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Abstract

Uncertain data clustering has become central in mining datawhose observed rep-
resentation is naturally affected by imprecision, staling, or randomness that is
implicit when storing this data from real-word sources. Most existing methods
for uncertain data clustering follow a partitional or a density-based clustering
approach, whereas little research has been devoted to the hierarchical cluster-
ing paradigm. In this work, we push forward research in hierarchical clustering
of uncertain data by introducing a well-founded solution tothe problem via an
information-theoretic approach, following the initial idea described in our earlier
work [26]. We propose a prototype-based agglomerative hierarchical clustering
method, dubbedU-AHC, which employs a new uncertain linkage criterion for
cluster merging. This criterion enables the comparison of (sets of) uncertain ob-
jects based on information-theoretic as well as expected-distance measures. To
assess our proposal, we have conducted a comparative evaluation with state-of-
the-art algorithms for clustering uncertain objects, on both benchmark and real
datasets. We also compare with two basic definitions of agglomerative hierarchi-
cal clustering that are treated as baseline methods in termsof accuracy and effi-
ciency of the clustering results, respectively. Main experimental findings reveal
that U-AHC generally outperforms competing methods in accuracy and, from an
efficiency viewpoint, is comparable to the fastest baselineversion of agglomera-
tive hierarchical clustering.
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theory, Probability distributions, Mixture models

1. Introduction

Uncertainty in data arises from a variety of real-world phenomena, such as im-
plicit randomness in data generation/acquisition, imprecision in physical measure-
ments, and data staling [2]. It is usually related to incomplete/missing informa-
tion [31, 1], or to the probability of occurrence of a given information [40, 13, 21].
For instance, sensor measurements may be imprecise due to the presence of
various noisy factors (e.g., signal noise, instrumental errors, wireless transmis-
sion) [15]. Moving objects continuously change their location so that the exact
positional information at a given time instant may be unavailable [50]. In data in-
tegration, uncertainty can arise from approximation assumptions on the semantic
mappings between the data sources and the mediated schema orpoor knowledge
about the exact mapping [4]. The biomedical research domainalso abounds of
data affected by uncertainty; as an example, in the context of gene expression
microarray data, handling the so-called probe-level uncertainty represents a key
aspect that enables more expressive data representation and more accurate pro-
cessing [42].

Uncertainty can be considered at different granularities and various modeling
approaches have been developed in data management [47]. In general, uncer-
tainty can be considered attable, tupleor attribute level [49]: this work focuses
on data containing attribute-level uncertainty modeled according toprobability
distributions, which has attracted major attention in data mining research in re-
cent years [38, 39, 10, 41, 23]. In this work, we will hence refer to anuncertain
objectas a data object represented in terms of a multidimensional region and a
probability distribution that describes the likelihood that exact object representa-
tions correspond to any specific point in that region.

Mining uncertain objects is inherently difficult as the uncertainty in data rep-
resentation needs to be carefully handled in order to produce meaningful knowl-
edge patterns. Consider for instance the scenario depictedin Fig. 1—uncertain
objects are represented in terms only of their domain regions for the sake of sim-
plicity (probability distribution assumed to be uniform for all the objects). The
“true” representation of each uncertain object (black circles in Fig. 1(a)) corre-
sponds to a point within its domain region and can be in general far away from
its “observed” representation (black circles in Fig. 1(b)). Thus, considering only
the observed representations may lead to discover groups ofsimilar objects (i.e.,
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Figure 1: Clustering in an uncertain dataset: (a) true representations of objects and their de-
sired grouping, (b) observed representations which may lead to unexpected groupings, (c) desired
grouping identified by considering the object uncertainty (domain regions).

{o′1, o′2}, {o′′1, o′′′1 }, {o′′2, o′′′2 } in Fig. 1(b)) that are substantially different from the
ideal ones which would be identified by considering the true representations (i.e.,
{o′1, o′′1, o′′′1 }, {o′2, o′′2, o′′′2 } in Fig. 1(a)). Instead, taking into account uncertainty,
i.e., considering the whole domain regions (and pdfs) of theuncertain objects,
may help to recognize the correct clustering (Fig. 1(c)).

Clustering uncertain objects has emerged in the last decadein data mining
research, originally with the general mission of reviewingand extending the tradi-
tional (deterministic data) clustering methods to a particular probabilistic context
of data representation. Like traditional (deterministic)clustering, a crucial step
lies in the definition of a proper proximity measure. Two major approaches to
comparing uncertain objects have been so far defined: one approach is to com-
pute the difference between some aggregated values, e.g.,expected values, from
the distributions of the uncertain objects; the other approach instead exploits the
whole information available from the distributions by involving the computation
of the so-calledexpected distance(ED) [23]. Although relatively efficient, the
expected-value-based approach may be inaccurate, since the whole information
available from the distributions is collapsed into a singlenumerical value; by con-
trast, the ED-based approach is more accurate but also less efficient, as its com-
putation typically requires slow numerical estimation of the integrals involved.

Several studies in clustering uncertain objects have led touncertain versions of
the classic K-means and other partitional algorithms [10, 41, 34, 23, 24], as well
as of density-based algorithms such as DBSCAN and OPTICS [39, 38]. Surpris-
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ingly, the hierarchical clustering paradigm has been nearly out of focus, despite
its features (i.e., hierarchical presentation of the clusters, relative independence on
input parameters and versatility in the shape of the clusters detected) make it par-
ticularly appealing to handle uncertainty in a large variety of application domains.
In the following, we briefly discuss some of the application scenarios that might
benefit from a hierarchical clustering approach in an uncertain data setting.

Applications. It has been widely recognized that the task ofdocument clus-
tering takes large benefit from a representation of the documents via a statistical
topic model, such as Latent Dirichlet Allocation or derivedmodels. In fact, in
recent years, a number of approaches to modeling document contents have been
developed based on the idea that any document can be represented as a mixture of
probability distributions over its terms, and each component of the mixture refers
to a topic. Organizing topic-model-based text data in conceptual hierarchies be-
comes essential in scenarios where documents need to be assigned (clustered) to
multiple topics, for which an explanation in terms of hierarchically related sub-
topics is required.

As another example,gene-expression datatypically exhibit the so-called
probe-level uncertainty, i.e., uncertainty due to human/instrumental errors that
affect the data-acquisition process therein. This gives rise to gene-expression
data naturally represented as uncertain objects. Hierarchical clustering of this
probabilistically-represented gene-expression data finds application in the task of
predicting the protein functions. In this context, in fact,protein functions typi-
cally need to be organized in a hierarchy, since each proteincan have more than
one function, which in turn can have more than one sub-function. Hierarchical
clustering here can also support hierarchical multi-labelclassification which is
a common task in protein function prediction, where the training instances are
organized according to a hierarchy predefined in a functional genomics setting.

Yet, in thesensor data domain, besides the motion uncertainty that leads to
probabilistic representations of the data outputted by thesensors, a critical chal-
lenge is also represented by a partial observability of the motion system, i.e.,
environmental-sensing uncertainty. This type of uncertainty might be treated by
using different sensors (cameras) able to detect the position of the objects from
different perspectives. A critical task in this context is to exploit such sensor data
in order to reconstruct a hierarchical representation of the environment therein
where each level of the hierarchy corresponds to a representation of the environ-
ment at a specific level of granularity. A hierarchical clustering of the objects
according to the uncertain representations of their position (coming from differ-
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ent sensors) can be directly exploited to define such a hierarchical representation
of the environment.

Challenges. Hierarchical algorithms for clustering uncertain objectscould in
principle be defined by involving one of the aforementioned distance computa-
tion approaches for uncertain objects (i.e., the faster distance between aggregate
values or the more accurate expected distance) into a standard criterion of cluster
linkage (e.g., single-, complete-, or group-average linkage) used in the classic ag-
glomerative hierarchical clustering (AHC) scheme. Unfortunately, the previously
discussed effectiveness and/or efficiency issues that would arise from the existing
notions of uncertain object distance make this solution inappropriate.

