the final version of GarNLP em-
ploys Tesseract 4, without further use of additional language models to make
corrections. The document-categorization module is completely language in-
dependent: it applies a logistic-regression classifier on top of frequent-word
features. For what concerns the information-extraction module, its main steps
also naturally work on multiple languages. In fact, training the NER model and
the paragraph-vector model obviously requires language-specific data (docu-
ments in the desired language), because not all features might be equally
useful for every language. However, the NER library that we employed, i.e.,
StanfordNER, is designed to work with multiple languages, and provides pre-
trained models for several major languages, as well as support to retrain the
model on the desired input data. As far as paragraph vector, it also requires
language-specific retraining, given that it essentially exploits word collocation,
and different languages might have different syntactic structures. However, like
NER, training a paragraph-vector model on a desired language (or on multiple
languages) is rather easy: this is one of the reasons why word2vec-like models
have been employed in machine translation between language pairs [30].

4.1 Industrialization

The GarNLP framework has been successfully deployed in production and is
currently being used to enhance the work of the UniCredit garnishment office.

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 13

The industrialized version of GarNLP is actually provided with a graphical user
interface, which the garnishment operators employ to monitor the behavior
and performance of the framework. Such a user interface displays, for any
processed document, the assigned category label and the various information
items extracted from the text; in addition, the operator is allowed to visualize
the original document, so as to be able to compare the information-extraction
output with the original text. The user interface includes some functionalities
that may facilitate this comparison, such as semi-dynamical highlight of the
extracted information, possibility to scroll the document up and down to better
check all the extracted information fields, possibility (depending on document
type) to copy/paste data from the original document, so as to correct the
output of the information extractor.

5 Experiments

Table 1: Dataset characteristics.

month #documents category %documents actors size
M1 19 652 collection agency (NEQ) 49% creditors 98 586
M2 21 827 private (NPR) 18% debtors 79 299
M3 21 458 renunciation (RNC) 16% lawyers 62 628
M4 17 586 other (OTH) 9%
M5 21 039 assignment (ASS) 6%

authority (treasurer) (NET) 1%
authority (no treasurer) (NEN) 1%

We evaluated the performance of GarNLP on a real-world use case, i.e., sup-
porting the legal office of UniCredit, a large pan-European commercial bank,
in handling a garnishment process. We used a (proprietary) real dataset, i.e., a
random sample of 101 562 garnishment documents received by the bank during
five months in 2018. The documents are in Italian, enriched with ground-truth
labels for the two tasks, and span 7 categories. The ASS and RNC categories
include practices with a known final outcome (i.e., assignment and renunci-
ation, respectively). The N∗ categories cover practices for which no outcome
has been ruled yet: NPR includes private subjects, NEQ the practices involv-
ing a big Italian collection agency, NET and NEN public authorities for which
the partner bank respectively is and is not treasurer. The OTH category col-
lects all remaining cases, e.g., optional information requests or reminders. The
main characteristics of the dataset are summarized in Table 1, where we re-
port: number of documents per month, percentage of documents per category,
number of actors (for every actor type) within the whole set of documents.

Next we report separate experiments for the two tasks of GarNLP.

Document categorization. We evaluated the document categorizer pro-
posed for GarNLP, which we dub GarNLP-Cat, by comparing it with 3 base-
lines that use simpler strategies (such as handcrafted key terms) to build the
feature vocabulary and/or assign a category:

14 Bordino et al.

Table 2: Document categorization (Test: M5): GarNLP-Cat vs. baselines.

training method accuracy
– HandFirst-Cat 0.727
M1–M4 HandSup-Cat 0.92
– HandFreq-Cat 0.899
M1–M4 GarNLP-Cat 0.986

Table 3: Document categorization (Train: M1/M4; Test M5): varying classifiers in
GarNLP-Cat.

classifier accuracy
Decision Trees 0.947
Passive Aggressive 0.959
Extra Trees 0.963
Perceptron 0.953
SGD 0.963
Logistic Regression 0.986

Baseline #1: Handcrafted Terms + First Found (HandFirst-Cat). A completely
unsupervised method, which handpicks a few representative terms for each
category, and determines the category of a document as the one associated
(by majority) with the first ten representative terms in the text. The rationale
is that the start of a document contains enough information for categorization.