A major challenge in hierarchical clustering of uncertain objects is thus the
definition of a linkage criterion that takes the advantages of existing notions of
distance between uncertain objects, and as such it should beefficient yet accu-
rate. Particularly, to fulfil the accuracy requirement, it should exploit the whole
information available from the distributions of the uncertain objects, like ED.In-
formation Theory(IT) has represented a fruitful research area to devise measures
for comparing probability distributions. IT measures indeed compute the distance
between two distributions accurately and, in most cases, inlinear time with respect
to the dimensionalitym of the distributions to be compared. However, the promi-
nent existing IT measures, such as the popular ones falling into the Ali-Silvey
class [5], cannot be directly used to define distances for uncertain objects, mainly
because of the assumption that the distributions need to share a common event
space, which does not necessarily hold for distributions associated to uncertain
objects. Resorting to IT measures hence represents a novel and challenging ap-
proach to defining proper linkage criteria in the context of hierarchical clustering
of uncertain objects.

Contributions. In this paper, we propose an information-theoretic approach to
hierarchical clustering of uncertain objects. While our earlier work [26] initially
brought the hierarchical clustering paradigm to the context of uncertain objects,
here we revise the key notions of cluster merging criterion and distance between
uncertain cluster prototypes, and use them to originally pose the theoretical foun-
dations of hierarchical clustering of uncertain objects.

We develop a prototype-based agglomerative hierarchical clustering method,
called U-AHC, which employs as notion of cluster prototype amixture model that
summarizes the probability distributions of the objects within a given cluster. The
cluster merging criterion relies on a novelIT distance measure, which is designed
for comparing cluster prototypes effectively (as theoretically established) and ef-
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ficiently (as its complexity equals that of the most efficientexisting approach to
computing the distance between uncertain objects).

A major novelty of the proposed IT distance is the original combination of the
two opposite ways of comparing the distributions that represent groups of uncer-
tain objects (uncertain cluster prototypes): measuring the distance by involving
the entire distributions, and computing the difference between the expected val-
ues of the distributions. The intuition behind this definition of distance lies in the
fact that comparing two probability distributions by appropriate IT measures is
in general effective but not always feasible, and hence resorting to the expected
values when needed will compensate for the lack of IT application requirements.

We demonstrate the soundness of our compound distance measure showing
that it exploits an IT-based criterion that allows for determining how well an
IT measure is suited for comparing cluster prototypes and, therefore, allows for
weighting the relative importance of the IT term with respect to the expected value
based term. Even though the proposed distance measure is in principle suitable
for being coupled with any clustering scheme, we provide theoretical justifications
for using such a measure as a linkage criterion into an AHC scheme. Our main
theoretical finding in this regard concerns a well-founded relationship between
the proposed compound distance, the cluster prototype, andthe proposed U-AHC
algorihm, which shows how the “suitability” of comparing any two cluster proto-
types is monotonically increasing with the various steps ofthe AHC scheme.

We conducted an extensive experimental evaluation on several datasets, in-
cluding datasets with uncertainty generated synthetically as well as real-world
data collections in which uncertainty is inherently present. Compared to state-of-
the-art partitional and density-based algorithms, U-AHC achieves the highest av-
erage quality on all datasets, in terms of both external and internal cluster-validity
criteria. U-AHC is also compared to the aforementioned naı̈ve hierarchical al-
gorithms for clustering uncertain objects, achieving considerably better accuracy
(resp. efficiency) results than the fastest (resp. most accurate) naı̈ve algorithm.

Roadmap. The rest of the paper is organized as follows. Section 2 briefly dis-
cusses related work. Section 3 describes uncertain object and uncertain prototype
modeling. Section 4 discusses distance measures for probability distributions and
our proposal for comparing uncertain prototypes. Section 5presents the U-AHC
algorithm. This section also provides an insight into the relations existing between
U-AHC, the uncertain prototype and the prototype distance measure. Section 6
presents experimental methodology and results, while Section 7 concludes the
paper.
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2. Related Work

One of the earliest approaches to clustering uncertain objects is UK-
means[10], which is an adaptation of the popular K-means algorithm. UK-means
relies on the distance between uncertain objects and (deterministic) cluster cen-
troids, at each iteration. Improvements upon the efficiencyof that algorithm have
been proposed in [43, 34], where some pruning techniques areintroduced to avoid
the calculation of redundant object-to-centroid distances, and in [41], where the
CK-meansvariant is defined based on a closed-form expression similarto that em-
ployed for computing the moment of inertia of rigid bodies. CK-means essentially
comprises two steps: in the first (offline) step, the distances between each object
and its mass center are computed, whereas the second step performs a classic par-
titional relocation scheme; in this step, the distances computed in the first step are
exploited to obtain a K-means-like strategy. A major issue shared by UK-means
and all its optimizations is the deterministic representation of cluster centroids.
In [23], theUK-medoidsalgorithm is introduced to overcome this issue. It em-
ploys distances between uncertain objects that are pre-computed offline and then
employed in a classic K-medoids scheme. A kernel-based version of UK-medoids
is also defined in [52].

Alternative formulations to partitional centroid-based clustering of uncertain
objects are defined in [25, 27]. More specifically, in [25], wetake into account the
variance of the individual set members (rather than the central tendency only), and
propose a criterion based on the minimization of the variance of the mixture model
that summarizes a set of uncertain objects. In [27], we definean uncertain pro-
totype of a set (cluster) of uncertain objects as an uncertain object that is defined
in terms of a random variable whose realizations correspondto all possible de-
terministic representations deriving from the uncertain objects to be summarized.
A closed-form-computable compactness criterion, coupledwith the proposed no-
tion of uncertain prototype, enables an effective yet efficient objective criterion for
grouping uncertain objects. Other approaches to partitional clustering of uncertain
data have been developed focusing on the uncertain K-centerproblem [12, 22].
Cormode and McGregor [12] propose a number of bicriteria approximation algo-
rithms, which have however a major weakness: they are unableto preserve the
number of centers; this limitation is overcome in [22].

Density-based approaches to clustering uncertain objectshave been defined
in [38, 39]. In [38], theFDBSCANis proposed as a fuzzy version of the pop-
ular DBSCAN, mainly based on the use of fuzzy distance functions to compute
the core object and reachability probabilities. Analogously, theFOPTICSalgo-
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rithm [39] extends OPTICS, by producing in this case an augmented ordering of
the objects based on the novel notion of fuzzy object reachability-distance.

Some works have focused on the computation of the similarity/distance be-
tween uncertain data objects according to their probability distributions. Hung et
al. [30] propose to approximate the distance distribution between uncertain ob-
jects using a Gaussian or Gamma distribution. In [32], Kullback-Leibler diver-
gence is estimated in the continuous case by kernel density estimation and the
Gauss transform technique is exploited to speed up the similarity computation.
Moreover, in [11], uncertain cross-entropy is studied under the requirement of
estimating the uncertainty distribution of an uncertain variable from the known
partial information.

Volk et al. [51] propose an approach based on the possible-world scenario,
where a clustering solution is derived from each possible world, and the vari-
ous solutions are eventually aggregated to form a unique clustering by employing
standard methods for clustering aggregation. Züfle et al. [54] focus on quality
guarantees of uncertain clustering results. They utilize asampling approach to
represent an uncertain dataset as a set of sample deterministic datasets, compute
over them a set of possible clusterings, and then combine these clusterings into
a concise set ofτ -φ-representative clusterings, i.e., clustering solutionsthat have
probability at leastφ to be distant at mostτ to the actual clustering of the data if
the data were certain.

Marginally related to our work is research on high dimensionality in uncer-
tain objects by addressing the problems of subspace clustering [28] and projec-
tive clustering [3]. The work in [14] focuses on maximum-likelihood parameter
estimation with application to clustering uncertain data with categorical and con-
tinuous attributes. There are also different bodies of study on rough set theory,
fuzzy set theory, and granular computing [17, 46, 20, 45] models that have been
used in uncertain information processing, although not directly concerning uncer-
tain data clustering. More specifically, rough set theory deals with uncertainty
that is caused by the indistinguishability of objects, fuzzy set theory deals with
the uncertainty caused by the smooth boundedness of a concept, while in a gran-
ular computing framework, any information is assumed to be uncertain to some
degree and can be expressed as certain information at a coarser degree. Recently,
in [53], an extension to the quotient space theory is proposed to describe hierar-
chical structures by using weighted equivalence relationsand tolerance relations.