Baseline #2: Handcrafted Terms + Most Frequent Found (HandFreq-Cat). An-
other unsupervised method, similar to the previous one. The only difference
here is that the category of a document is inferred by computing the frequen-
cies of all representative terms in the handcrafted vocabulary, and picking the
category associated with the most frequent term.

Baseline #3: Handcrafted Terms + Supervised Classification (HandSup-Cat).
A supervised method, which still employs the category representation based
on hand-picked representative terms, but exploits ground-truth annotations
to train a supervised-classification model on the term-frequency vectors of the
documents in the training set. As a classification algorithm, we employ the
one that was finally chosen for our main method, i.e., Logistic Regression.

Results. We tested GarNLP-Cat and the baselines on the same dataset, i.e., the
fifth month (M5) in our document collection (21 039 documents). The super-
vised methods were trained on the first four months of the collection (M1–M4),
using 10-fold cross-validation for parameter tuning. Table 2 compares the four
methods in terms of accuracy, i.e., the percentage of correctly-classified docu-
ments in the test set. GarNLP-Cat considerably outperforms all the baselines,
especially the unsupervised ones. We achieved this result employing Logistic
Regression. Thus our feature building strategy is much more effective than the
handcrafted vocabulary. We also experimented with other off-the-shelf classi-
fication algorithms, which are reported for completeness in Table 3.

Information extraction: actor identification. We start our discussion of
the information-extraction results by focusing on the identification of the main
actors involved in a garnishment process: creditor, debtor, and lawyer.

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 15

Table 4: Actor identification: classification results of proposed GarNLP-IE and Freq-IE
baseline (Train: M1–M4; Test: M5).

method accuracy
Freq-IE 0.809
GarNLP-IE 0.926

Table 5: Actor identification: Precision (P), Recall (R), and F1 of GarNLP-IE with varying
the NER model (Train: M1/M4, Test: M5).

Category: ALL Category: NEQ
actor NER: Tint NER: GarNLP NER: Tint NER: GarNLP

P R F1 P R F1 P R F1 P R F1
creditor 0.830 0.301 0.442 0.763 0.322 0.453 0.990 0.696 0.817 0.878 0.706 0.782
debtor 0.748 0.320 0.448 0.781 0.426 0.551 0.874 0.645 0.742 0.859 0.718 0.782
lawyer 0.783 0.662 0.717 0.758 0.672 0.715 0.985 0.671 0.798 0.981 0.676 0.800

Baseline. We compared the information extractor of GarNLP described in
Section 3.2 – here termed GarNLP-IE – with a baseline that is still supervised,
but employs a simpler frequentist feature model. Specifically, it extracts the
textual context of a candidate actor in a document, i.e., a person or organi-
zation mentioned in the text and identified via NER, by concatenating all
the text windows around its mentions in the text. We tested windows of vari-
able radius Wr around each mention, and a different number Wn of windows,
considering (i) the case where left and right context of a mention are kept
separate, and (ii) the case where left and right context are merged. We denote
these two cases by Wn = 2 (left and right contexts separated) and Wn = 1 (left
and right contexts merged). We extract from each context a bag of features,
considering lemmatized non-stopword terms, bigrams, or both, and we retain
as feature vocabulary the union of the top-K features of each type that occur
most frequently in each class in the training dataset. We represent the context
of a candidate actor as the frequency vector of the features included in the
vocabulary. We dub this baseline Freq-IE.