None of the above works studies the problem of hierarchical clustering of un-
certain objects. To the best of our knowledge, the only existing work dealing with
such a problem is the preliminary version of this paper [26],whose key notions
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of cluster merging criterion and distance between uncertain cluster prototypes are
revised and made theoretically well-founded in this work.

3. Uncertain objects and uncertain prototypes

Uncertain objects are typically represented according tomultivariateuncer-
tainty models [23], whose formal definition is reported next.

Definition 1 (multivariate uncertain object). A multivariate uncertain objecto is
a pair (R, f), whereR ⊆ ℜm is them-dimensional region in whicho is defined
andf : ℜm → ℜ+

0 is the probability density function ofo at each point~x ∈ ℜm,
such thatf(~x) > 0, ∀~x ∈ R andf(~x) = 0, ∀~x ∈ ℜm \ R.

An uncertain prototypeis an uncertain object designed to properly summa-
rize the features of all uncertain objects in a given set. Since uncertain objects
are represented by pdfs, it is reasonable to represent an uncertain prototype as
a finite mixtureobtained by the pdfs of the objects in the set to be summarized.
Using finite mixtures allows for maintaining information about the uncertainty of
the objects to be summarized, which makes the probabilisticrepresentation par-
ticularly accurate. This contrasts with other definitions of prototypes (centroids)
of uncertain objects that collapse the entire information about uncertainty into a
single numerical value, like those employed in [10, 41]. Also, computing the mix-
ture model of a set of random variables is fast as it can be performed in linear time
w.r.t. the size of that set.

Definition 2 (uncertain prototype). Let C = {o1, . . . , on} be a set of uncer-
tain objects, whereoi = (Ri, fi), Ri ⊆ ℜm, for eachi ∈ [1..n]. Theuncer-
tain prototypeof C is a pair P = (R, f), whereR =

⋃n

i=1Ri and f(~x) =
(1/n)

∑n

i=1 fi(~x).

According to the above definition, it can be straightforwardly proved that any
uncertain prototype is also an uncertain object satisfyingDef. 1. Also, the next
proposition describes how to compute an uncertain prototype resulting from the
union of two other prototypes in an efficient way, that is without iterating over
all the uncertain objects that are at the basis of the prototype. Such a concept is
exploited in Sect. 5 to define our U-AHC algorithm.

Proposition 1. Given two setsC ′, C ′′ of uncertain objects and their correspond-
ing prototypesP ′ = (R′, f ′), P ′′ = (R′′, f ′′), let Ĉ be the set given by the union
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Figure 2: Two cases of uncertain objects sharing no common region.

ofC ′ andC ′′. The prototype of̂C is defined aŝP = (R̂, f̂) such that:

R̂ = R′ ∪R′′, and f̂ =
|C ′|
|Ĉ|

f ′ +
|C ′′|
|Ĉ|

f ′′ − |C
′ ∩ C ′′|
|Ĉ|

f ′′′,

wheref ′′′ = (1/|C ′ ∩ C ′′|)∑o12=(R12,f12)∈C′∩C′′ f12.

Proof. Concerning the regionR̂, it holds that R̂ =
⋃

(R,f)∈Ĉ R =⋃
(R1,f1)∈C′ R1 ∪

⋃
(R2,f2)∈C′′ R2 = R′ ∪R′′.

As far as the pdff̂ , instead, it results that̂f = |Ĉ|−1
∑

(R,f)∈Ĉ f =

|Ĉ|−1
(∑

(R1,f1)∈C′ f1 +
∑

(R2,f2)∈C′′ f2 −
∑

(R12,f12)∈C′∩C′′ f12

)
=

(|C ′|/|Ĉ|)f ′ + (|C ′′|/|Ĉ|)f ′′ − (|C ′ ∩ C ′′|/|Ĉ|)f∩. The proposition follows.

4. Comparing Uncertain Prototypes

Information-theoretic (IT) measures have been used for comparing pdfs in
several application contexts. Comparing two pdfs by means of IT measures is
efficient, since their complexity is linear in the number of statistical samples used
for representing/approximating the pdfs to be compared (assuch measures require
just a scan of the two sets of samples), and, in most cases, it may be even linear in
the dimensionalitym of the pdfs (for the cases where a closed-form of the specific
IT measure exists for the pdfs to be compared). Also, the IT-based comparison
is generally accurate, since the whole pdf information is involved. However, as
mentioned in the Introduction, the comparison makes sense only if the two pdfs
share some common event space: if the two pdfs do not have any intersection in
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their event spaces, any IT distance (resp. similarity) measure will evaluate equal
to the maximum (resp. minimum) value. To better illustrate this concept, look
at the two pairs of2-dimensional pdfs depicted in Fig. 2: although it is clear that
the pdfs in Fig. 2-(a) are more similar to each other than the pdfs in Fig. 2-(b),
IT measures will not distinguish the two cases as no common region is shared
between either pair of pdfs.

To overcome the above issue while retaining the (accuracy and efficiency)
benefits of IT measures, we propose a generic distance measure ∆ for any two
uncertain prototypesP andP ′ which is expressed as a functionϕ of two different
terms:

∆(P, P ′) = ϕ (∆IT (P, P
′),∆EV (P, P

′)) , (1)

where∆IT involves a specific IT measure, and∆EV is based on the difference
between the expected values of the pdfs ofP andP ′. The rationale of (1) is
to suitably combine an IT measure∆IT (which is not always applicable) with
a concise (but always available) information based on comparing the expected
values of pdfs (∆EV ). In the following, we show how the∆ measure can be
precisely defined.

4.1. ∆IT measure

The Ali-Silvey class [5] contains two of the most frequentlyused dis-
tance measures for probability distributions, namelyKullback-Leibler(KL) and
Chernoff. From a similarity viewpoint, instead, theBhattacharyya coefficient
(ρ) [8, 33] provides a notion of the amount of overlap between any two pdfsf
andf ′:

ρ(f, f ′) =

∫

~x∈ℜm

√
f(~x) f ′(~x) d~x. (2)

The Bhattacharyya coefficient puts the basis for the definition of various dis-
tance functions. Among these, the following measure, knownasHellinger dis-
tance[37],

H(f, f ′) =
√

1− ρ(f, f ′), (3)

has a number of advantages with respect to both other distances based on the
Bhattacharyya coefficient, such as the common formulation−log ρ, and other IT
measures, including Kullback-Leibler and Chernoff. In fact, unlike all other men-
tioned measures,H ranges within[0, 1], which makes it directly combinable with
measures that capture other aspects when comparing two pdfs. Also,H satisfies

11



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3: Two pdfs having the same expected value but different shape.

the additive property even though the random variables are not identically dis-
tributed (unlike Chernoff), is symmetric (unlike Kullback-Leibler), and obeys the
triangle inequality (unlike− log ρ, Kullback-Leibler, and Chernoff).

Due to the above reasons, we chooseH to define∆IT . Moreover, as we
describe later, the Bhattacharyya coefficientρ (on whichH is based) is proven
to be a well-founded criterion for combining∆IT and∆EV .

4.2. ∆EV measure

In our formulation,∆EV should reflect the distance between the expected val-
ues of the pdfs of the uncertain prototypesP = (R, f), P ′ = (R′, f ′) to be
compared. Therefore,∆EV should depend onδ(~µ, ~µ′), where~µ (resp. ~µ′) is the
expected value of the pdff (resp.f ′) andδ : ℜm → ℜ+

0 is a function that measures
the distance betweenm-dimensional points (e.g., Euclidean norm‖~µ− ~µ′‖2). At
the same time,∆EV should preferably range within[0, 1], in order to be directly
comparable to∆IT (which ranges within[0, 1] as well).

The above requirements could in principle be fulfilled by defining ∆EV as
done in the earlier version of this work [26], i.e., as∆EV = δ(~µ, ~µ′)/Emax(D),
whereEmax(D) is the maximum over the pairwise distances between the expected
values of the input uncertain objects. Unfortunately, thisdefinition of∆EV suffers
from two main drawbacks. The first one is the normalization of∆EV byEmax(D):
a large valueEmax(D) may lead to∆EV values that are all close to zero, which
would make it difficult discriminating among different∆EV values. The second
weak point concerns the exclusive use of the expected valuesin the definition of
∆EV : two pdfs can be very different while having close expected values, as shown
in Fig. 3.

We provide here a more accurate definition of∆EV that solves both the above
issues. The normalization issue is addressed by resorting to an exponential func-
tion. The second issue is overcome by taking into account standard deviations
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~σ and ~σ′ of the pdfs of the prototypesP andP ′ to be compared, along with
their expected values~µ and~µ′. We accomplish this by approximating the pdfs
f andf ′ of P andP ′ asUniform pdfs f̃ andf̃ ′ defined over the regions (hyper-
rectangles)[~µ− ~σ, ~µ+ ~σ] and [~µ′ − ~σ′, ~µ′ + ~σ′], respectively, and defining∆EV

as the squared expected distanceED2 [23] between such approximated Uniform
pdfs. Note that, this way, the time complexity of computing∆EV remain low, as
theED2 distance between such Uniform pdfs has a closed-form expression that
can be efficiently computed inO(m) as formally stated in the following theorem.

Theorem 1. Let f̃ and f̃ ′ (f̃ 6= f̃ ′) be two m-dimensional Uni-
form pdfs defined over them-dimensional regions (hyper-rectangles)R =
[a1, b1] × · · · × [am, bm] and R′ = [a′1, b

′
1] × · · · × [a′m, b

′
m], respec-

tively. The squared expected distanceED2

(
f̃ , f̃ ′

)
=

∫
~x∈R

∫
~y∈R′
‖~x −

~y‖22 f̃(~x) f̃ ′(~y) d~x d~y between f̃ and f̃ ′ is equal to ED
(
f̃ , f̃ ′

)
=

1
6

∑m

j=1

[
2
(
a2j+ajbj+b2j

)
+2
(
a′j

2+a′jb
′
j+b′j

2
)
−3 (bj+aj)

(
b′j+a′j

)]
.

Proof. Firstly, we note that, as̃f and f̃ ′ are Uniform pdfs, it holds that̃f(~x) =(∏m

j=1(bj − aj)
)−1

, ∀~x ∈ ℜm, and f̃ ′(~y) =
(∏m

j=1(b
′
j − a′j)

)−1

, ∀~y ∈ ℜm.

Thus, denoting withARR′ the product
∏m

j=1(bj − aj)
∏m

j=1(b
′
j − a′j) between the

areas of the regionsR andR′, it results thatf̃(~x) f̃ ′(~y) = (ARR′)−1, ∀~x, ~y ∈ ℜm.
Hence,ED2(f̃ , f̃

′) can be expressed as follows:

ED2

(
f̃ , f̃ ′

)
=

∫

~x∈R

∫

~y∈R′

‖~x− ~y‖22 f̃(~x) f̃ ′(~y) d~x d~y =

=
1

ARR′

∫

~x∈R

∫

~y∈R′

m∑

j=1

(xj − yj)
2d~x d~y =

=
1

ARR′

m∑

j=1

∫

~x∈R

∫

~y∈R′

(
x2
j−2xjyj+y2j

)
d~x d~y=

1

ARR′

m∑

j=1

(
I(1)j − 2 I(2)j + I(3)j

)
,

where I(1)j =
∫

~x∈R

∫
~y∈R′

x2
j d~x d~y, I(2)j =

∫
~x∈R

∫
~y∈R′

xj yj d~x d~y, and I(3)j =

∫
~x∈R

∫
~y∈R′

y2j d~x d~y.
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As far asI(1)j , it holds that:

I(1)j =

∫

x1

dx1· · ·
∫

xj−1

dxj−1

∫

xj+1

dxj+1· · ·
∫

xm

dxm

∫

y1

dy1· · ·
∫

ym

dym

∫

xj

x2
jdxj=

=
b3j − a3j

3

∫

x1

dx1· · ·
∫

xj−1

dxj−1

∫

xj+1

dxj+1· · ·
∫

xm

dxm

∫

y1

dy1· · ·
∫

ym

dym=

=
(bj−aj)(a2j+ajbj+b2j)

3

∏

k∈[1..m],
k 6=j

(bk−ak)
∏

k∈[1..m]

(b′k−a′k) =

=
a2j + ajbj + b2j

3

∏

k∈[1..m]

(bk−ak)
∏

k∈[1..m]

(b′k−a′k) =
a2j + ajbj + b2j

3
ARR′ .

Analogously, it results thatI(3)j = 1
3

(
a′j

2 + a′jb
′
j + b′j

2
)
ARR′ . ConcerningI(2)j ,

we have:

I(2)j =

∫

x1

dx1· · ·
∫

xj−1

dxj−1

∫

xj+1

dxj+1· · ·
∫

xm

dxm

∫

y1

dy1· · ·
∫

yj−1

dyj−1

∫

yj+1

dyj+1· · ·
∫

ym

dym

∫

xj

xjdxj

∫

yj

yjdyj =

=
(b2j − a2j )(b

′
j
2 − a′j

2)

4

∏

k∈[1..m],
k 6=j

(bk−ak)
∏

k∈[1..m],
k 6=j

(b′k−a′k) =

=
(bj + aj)(b

′
j + a′j)

4

∏

k∈[1..m]

(bk−ak)
∏

k∈[1..m]

(b′k−a′k) =
(bj + aj)(b

′
j + a′j)

4
ARR′ .

In conclusion, we can state thatED2

(
f̃ , f̃ ′

)
=A−1

RR′

∑m

j=1

(
I(1)j −2 I(2)j +I(3)j

)
=

1
6

∑m

j=1

[
2
(
a2j + ajbj + b2j

)
+ 2

(
a′j

2 + a′jb
′
j + b′j

2
)
+ 3 (bj + aj)

(
b′j + a′j

)]
,

which proves the Theorem.

In summary, the proposed∆EV distance between prototypesP = (R, f) and
P ′ = (R′, f ′) is defined as:

∆EV (P, P
′) = 1− e−ED2(f̃ ,f̃ ′). (4)

It is easy to see that∆EV ∈ [0, 1], and the lower the distanceED2 between the
Uniform approximations̃f and f̃ ′, the lower the value of∆EV , and vice versa,
that islim

ED2(f̃ ,f̃ ′)→0∆EV (P, P
′)=0, andlim

ED2(f̃ ,f̃ ′)→+∞
∆EV (P, P

′)=1.
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Figure 4: Uncertain objects sharing a wide common region butdissimilar from each other: two
cases

4.3. Combining∆IT and∆EV

The combination of∆IT and∆EV needs to satisfy the following requirements.
∆IT should prevail on∆EV as long as discriminating among different cases by
means of IT-measures is possible; more precisely, it shouldhold that, if the IT-
based comparison is meaningful, then∆ = ∆IT . Conversely, if the comparison
by means of IT-measures does not guarantee sufficient discrimination (like in the
example in Fig. 2), then∆ should consider only∆EV , i.e.,∆ = ∆EV .

The above requirements are motivated as follows: if the comparison based on
IT-measures is meaningful, then∆IT is sufficient for effectively computing the
distance between prototypes, hence there is no need to exploit the additional term
∆EV as this is implicitly taken into account by∆IT . Conversely, if the comparison
in terms of∆IT is likely to be scarcely reliable, therefore∆EV should have greater
relevance.

In the earlier version of this work [26], we attempted to satisfy the above
requirements by resorting to a linear combination of∆IT and∆EV , where the
importance of the term∆IT was determined by a factorγ ∈ [0, 1] in a way directly
proportional to the amount of overlap between the domain regions of the objects to
be compared. This solution may incur some issues, as illustrated in Fig. 4. Let us
consider two pairs of1-dimensional uncertain objects, whose corresponding pdfs
are very dissimilar; hence, for both pairs it happens that the value∆IT is close
to its maximum value (i.e.,∆IT close to 1). This is also the value of the overall
∆, as both the pairs of objects have large overlap, thus resulting in γ close to1.
Therefore, the objects in either pair are recognized as verydissimilar, although
the objects on the left are clearly closer to each other than the objects on the right.