Results of GarNLP-IE vs. Freq-IE baseline. We evaluated the proposed Gar-
NLP-IE and Freq-IE in the classification task performed within the GarNLP
entity classifier: we trained on (M1–M4) with 10-fold cross-validation, and
tested the two competing methods on M5. Table 4 reports accuracy for the best
configuration of each competitor, i.e., {lemmas, Wr = 10, Wn = 2, K = 25,
Logistic Regression} for Freq-IE, and {Wr = 10, N = 100, batch size=500,
epochs=100, Logistic Regression} for GarNLP-IE (parameter tuning is discussed
in Tables 6–7). These results attest the superiority of GarNLP-IE, which out-
performed Freq-IE by more than 12%.

Results with varying the NER model. We further tested GarNLP-IE (still
training on M1–M4 and testing on M5), varying the NER model to assess
its impact on performance. In addition to using the Italian one provided by
Tint [34] for StanfordNER [19], we trained our ad-hoc model on a random
sample of the training dataset, with the aim of better capturing the peculiar
language used in garnishment documents. Table 5 reports precision, recall,
and F1 for every actor label, on the whole test set (ALL) and on the subset

16 Bordino et al.

Table 6: Actor Identification: parameter tuning of the proposed GarNLP-IE method.

Wr N
batch

epochs J48
Näıve Random Logistic

size Bayes Forest Regr.

5
50

500 20 0.545 0.569 0.681 0.849
500 50 0.504 0.388 0.741 0.856

100 500 20 0.693 0.686 0.772 0.81

10

50
500 20 0.512 0.39 0.749 0.82
500 50 0.574 0.48 0.733 0.849

100
500 50 0.646 0.668 0.778 0.91
500 100 0.735 0.714 0.886 0.926

1000 100 0.604 0.52 0.73 0.883

of test documents in the most frequent category (NEQ, which approximately
spans half of the data).

On the whole test set (ALL), the inital model (Tint) achieves acceptable
precision (average 0.784), while recall is lower (average 0.427), especially for
the creditor and debtor classes. In our use case the obtained precision met the
requirements of the partner institution, whereas we were explicitly requested
to improve recall. From a recall-oriented perspective, we consider the results
obtained with the GarNLP NER model better than those achieved with Tint.
In fact, the average recall on ALL increases by 11% – from 0.427 to 0.473. This
comes at the cost of a loss of 2.5% in average precision (from 0.787 to 0.767),
which we consider a reasonable price to pay. The improvement in performance
is especially noticeable for the debtor class, where recall increases by 33%, and
F1 increases by 23%. On the NEQ class, which accounts for almost half of our
dataset, our GarNLP NER model also achieves a small improvement over Tint
in terms of average recall (4.3%), at the cost of a bit more significant loss (5%)
in average precision (with F1 staying basically the same).

Parameter tuning of proposed GarNLP-IE. We tuned the parameters of para-
graph vectors (radius Wr of the context window around each mention, dimen-
sionality N of the paragraph vectors), and two hyperparameters of the SGD
algorithm used to train the paragraph-vector model (batch size and number of
epochs), by experimenting with the same test settings as before, i.e., we trained
on M1–M4 and measured classification accuracy with 10-fold cross-validation.
We also varied the classifier used in the entity-classifier module. Table 6 re-
ports the results of parameter tuning for our GarNLP-IE, showing that, using
N = 100 and a Logistic Regression classifier, it achieves the best results, while
the other parameters do not seem to influence performance much.

Parameter tuning of Freq-IE baseline. For completeness, we also report in
Table 7 the parameter tuning for the Freq-IE baseline. The involved parameters
were: type of feature, radius Wr of the text window extracted around each
mention, whether the left and right window around a mention are merged
(Wn = 1) or not (Wn = 2), and number K of top-frequent features in the
vocabulary for each class and for each feature type. The simplest, lemma-
based vocabulary achieves the best accuracy (0.8 for Wr = 10 and Wn = 2,
with Logistic Regression). Using bigrams alone yields worse performance, and

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 17

Table 7: Actor Identification: parameter tuning of the Freq-IE baseline.

Wr Wn K
Features: Lemmas Features: Lemmas & Bigrams

J48
Näıve Random Logistic

J48
Näıve Random Logistic

Bayes Forest Regr. Bayes Forest Regr.