To overcome the above issue, we combine the terms∆IT and∆EV in a dif-
ferent way, that is exploiting the Bhattacharyya coefficient ρ reported in (2). By
definition,ρ is directly proportional to how much the pdfs to be compared overlap
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in their event space. In other words,ρ is directly proportional to the “suitability”
of comparing any two pdfs by means of any IT-measure, and hence fully com-
plies with the previously discussed requirements to satisfy when combining∆IT

and∆EV . For this purpose, we incorporateρ into our definition of∆ so that the
greaterρ, the larger (resp. the smaller) the contribution given by∆IT (resp.∆EV )
and vice versa. Indeed, ifρ is small, there is no way for∆IT to discriminate
among the various distances, and hence, in this case, the term∆EV should prevail
(both the pairs of objects in Fig. 4 haveρ close to zero); on the other hand, ifρ is
high, then the comparison performed by∆IT is highly reliable, hence there is no
need to exploit the term∆EV too.

Based on the above intuition, we define∆ as a linear combination of∆IT

and∆EV . Denoting byUB(∆IT ) an upper bound to the∆IT term, it is easy
to see that a reasonable form for such a combination would be∆ = ∆IT +
(1 − UB(∆IT ))∆EV . Similarly, denoting byUB(1−∆IT ) an upper bound
to the similarity counterpart1−∆IT , the linear combination would become
∆ = 1 − [(1−∆IT ) + (1− UB(1−∆IT ))(1−∆EV )]. Within this view, the ob-
jective now is to derive an upper boundUB(1−∆IT ) that complies with the rea-
soning explained above, that is it should rely onρ in such a way that the higher
ρ, the higher the weight given to the∆IT term in the overall combination∆. The
expression of such an upper bound is given by the following proposition.

Proposition 2. For any two pdfsf , f ′ it holds that1 − ∆IT ≤ UB(1−∆IT ) =√
ρ (f, f ′).

Proof. 1−∆IT = 1−H ≤ √ρ⇐ 1−√1− ρ ≤ √ρ⇐
(
1−√ρ

)2 ≤ 1− ρ⇐
2ρ− 2

√
ρ ≤ 0⇐ ρ ≤ √ρ, which holds asρ ≤ 1 according to (2).

Doing the math, we therefore obtain the following expression for∆:

∆ = 1− [(1−∆IT ) + (1− UB(1−∆IT ))(1−∆EV )] =

= 1− [(1−∆IT ) + (1−√ρ)(1−∆EV )] = H− (1−√ρ)e−ED2,

which leads to the next formal definition.

Definition 3 (uncertain distance). Theuncertain distancebetween two uncertain
prototypesP = (R, f) andP ′ = (R′, f ′) is defined as∆(P, P ′) = H(f, f ′) −(
1−

√
ρ (f, f ′)

)
e−ED2(f̃ ,f̃ ′).

16



4.4. Remarks on the proposed distance function

We now provide an insight into the behavior of the proposed distance function
∆. First, it can be noted that the requirements aboutρ are satisfied, as it can be
straightforwardly proved from Def. 3 thatρ = 1 ⇒ ∆ = ∆IT , andρ = 0 ⇒
H = ∆IT = 1 ⇒ ∆ = ∆EV . Moreover, the definition of∆ is well-founded
and the overall combination is correctly related toρ. To demonstrate this, let us
consider the behavior of∆ when the two terms∆IT and∆EV are close to their
extreme values.

Case∆IT = 1: It holds that∆IT = H = 1 ⇒ ρ = 0 ⇒ ∆ = ∆EV .
As required, if∆IT is high, the only way to effectively discriminate among the
various cases is to use∆EV .

Case∆IT = 0: Since∆IT = H = 0 if and only if the two pdfs to be com-
pared are the same, andH = 0 implies thatρ = 1, it holds that∆IT = 0 ⇒ ∆ =
0. The distance between any two uncertain prototypes is correctly recognized as
equal to zero if they are represented by the same pdf.

Case∆EV = 1: It holds that∆EV = 1 ⇒ ∆ = H = ∆IT . The proto-
types to be compared can still be similar to a certain degree (in a way inversely
proportional to∆IT ) even if the distance measured by∆EV is maximum.

Case∆EV = 0: It holds that∆EV = 0 ⇒ ∆ = ∆IT +
(√

ρ− 1
)

=√
1− ρ +

(√
ρ− 1

)
. Hence, in this case,∆ is a function ofρ; in particular, it

is correctly equal to0 whenρ is equal to either its extreme value (i.e.,0 and1).
Indeed, the conditionρ = 0 ⇒ ∆ = 0 is sound because, ifρ = 0, then only
the contribution given by∆EV should be taken into account, and∆EV is zero in
this case; also, the conditionρ = 1 ⇒ ∆ = 0 is sound too, asρ = 1 implies
maximum similarity, and hence maximum suitability of measuring the distance
according to IT-measures (and minimum∆ distance). As concerns middle values
of ρ, it holds that∆ ≤ 2

√
0.5 − 1 ≈ 0.42 (particularly, the maximum is reached

for ρ = 0.5). As desirable, in this case, the two prototypes may be recognized
as somehow distant from each other, though∆EV = 0 would suggest that such
prototypes are identical; indeed, we recall that∆EV = 0 implies only that both
the expected values and the standard deviations of the prototypes are equal to each
other, but this does not necessarily mean that the two pdfs donot have dissimilar
forms.

As a further insight into the proposed distance measure, we remark that our
function∆ is a semimetric, as it satisfies the axioms of non-negativity, identity
of indiscernibles, and symmetry. Instead, it does not generally obey the triangle
inequality. We however point out that this is not a weak pointof our measure,
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as the triangle-inequality property is not a strict requirement in the context of
clustering [36]. A classical example in this regard isinformation-theoretic clus-
tering [16], which uses the well-known Kullback-Leibler divergence as a (non-
metric) distance measure and whose strengths have been widely attested in several
contexts (e.g., document clustering [7]).

4.5. Computing∆

The most critical operation for computing the proposed uncertain distance
measure∆ is the calculation of the Bhattacharyya coefficientρ reported in (2).
Hershey and Olsen [29] show how to computeρ for mixture models knowing in
advance theρ pairwise values between the components of the mixtures. Further-
more, Nielsen et al. [44] show that the Bhattacharyya coefficient between any two
pdfs belonging to the same exponential family has a closed-form expression that
can be efficiently computed inO(m), wherem is the number of dimensions (at-
tributes) of the uncertain objects to be compared. Althoughthe exponential fami-
lies include many of the most common probability distributions (such as Normal,
Bernoulli, Beta, Binomial, Chi-square, Dirichlet, Exponential, Gamma, Multino-
mial, Poisson, and Weibull), it is however desirable to provide a method for com-
putingρ efficiently even when no closed-form can be exploited. For this purpose,
we resort to a commonly used approach in the context of clustering uncertain ob-
jects: approximate uncertain objects with sets of statistical samples [38, 10, 23].

Given an input datasetD of uncertain objects, all samples~w used for comput-
ing approximated representations are common to all uncertain objects withinD;
such samples form a setS, calleddomain sample set, which is a discrete set of
m-dimensional points defined over

⋃
oR, with o = (R, f) ∈ D. Given a domain

sample setS, the Bhattacharyya coefficientρ between any two uncertain objects
o = (R, f) ando′ = (R′, f ′) can be approximated as follows:

ρ̃(f, f ′) =

(
∑

~w∈S

f(~w)×
∑

~w∈S

f ′(~w)

)− 1
2 ∑

~w∈S

√
f(~w) f ′(~w). (5)

Computingρ̃ takesO(|S| m) time, which is also the overall time complexity of
∆. We recall that, in general, the expected distanceED requires the approximated
representations of the objects to be compared, with overalltime complexity of
O(|S|2 m). Thus, even if no closed-form expression is used forρ, the proposed
uncertain distance∆ remains more efficient than the standardED.
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5. Clustering Uncertain Objects

5.1. The U-AHC algorithm

We present here the proposed prototype-based AHC algorithmfor cluster-
ing uncertain objects, calledUncertain AHC(U-AHC), whose outline is given
in Alg. 1. We focus on the most general case where a domain sample setS is
needed by U-AHC for computing the Bhattacharyya coefficientρ.

The input of U-AHC is a datasetD of n uncertain objects and a numberS of
pdf samples used for computing the domain sample set; the output is a hierarchy
T of clusters (a dendrogram). The algorithm follows the classic AHC scheme. A
priority queue (Q) is exploited to efficiently store the inter-cluster distances—the
lower the distance between a pair of clusters, the higher thepriority in Q.

The initialization steps (Lines1-6) are in charge of computing the domain
sample setS, the approximated representations of each object withinD, and the
initial setC of clusters. Particularly,C containsn pairs, each one composed by
a singleton cluster and the associated prototype, which corresponds to the only
object belonging to that cluster. The initialization phaseends with the computation
of the initial pair-wise distances by means of theprototypedistanceprocedure,
which exploits the approximated representations of the prototypes to be compared
and the uncertain distance function defined in Def. 3.

The main loop of the algorithm (Lines7-16) is repeated until the whole hierar-
chy has been built. At each iteration, the two pairs〈C ′, P ′〉, 〈C ′′, P ′′〉 having the
minimum distance are extracted from the priority queue (Line 8) and exploited
by thecomputeprototypeprocedure for computing the new pair〈Ĉ, P̂ 〉 (Line 9).
The procedurecomputeprototypemerges clustersC′ andC′′ into a single cluster
Ĉ, and computes the corresponding prototypeP̂ from P ′ andP ′′ by applying (1).
Afterwards, the priority queue is updated (Lines10-14).

The computational complexity of U-AHC is stated in the following proposi-
tion. Again, we focus on the most general (worst) case which arises when the
Bhattacharyya coefficient is computed according to (5), i.e., exploiting no closed-
form expressions.

Proposition 3. Given a datasetD of n m-dimensional uncertain objects and
a domain sample set composed ofS samples, the U-AHC algorithm takes
O(n2(S m+ logn)) time.

Proof. The costs of the various steps of U-AHC are summarized next. We as-
sume that the operations of insertion/deletion/extraction of any object into/from
the priority queueQ may be performed inO(log |Q|).
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Algorithm 1 U-AHC
Input: a setD = {o1, . . . , on} of uncertain objects, an integerS denoting the size of the domain

sample set overD.
Output: a set of partitionsT (i.e., a dendrogram).

1: S ← domain sample set(S), C ← {〈{o1}, o1〉, . . . , 〈{on}, on〉}
2: T← {C}, Q← ∅
3: for all 〈C′, P ′〉, 〈C′′, P ′′〉 ∈ C, C′ 6= C′′ do
4: ∆← prototype distance(P ′, P ′′)
5: Q.insert(〈C′, P ′〉, 〈C′′, P ′′〉,∆)
6: end for
7: repeat
8: (〈C′, P ′〉, 〈C′′, P ′′〉)← Q.removeMin()

9: 〈Ĉ, P̂ 〉 ← compute prototype(〈C′, P ′〉, 〈C′′, P ′′〉)
10: for all 〈C,P 〉 ∈ C, C 6= C′, C 6= C′′ do
11: Q.remove(〈C,P 〉, 〈C′, P ′〉), Q.remove(〈C,P 〉, 〈C′′, P ′′〉)
12: ∆← prototype distance(P, P̂ )

13: Q.insert(〈C,P 〉, 〈Ĉ, P̂ 〉,∆)
14: end for
15: C ← C \ {〈C′, P ′〉, 〈C′′, P ′′〉} ∪ {〈Ĉ, P̂ 〉}, T← T ∪ {C}
16: until |C| = 1

• computing the domain sample set, the approximated representation of each
object withinD, and the initial setC of clusters (Line1) takeO(S n m),
O(S n m), andO(n) time, respectively; also, the initialization of the prior-
ity queue (Lines3-6) is performed inO(n2 (S m+ logn)) time, asn2 pairs
have to be inserted intoQ and theprototypedistanceprocedure computes
the uncertain distance∆ in O(S m);

• the main loop (Lines7-16) is repeatedn-1 times; therefore, each step of this
loop has the followingglobal time complexity:

– extracting fromQ the pair having the minimum distance (Line8) is
O(n log n);

– computing the new pair〈Ĉ, P̂ 〉 by means of the procedurecom-
puteprototype (Line 9) comprises three steps, i.e.,(i) merging
the clustersC ′, C ′′, (ii) computing the new prototypêP from P ′

and P ′′ according to (1), and(iii) computing the approximated
representation ofP̂ according to (1). The first two steps take
O(m∑n−1

i=1 maxC∈C(r) |C|) = O(m
∑n−1

i=1 i) = O(n2 m), whereC(r)
is the set of clusters computed at ther-th iteration. The approxi-
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mated representation of̂P is computed according to (1) (whose cost is
O(1)) for eachm-dimensional sample withinS; thus, it globally takes
O(S n m);

– in the internal loop (Lines10-14), inserting/deleting into/from the
priority queue (Lines11 and13) takesO(n2 logn) (because insert-
ing/deleting into/fromQ is O(log |Q|) with |Q| = O(n2), and the
internal loop is repeatedO(n∑n−1

i=1 (n− i)) = O(n2) times), whereas
the prototype distance (Line12) takesO(S n2 m);

• updatingC andT (Line 15) can be performed inO(n).

In conclusion, summing up all above costs, it holds that U-AHC works in
O(n2(S m+ logn)) time.

5.2. Impact of∆ on the U-AHC algorithm

As any uncertain prototype is an uncertain object satisfying Def. 1 (cf. Sect. 3),
the proposed function∆ defined in Def. 3 may in principle be used as a distance
measure between uncertain objects, and it can be thus involved into any cluster-
ing scheme. But, as discussed in Sect. 4, the significance of using∆ to compare
uncertain objects mainly depends on the Bhattacharyya coefficient ρ between the
two objects; particularly, we are aware that the contribution of the IT term∆IT

to the overall∆ is minimal for lowρ. Nevertheless, we point out that our objec-
tive is not to define a general distance measure for uncertainobjects, but rather
a prototype-based criterion suitable for hierarchical clustering of uncertain ob-
jects. And in the context of hierarchical clustering of uncertain objects we are
interested in, we theoretically show that the above aspect becomes irrelevant as
involving uncertain prototypes defined as mixture models into a prototype-based
AHC algorithm and comparing such prototypes by means of our∆ is makes the
significance of comparing any two uncertain prototypes monotonically increasing
with the iterations of the AHC scheme.

In other words, our main goal here is to show how the proposed distance func-
tion finds theoretical justifications when used as a linkage criterion into an AHC
scheme, while this is not generally true when other clustering schemes are em-
ployed. This makes the proposed distance well-suited in thecontext of hierarchi-
cal clustering of uncertain objects we consider in this work.

We state the main theoretical finding in the next theorem.

Theorem 2. Consider a generic iteration of the U-AHC algorithm whereC de-
notes the current set of clusters,C ′, C ′′ ∈ C the two clusters being merged,
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Ĉ = C ′ ∪ C ′′ the new cluster formed, andC any cluster belonging toC such
that C 6= C ′ andC 6= C ′′. Let P ′ = (R′, f ′), P ′′ = (R′′, f ′′), P̂ = (R̂, f̂),
and P = (R, f) be the prototypes ofC ′, C ′′, Ĉ, and C, respectively. Then

ρ(f, f̂) ≥
(
|C ′|/|Ĉ|

)
ρ(f, f ′) +

(
|C ′′|/|Ĉ|

)
ρ(f, f ′′).