5
1

25 0.749 0.716 0.771 0.768 0.728 0.707 0.757 0.762
50 0.744 0.709 0.768 0.777 0.737 0.682 0.756 0.781

2
25 0.761 0.712 0.770 0.791 0.759 0.701 0.768 0.789
50 0.766 0.694 0.773 0.794 0.757 0.684 0.768 0.809

10
1

25 0.730 0.705 0.755 0.767 0.729 0.700 0.750 0.756
50 0.736 0.701 0.758 0.775 0.733 0.664 0.749 0.772

2
25 0.754 0.701 0.773 0.809 0.747 0.681 0.760 0.793
50 0.755 0.671 0.757 0.800 0.742 0.682 0.759 0.790

taking both does not improve with respect to the lemma-only case (results are
omitted for the sake of brevity).

Information extraction: identifying codes, dates, amounts. We con-
clude our report on information extraction by discussing the performance of
GarNLP on the remaining attributes other than the actor labels. These include
some codes (authority, court, injunction number, and RGE), the amount, and
the hearing date. Codes were extracted with simple regular expressions. For
the amount and hearing date, we used the same method designed for actor
identification: we trained a supervised classifier on the paragraph vectors of
mentions (the money and date tags extracted by NER). Table 8 reports the
accuracy on M5 (with supervised extractors trained on M1–M4). GarNLP per-
forms well in the extraction of codes, with the exception of injunction number,
which we will investigate in future work. We perform well on amount and hear-
ing date, although the latter needs to be improved: by error analysis we found
that accuracy on the hearing date is affected by not-so-good NER performance
in the extraction of date tags.

Table 8: Performance of GarNLP on identification of codes, dates, and amounts.

entity accuracy (%)
authority 99.32

injunction # 40.09
court 95.18

amount 91.06
RGE 78.32

hearing date 82.63

Scalability. We tested the scalability of the proposed GarNLP framework by
running the complete pipeline (including OCR, document categorization, and
information extraction) on document sets of different sizes. The results of this
experiment are reported in Table 9. The table shows that the total running
time is linear in the number of documents, with an average time per doc-
ument being roughly constant and equal to slightly more than 10 seconds.
This attests the high scalability of our proposal. In this regard, note also that
the reported times refer to a single-machine single-core execution. However,
the computation can be easily parallelized, as executions of the pipeline on
different documents are independent on each other.

18 Bordino et al.

Table 9: Scalability: times of running the overall GarNLP pipeline (including OCR,
document categorization, and information-extraction) on different document-set sizes.

documents total time (s) avg time per document (s)
100 1 206 12.06

1 000 11 326 11.33
10 000 117 056 11.71

Qualitative evaluation. A qualitative evaluation of GarNLP was performed
during the industrialization phase. The final deployment was preceded by a
progressive roll-out of two weeks, during which the framework was employed
in a controlled go-live mode by the operators of the garnishment office. In this
phase the operators manually monitored a sample of the incoming document
feed, using the graphical user interface to correct the output of the information
extractor, when needed. First, the operators provided a quantitative report of
the effectiveness of the tool, measured in terms of slot error rate (SER) [25],
which is a measure of the cost for the users of the tool, to make different
types of errors, i.e., insertions, deletions, or substitutions. The choice of the
SER metric was motivated by the request of the operators to have a single
measure of performance that deals with the three possible types of error si-
multaneously, as opposed to employing the more widely-adopted precision and
recall, which respectively track substitution and insertion errors, and substi-
tution and deletion errors. In their pre-deployment experiments the operators
achieved a SER of 31.8%, which roughly means that slightly less than 70% of
the information extracted by the framework was correct and did not require
manual intervention. Please note that this result is not directly relatable to the
performance reported in our manuscript, because the pre-roll-out experiments
were conducted on new documents.