Proof. As according to (2) it holds thatρ(f1, f2) =
∫
ℜm

√
f1 f2 d~x, to prove the

theorem we have to demonstrate that:
∫

ℜm

√
f f̂ d~x ≥ |C

′|
|Ĉ|

∫

ℜm

√
f f ′ d~x+

|C ′′|
|Ĉ|

∫

ℜm

√
f f ′′ d~x. (6)

According to Proposition 1, we have thatf̂ =
(
|C ′|/|Ĉ|

)
f ′ +

(
|C ′′|/|Ĉ|

)
f ′′ −

(
|C ′ ∩ C ′′|/|Ĉ|

)
f∩. Since the two clusters to be merged are disjoint, (6) becomes

f̂ =
(
|C ′|/|Ĉ|

)
f ′ +

(
|C ′′|/|Ĉ|

)
f ′′, which can be rewritten as:

∫

ℜm

√
|C ′|
|Ĉ|

f f ′+
|C ′′|
|Ĉ|

f f ′′ d~x ≥
∫

ℜm

(
|C ′|
|Ĉ|
√
f f ′+

|C ′′|
|Ĉ|
√

f f ′′

)
d~x. (7)

Denoting withg1(~x) (resp.g2(~x)) the function within the integral at the left (resp.
right) hand side of (7), it can be noted that to prove (7) it is sufficient to demon-
strate thatg1(~x) ≥ g2(~x), ∀~x ∈ ℜm. To this end, letA =

√
f f ′, B =

√
f f ′′, and

a = |C ′|/|Ĉ|, b = |C ′′|/|Ĉ| (a + b = 1); it results that:

g1(~x)=

√
|C ′|
|Ĉ|

f f ′+
|C ′′|
|Ĉ|

f f ′′=
√
a A2+b B2,

g2(~x)=
|C ′|
|Ĉ|
√
f f ′+

|C ′′|
|Ĉ|
√
f f ′′=a A+ b B.

Thus,g1 (resp. g2) is defined as the weighted quadratic (resp. arithmetic) mean
of the termsA andB, where the weights are given bya andb. As the (weighted)
quadratic mean is never lower than the (weighted) arithmetic mean, it holds that
g1(~x) ≥ g2(~x), ∀~x ∈ ℜm. The theorem follows.

Corollary 1. It holds that



ρ(f, f̂) = ρ(f, f ′) = ρ(f, f ′′), if ρ(f, f ′)=ρ(f, f ′′)

ρ(f, f̂)>
|C ′|
|Ĉ|

ρ(f, f ′)+
|C ′′|
|Ĉ|

ρ(f, f ′′), otherwise.
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The above theorem states that, at each iteration of the proposed U-AHC al-
gorithm, the value ofρ(f, f̂) between the prototypes of clusterC and the clus-
ter Ĉ formed by merging the closest clustersC ′ andC ′′, is never lower than
the (weighted) arithmetic mean ofρ(f, f ′), ρ(f, f ′′) betweenC and C ′, C ′′.
Moreover, Corollary 1 shows that the bound derived from Theorem 2 is strict
if ρ(f, f ′) 6= ρ(f, f ′′).

Sinceρ is considered as a measure of the “suitability” of comparingany two
prototypes by means of an IT proximity measure, the above results may be inter-
preted as follows: the suitability of comparing any clusterC to the new formed
oneĈ acts as a monotonic property w.r.t. the (weighted) arithmetic mean of the re-
spective suitabilities of the merging clusters. These results confirm that the overall
accuracy of comparing any pair of clusters in the proposed U-AHC is not decreas-
ing (and, in many cases, strictly increasing) at each iteration of U-AHC.

6. Experiments

We evaluated U-AHC in terms of effectiveness and efficiency,and compared
it with existing algorithms for clustering uncertain objects: partitional meth-
ods, i.e., UK-means (UKM) [10], CK-means (CKM) [41], and UK-medoids
(UKmed) [23], density-based methods, i.e.,FDBSCAN (FDB) [38], and
FOPTICS (FOPT) [39], and sampling-based methods, i.e., Representative Clus-
tering (RepClus) [54] (cf. Sect. 2).1

In the evaluation we also involved twobaselinehierarchical algorithms, called
F(ast)-AHC and A(ccurate)-AHC, which correspond to two na¨ıve approaches to
clustering uncertain objects that focus on either efficiency (F-AHC) or accuracy
(A-AHC). Particularly, F-AHC follows a standard AHC strategy along with a
group-averagecluster merging criterion based on a distance between uncertain
objects that is efficiently computed (inO(S m) time) as difference between ex-
pected values. The asymptotic time complexity of F-AHC isO(n2(S m+ log n)),
and is the same as the proposed U-AHC. A-AHC follows the same AHC scheme
as F-AHC, but employs the more accurate yet less efficient expected distanceED,
which takesO(S2 m) time and contributes to increase the overall time complex-
ity to O(n2(S2 m+ log n)). As a result, F-AHC is expected to be efficient but
not that accurate. The opposite (i.e., high accuracy and poor efficiency) is instead
expected for A-AHC. The ultimate goal of this comparison is thus to assess that

1We used the implementation of Representative Clustering included in the extended version of
the ELKI framework [48].
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Table 1: Datasets used in the experiments: benchmark datasets (left) and real datasets (right).

dataset # objects # attributes # classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10

Image 2,310 19 7
Abalone 4,124 7 17

Letter 7,648 16 10
KDDcup 4,000,000 42 23

dataset # objects # attributes

Neuroblastoma 22,282 14
Leukaemia 22,690 21

U-AHC is able of achieving the best tradeoff between accuracy and efficiency,
thus demonstrating that U-AHC is (i) more accurate than F-AHC (while remain-
ing comparable to it in terms of efficiency), and (ii) more efficient than A-AHC.

Domain sample sets and approximated representations of theuncertain ob-
jects were computed by the Monte Carlo and Markov Chain MonteCarlo sam-
pling methods.2 To avoid that results were biased by random chance (due to non-
deterministic operations, such as computing initial centroids/medoids/partitions),
all accuracy and efficiency measurements were averaged over50 runs. More-
over, we performed a tuning phase for parametersǫ andµ of FDBSCAN and
FOPTICS, and we ultimately set these parameters to the valuesthat allowed each
method to achieve the best accuracy results. As far as the clustering methods
and the distance between clusterings to be used by Representative Clustering,
we follow what suggested in the original paper [54] and use DBSCAN [18] and
PAM [35] for producing the base clusterings and the ultimateconsensus clus-
tering, respectively, and Adjusted Random Index (ARI) as a distance measure
between clusterings.

Quality of clustering solutions was evaluated by means of both external and
internal criteria. External criteria exploit the availability of reference classi-
fications in order to evaluate how well a clustering fits a predefined scheme
of known classes (natural clusters). We employed the well-known F-measure
(F ), which ranges within[0, 1] such that higher values correspond to better
quality results. Denoting with̃C = {C̃1, . . . , C̃h} a reference classification

2We used the SSJ library, http://www.iro.umontreal.ca/∼simardr/ssj/
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and with C = {C1, . . . , Ck} a clustering solution, F-measure is defined as
F (C, C̃) = |D|−1

∑h

i=1 |C̃i|maxj∈[1..k]Fij , whereFij = 2 Pij Rij/(Pij + Rij),
Pij = |Cj ∩ C̃i|/|Cj|, and Rij = |Cj ∩ C̃i|/|C̃i|, for eachi ∈ [1..h], j ∈ [1..k].

We also used internal criteria based onintra-cluster (intra(C)) and inter-
cluster(inter(C)) distances (for a given clustering solutionC) which express clus-
ter cohesiveness and cluster separation, respectively. Such distance values were fi-
nally combined in a single valueQ(C) = inter(C)− intra(C), such that the lower
intra(C) and the higherinter(C), the better the clustering qualityQ(C). Since
intra andinter values were normalized within[0, 1], Q ranges within[−1, 1].

Experiments were carried out on benchmark and real datasets, whose main
characteristics are summarized in Table 1. Benchmark datasets are selected
from [6], whereas real datasets correspond to two microarray datasets available
from [9] which are about gene expressions in biological tissues generated by mi-
croarray analysis. Note that we synthetically generated uncertainty in benchmark
datasets, as they originally contain deterministic values; conversely, this was not
necessary for real microarray datasets since they inherently exhibit probe-level
uncertainty, which can easily be modeled in the form of Normal pdfs according to
themulti-mgMOSmethod [42].3

Uncertainty generation in benchmark datasets. Based on previous work [10],
we developed the following uncertainty generation strategy. Given a (determinis-
tic) benchmark datasetD, we firstly generated a pdff~w for each (deterministic)
point ~w within D. We considered theUniform, NormalandExponentialpdfs, as
they are commonly encountered in real uncertain data scenarios [2]. Everyf~w

was defined in such a way that its expected value corresponds exactly to ~w (i.e.,
~µ(f~w) = ~w), whereas all other parameters (such as the width of the intervals of the
Uniform pdfs and the standard deviation of the Normal pdfs) were randomly cho-
sen. We exploited the pdfsf~w to simulate what actually happens in real contexts
of uncertain data (cf. Fig 2). Thus, we focused on two evaluation cases: 1) the
clustering task is performed by considering only the observed (i.e., non-uncertain)
representations of the various data objects; 2) the clustering task is performed by
involving an uncertainty model. The ultimate goal was to assess whether the re-
sults obtained in Case 2 are better than those obtained in Case 1.