6 Related Work

General-purpose NLP. Natural Language Processing (NLP) is a subfield
of artificial intelligence whose goal is to automatically process pieces of text
written in human (natural) language. NLP includes many different tasks, such
as marking up syntactic and semantic elements (e.g., named entity recogni-
tion (and disambiguation), part-of-speech (POS) tagging, syntactic parsing,
semantic role labeling), language modeling, sentiment analysis, and more. Ev-
ery prominent NLP task – in its domain-agnostic formulation – has received
considerable attention in the literature [22,33].

From a system-oriented perspective, there have been attempts to incorpo-
rate methods for multiple NLP tasks into a single suite. These include the pop-
ular Stanford Core [26] and Natural Language ToolKit (NLTK) [7], respectively
a Java- and a Python-based framework of tools for processing various nat-
ural languages, including libraries for classification, tokenization, stemming,
tagging, parsing, and semantic reasoning, wrappers for industrial-strength
NLP libraries and easy-to-use interfaces to lexical resources such as Word-
Net. Similar in spirit to Stanford Core and NLTK are Apache Lucene and Solr

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 19

(https://lucene.apache.org) and Apache OpenNLP (http://opennlp.apache.org).
Other NLP systems include The Curator (Illinois) [15], a management frame-
work to easily incorporate any third-party components, and distribute compo-
nents across multiple machines; Hermes [10], a tool for large-scale NLP, mainly
focused on (Wikipedia-based) named entity disambiguation; PASTA [16] and
ToPIC [35], two distributed self-tuning frameworks for general and topic-
model-based text clustering, respectively. Orthogonally, there have also been
efforts focused on the efficiency of information-extraction pipelines [43].

Although exhibiting generality and reusability, general-purpose NLP so-
lutions overlook the peculiarities of a specific application domain, for which
designing ad-hoc methodologies is the only viable option.

Domain-specific NLP. Numerous NLP pipelines specifically tailored to a
single application domain have been proposed [39].

Wachsmuth et al. [42] devise a framework to efficiently find and analyze
market forecast information, by means of retrieval, extraction and NLP tech-
niques. Specifically, given a corpus of (Web) documents, Wachsmuth et al.’s
framework extracts time and money information, and use support-vector clas-
sification to identify sentences that represent market statements. The state-
ments’ subjects are then found by relating recognized named entities to the
time and money information, and the resulting information is eventually nor-
malized and aggregated to effectively present it to the user.

ArguAna is a research project that was funded by the German Federal
Ministry of Education and Research (BMBF), and originally ran from 2012 to
2014, with a follow-up during 2016–2019.4 The project aimed at the develop-
ment of text-analysis algorithms for fine-grained opinion mining from customer
product reviews. In particular, a focus was on the analysis of the sequence of
single arguments in a review in order to capture and interpret the review’s
overall argumentation. The main outcome of the project was a text-analysis
pipeline to tackle the underlying text-classification and information-extraction
tasks. The main steps of the pipeline are as follows. First, the body of each
review text is segmented into its single subsentence-level discourse units. Ev-
ery unit is classified as being either an objective fact, a positive, or a negative
opinion. Discourse relations between the units are then extracted as well as
products and aspects the units are about, together with their attributes. Fi-
nally, a sentiment score in the sense of the review’s overall rating is predicted.
The techniques employed in the various steps of the pipeline have been pre-
sented in several research works, including [40,41,44].

Another domain that has observed the proliferation of ad-hoc NLP frame-
works is the healthcare/biomedical one [5], where the attention has been,
among others, on tasks like text clustering [36] and data visualization [17].

Further attempts have focused on various other domains, such as, e.g.,
microblogging [9], investigative journalism [45], and cybersecurity [47].

Being specifically tailored to domains other than garnishment, all those
pipelines focus on different inputs, and, especially, different customizations of

4 http://www.arguana.com, https://webis.de/research/arguana-for-the-web.html

20 Bordino et al.

tasks and analyses than the ones required in the garnishment setting. This
way, they are not (easily) adaptable to our context.

NLP in the legal domain. To the best of our knowledge, there is no work in
the legal-NLP literature on designing domain-specific NLP pipelines, neither
for garnishment, nor for any other legal subdomains. Related – but clearly
different – problems include ontology learning, construction of knowledge re-
sources, and semantic processing of legal texts. In the following we briefly
overview the state of the art in such problems.

Learning ontologies from unstructured data for the specific context of the
legal domain has been active for more than two decades. Already in 1994,
Valente and Breuker [38] discussed role and benefits of ontologies in AI & Law.
Since then, numerous frameworks and methods for learning ontologies from
text have been proposed [1,12,14,24]. For a comprehensive review of the use
of ontologies for legal-knowledge systems, see the survey of Casellas et al. [13],
and the workshop of Francesconi et al. [21].

As far as knowledge resources for legal text processing, Francesconi et al. [20]
propose a (semi-)automatic NLP-based approach for multilingual legal knowl-
edge acquisition and modelling. Bosca and Dini [11] devise an ontology-induction
method for individual laws, based on corpora comparison. Ajani et al. [2] pro-
pose the Legal Taxonomy Syllabus and a methodology to manage the concep-
tual representation of European laws. Bonin et al. [8] present a term-extraction
approach to discriminate legal terms from regulated-domain terms.

A number of efforts have also been devoted to semantic processing of legal
texts. Bartolini et al. [6] study the problem of automatically enriching legal
texts with semantic annotations, by classifying law paragraphs based on regu-
latory content. Francesconi et al. [21] propose strategies for multilingual legal
knowledge modelling. Mazzei et al. [27] present an approach for annotating
modificatory provisions. Spinosa et al. [37] focus on automatic consolidation
of Italian legislative texts. Wyner and Peters [46] devise a text-analysis tool
for legal researchers, which integrates legal and linguistic resources.

Finally, in terms of SW libraries/tools, it is worth to mention IusExplorer,5

a legal search engine gathering different law sources (case laws, legislation,
jurisprudence, etc.) in the Italian language, and the LexNLP Python package.

7 Conclusions

We have presented GarNLP, a natural-language-processing pipeline for the gar-
nishment domain, supporting the work of a garnishee in two main tasks, i.e.,
document categorization and information extraction. Extensive experiments
on a real-world use case and dataset have attested the high quality of the
methodologies at the core of the proposed pipeline.

In the future we plan to improve the performance of GarNLP on the consid-
ered tasks, to add methods for extracting further information, and to extend
the framework by incorporating models for more languages.

5 https://www.iusexplorer.it/

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 21

References

1. Agnoloni, T., Bacci, L., Francesconi, E., Peters, W., Montemagni, S., Venturi, G.: A
two-level knowledge approach to support multilingual legislative drafting. In: Proc.
Conf. on Law, Ontologies and the Semantic Web (2009)

2. Ajani, G., Boella, G., Lesmo, L., Martin, M., Mazzei, A., Radicioni, D.P., Rossi, P.:
Semantic processing of legal texts. chap. Multilevel Legal Ontologies. Springer (2010)

3. Allwood, W.: Expert systems in law. A jurisprudential inquiry. By Richard E. Susskind.
The Cambridge Law Journal 47 (1988)

4. Almeida, F., Xexéo, G.: Word embeddings: A survey. CoRR abs/1901.09069 (2019)
5. Ananiadou, S., Mcnaught, J.: Text Mining for Biology And Biomedicine. Artech House,

Inc. (2005)
6. Bartolini, R., Lenci, A., Montemagni, S., Pirrelli, V., Soria, C.: Automatic classification

and analysis of provisions in Italian legal texts: A case study. In: R. Meersman, Z. Tari,
A. Corsaro (eds.) Proc. OTM Work. (2004)

7. Bird, S., Loper, E.: NLTK: The natural language toolkit. In: ACL Conf. (Poster and
Demonstration) (2004)

8. Bonin, F., Dell’Orletta, F., Venturi, G., Montemagni, S.: Singling out legal knowledge
from world knowledge: An NLP-based approach. In: LOAIT Work. (2010)

9. Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M.A., Maynard, D., Aswani, N.:
TwitIE: An open-source information extraction pipeline for microblog text. In: RANLP
Conf., pp. 83–90 (2013)

10. Bordino, I., Ferretti, A., Firrincieli, M., Gullo, F., Paris, M., Pascolutti, S., Sabena,
G.: Advancing NLP via a distributed-messaging approach. In: IEEE Big Data, pp.
1561–1568 (2016)

11. Bosca, A., Dini, L.: Semantic processing of legal texts. chap. Ontology Based Law
Discovery. Springer (2010)

12. Breuker, J., Hoekstra, R.: Epistemology and ontology in core ontologies: FOLaw and
LRI-Core, two core ontologies for law. Phycologia (2004)

13. Casellas, N.: Legal ontology engineering: methodologies, modelling trends, and the on-
tology of professional judicial knowledge. Springer (2011)

14. Cimiano, P., Völker, J.: Text2Onto – A framework for ontology learning and data-driven
change discovery (2005)

15. Clarke, J., Srikumar, V., Sammons, M., Roth, D.: An NLP curator (or: How I learned
to stop worrying and love NLP pipelines). In: LREC Conf., pp. 3276–3283 (2012)

16. Di Corso, E., Cerquitelli, T., Ventura, F.: Self-tuning techniques for large scale cluster
analysis on textual data collections. In: SAC Conf., pp. 771–776 (2017)

17. Di Corso, E., Proto, S., Cerquitelli, T., Chiusano, S.: Towards automated visualisation
of scientific literature. In: ADBIS Conf., pp. 28–36 (2019)

18. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research 9 (2008)

19. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into in-
formation extraction systems by gibbs sampling. In: Proc. ACL Conf. (2005)

20. Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D.: Semantic processing of
legal texts. chap. Integrating a Bottom-Up and Top-Down Methodology for Building
Semantic Resources for the Multilingual Legal Domain. Springer (2010)

21. Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.): Semantic Processing
of Legal Texts: Where the Language of Law Meets the Law of Language. Springer
(2010)

22. Khurana, D., Koli, A., Khatter, K., Singh, S.: Natural language processing: State of the
art, current trends and challenges. CoRR abs/1708.05148 (2017)

23. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
Proc. ICML Conf. (2014)

24. Lenci, A., Montemagni, S., Pirrelli, V., Venturi, G.: Ontology learning from italian legal
texts. In: Proc. Conf. on Law, Ontologies and the Semantic Web (2009)

25. Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for in-
formation extraction. In: In Proceedings of DARPA Broadcast News Workshop, pp.
249–252 (1999)

22 Bordino et al.

26. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: ACL Conf. (System Demon-
strations, pp. 55–60 (2014)

27. Mazzei, A., Radicioni, D.P., Brighi, R.: NLP-based extraction of modificatory provisions
semantics. In: Proc. ICAIL Conf. (2009)

28. McCarty, L.T.: Deep semantic interpretations of legal texts. In: ICAIL Conf. (2007)
29. McCarty, L.T.: Remarks on legal text processing – parsing, semantics and information

extraction. (2009)
30. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine

translation (2013)
31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representa-

tions of words and phrases and their compositionality. In: NIPS Conf. (2013)
32. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lin-

guisticae Investigationes 30(1), 3–26 (2007)
33. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning in

natural language processing. CoRR abs/1807.10854 (2018)
34. Palmero Aprosio, A., Moretti, G.: Italy goes to Stanford: A collection of CoreNLP

modules for Italian. ArXiv (2016)
35. Proto, S., Di Corso, E., Ventura, F., Cerquitelli, T.: Useful ToPIC: Self-tuning strategies

to enhance Latent Dirichlet Allocation. In: IEEE Big Data Conf., pp. 33–40 (2018)
36. Renganathan, V.: Text mining in biomedical domain with emphasis on document clus-

tering. Healthcare Informatics Research 23(3), 141–146 (2017)
37. Spinosa, P., Giardiello, G., Cherubini, M., Marchi, S., Venturi, G., Montemagni, S.:

NLP-based metadata extraction for legal text consolidation. In: ICAIL Conf. (2009)
38. Valente, A., Breuker, J.: Ontologies, the missing link between legal theory and AI and

Law. Mathematics of Computation (1994)
39. Wachsmuth, H.: Text Analysis Pipelines - Towards Ad-hoc Large-Scale Text Mining,

Lecture Notes in Computer Science, vol. 9383. Springer (2015)
40. Wachsmuth, H., Kiesel, J., Stein, B.: Sentiment flow - A general model of web review

argumentation. In: EMNLP Conf., pp. 601–611 (2015)
41. Wachsmuth, H., Potthast, M., Al-Khatib, K., Ajjour, Y., Puschmann, J., Qu, J., Dorsch,

J., Morari, V., Bevendorff, J., Stein, B.: Building an argument search engine for the web.
In: ArgMining@EMNLP Work., pp. 49–59 (2017)

42. Wachsmuth, H., Prettenhofer, P., Stein, B.: Efficient statement identification for auto-
matic market forecasting. In: COLING Conf., pp. 1128–1136 (2010)

43. Wachsmuth, H., Stein, B., Engels, G.: Constructing efficient information extraction
pipelines. In: CIKM Conf., pp. 2237–2240 (2011)

44. Wachsmuth, H., Trenkmann, M., Stein, B., Engels, G.: Modeling review argumentation
for robust sentiment analysis. In: COLING Conf., pp. 553–564 (2014)

45. Wiedemann, G., Yimam, S.M., Biemann, C.: A multilingual information extraction
pipeline for investigative journalism. In: EMNLP Conf., pp. 78–83 (2018)

46. Wyner, A., Peters, W.: Lexical semantics and expert legal knowledge towards the iden-
tification of legal case factors. In: Conf. on Legal Knowledge and Information Systems
(2010)

47. Xie, T., Enck, W.: Text analytics for security: Tutorial. In: HotSos Conf., pp. 124–125
(2016)

Ilaria Bordino is a researcher at UniCredit, R&D Department. She received
her PhD in Computer Engineering in 2010, from Sapienza University of Rome
(Italy) and Pompeu Fabra University of Barcelona (Spain). Prior to joining
UniCredit, Ilaria was a research scientist at Yahoo Labs, Barcelona, Spain. She
has organized the MIDAS (MIning DAta for financial applicationS) Workshop
@ECML-PKDD[’16-’19].

Andrea Ferretti is a researcher at UniCredit, R&D Department. He received
his PhD in Mathematics from Sapienza University (Rome, Italy) in 2009. Be-
fore joining UniCredit (in February 2013), he spent a period as a postdoc at

GarNLP: A Natural Language Processing Pipeline for Garnishment Documents 23

Max Planck Institute for Mathematics in Bonn, Germany (2009-2010), and at
University of Lille, France (2010-2011). He also worked as a software engineer
for I Mille and Moneyfarm. Andrea was co-Chair of the MIDAS (MIning DAta
for financial applicationS) Workshop @ECML-PKDD[’18-’19].

Francesco Gullo is a researcher at UniCredit, R&D department. He received
his PhD from the University of Calabria, in 2010. Before joining UniCredit,
he spent 1.5 years in the University of Calabria, and 4 years in Yahoo Labs,
Spain. He served as a workshop co-chair of ICDM’16, and organized several
workshops/symposia (MIDAS @ECML-PKDD[’16-’19]; MultiClust @SDM’14,
KDD’13; 3Clust @PAKDD’12).

Stefano Pascolutti is a software engineer at Google Zurich. Stefano received
his PhD in Mathematics (Algebraic Geometry) in 2011, after completing a
doctoral program in Sapienza University of Rome (Italy). He next spent a
period as a math researcher at the Riemann Center in Hannover, and he was
a researcher at UniCredit, R&D Department, from 2013 to 2019. Andrea was
co-Chair of the MIDAS (MIning DAta for financial applicationS) Workshop
@ECML-PKDD[’18-’19].