In Case 1, we generated aperturbed datasetD′ from D by adding to each
point ~w ∈ D random noise sampled from its assigned pdff~w. Thus, each point

3We used the Bioconductor package PUMA (Propagating Uncertainty in Microarray Analysis) available at
http://www.bioinf.manchester.ac.uk/resources/puma/.
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~w ∈ D gives rise to aperturbedpoint ~w′ ∈ D′. As a result,D′ still contains
deterministic data. Then, each of the selected clustering methods was run onD′

so as to output a clustering denoted byC′. A scoreF (C′, C̃) was hence obtained
by comparingC′ to the reference classification ofD (denoted byC̃) by means of
F-measure.

In Case 2, when uncertainty is taken into account, we createdan uncertain
datasetD′′ from D′ as follows. For each perturbed point~w′ ∈ D′, we derived
an uncertain objecto = (R, f) so thatf = f~w′ (i.e., a pdf whose expected value
corresponds to~w′), whileR was defined as the region containing most of the area
(e.g.,95%) of f~w′. Again, we run each of the selected methods onD′′ so as to get
a clustering solutionC′′ and a scoreF (C′′, C̃).

Finally, we compared the scores obtained in Case 1 and Case 2,respectively,
by computingΘ(C′, C′′, C̃) = F (C′′, C̃) − F (C′, C̃), Θ ∈ [−1, 1]; the higherΘ,
the better the quality ofC′′ w.r.t. C′, and, therefore, the better the performance of
the clustering method when the uncertainty is considered w.r.t. the no-uncertainty
case.

Results
All accuracy and efficiency results obtained by U-AHC refer to the version of

the algorithm that involves the sampling method for computing the Bhattacharyya
coefficientρ described in Sect. 4; as previously discussed, in this way wewere
able to assess the behavior of our proposed algorithm in the most general case.

Accuracy on benchmark datasets. Tables 2–3 show accuracy results on bench-
mark datasets for Uniform (U), Normal (N), and Exponential (E) distributions, in
terms of external (Θ) and internal (Q) cluster validity criteria, respectively. In both
tables, we report for each method:(i) the score for each type of pdf averaged over
all datasets (for short,average pdf score), (ii) the score averaged over all datasets
and pdfs (for short,overall average score), and(iii) the overall average gain of our
U-AHC computed as the difference between the overall average score of U-AHC
and the overall average scores of the other algorithms. Notethat the implemen-
tation of the RepClus method within the ELKI framework [48] does not provide
support for exponential distributions. Thus, we will report RepClus results only
for Uniform and Normal distributions.

Let us first focus on comparison with non-hierarchical competitors. Consider-
ingΘ results, U-AHC performed better than the other methods overmost datasets
and distributions (especially Normal and Exponential). Ingeneral, looking at
the overall average scores, U-AHC outperformed all of non-hierarchical meth-
ods, with the following order:FDB, RepClus,FOPT, UKM, CKM, and UKmed.
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Table 2: Accuracy results on benchmark datasets (external validity criteria).
Theta(Θ ∈ [−1, 1])

dataset pdf UKM CKM UKmed FDB FOPT RepClus A-AHC F-AHC U-AHC

U -.062 .028 .023 -.102 .005 .037 .058 -.015 .003
Iris N -.010 .013 .010 -.063 .044 .051 .030 .054 .033

E -.249 -.380 -.045 -.383 .023 — .024 -.088 -.147
U -.179 .047 .175 -.179 .174 -.029 .035 .083 .179

Wine N -.184 .024 -.085 -.185 .030 -.015 .010 .054 .196
E -.208 -.127 -.104 -.208 .006 — .022 -.138 .022
U .066 .079 .084 -.298 .012 -.015 .150 .167 .221

Glass N -.025 .012 -.070 -.040 -.136 -,.044 .216 .243 .153
E -.231 -.302 .009 -.334 -.182 — .203 .032 .214
U .199 .332 .223 -.136 .023 -.061 .337 .325 .114

Ecoli N .131 .272 .045 .061 .015 -.064 .270 .213 .227
E -.160 -.303 -.034 -.383 -.239 — .114 -.122 .120
U .220 .279 .315 -.085 .252 -.047 .446 .219 .251

Yeast N .159 .145 -.035 .079 -.001 -.107 .307 .344 .365
E -.098 -.201 -.055 -.311 -.195 — .144 -.007 .157
U .278 .274 .241 -.283 -.113 .112 .026 -.099 -.113

Image N .122 .132 -.061 -.251 -.081 .127 -.081 -.048 .174
E -.024 -.204 .087 -.307 -.137 — .002 -.119 .064
U .120 .092 .379 -.092 .291 -.038 .454 .204 .324

Abal. N .034 -.031 .009 .095 -.039 -.101 .213 .181 .289
E .080 -.084 .025 -.182 .315 — .415 .130 .390
U .008 .113 .237 -.338 -.201 -.092 .189 .206 .386

Letter N -.076 -.082 -.039 -.340 -.203 -.107 -.024 -.071 .037
E -.202 -.399 .033 -.431 -.294 — .048 -.182 .045
U .008 .009 .031 -.117 .127 .011 -.074 -.195 -.196

KDDcup N .077 .047 .029 -.013 .021 .001 -.002 -.099 .265
E -.133 -.095 -.110 -.171 .059 — .092 -.208 .195

U .073 .139 .190 -.181 .063 -.014 .180 .099 .130
avg score N .025 .059 -.022 -.073 -.039 -.029 .104 .097 .193

E -.136 -.233 -.022 -.301 -.072 — .119 -.078 .118

overall avg. score -.013 -.011 .049 -.185 -.016 -.021 .114 .039 .147
overall avg. gain +.160 +.158 +.098 +.332 +.163 +.168 +.033 +.108 —

More in detail, among the competitors,FDB had the worst performances on all
types of distributions, while UKmed (resp. CKM) was the mostaccurate method
using Uniform and Exponential (resp. Normal) distributions. Also in terms of cri-
terionQ, U-AHC achieved higher results than the competing methods,on average.
For this evaluation, the least yet significant gain by U-AHC was against RepClus,
whileFOPT behaved slightly worse than U-AHC on average (however being sig-
nificantly less accurate than U-AHC on Normal and Exponential distributions),
and the other density-based method confirmed to be the worst performing method
in general — this might be explained due to the difficulty in setting parametersǫ
andµ.

Concerning the two hierarchical competitors, U-AHC was in general much
more accurate than its fast naı̈ve counterpart (F-AHC), thus confirming one of the
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Table 3: Accuracy results on benchmark datasets (internal validity criteria). Notationnz stands
for values with precision over three decimal digits (i.e., values within (-5.0E-4, +5.0E-4))

Quality (Q ∈ [−1, 1])
dataset pdf UKM CKM UKmed FDB FOPT RepClus A-AHC F-AHC U-AHC

U .151 .145 .148 .197 .093 .331 .146 .144 .152
Iris N .263 .194 .194 .238 .135 .244 .298 .203 .324

E .118 -.001 .081 -.004 .202 — .274 .029 .050
U -.001 -.002 .012 -.002 .128 .007 .608 -.002 .185

Wine N -.020 .012 .042 .022 .009 .009 .282 .009 .031
E nz nz .001 nz nz — .337 nz nz

U .001 .001 .060 -.013 .001 .079 .510 .006 .004
Glass N .057 .062 .041 .042 .006 .105 .202 .164 .201

E .004 .001 .006 -.002 nz — .192 .024 .026
U .101 .031 .187 nz .449 .016 .642 .144 .089

Ecoli N .141 .060 .029 .086 .284 .027 .344 .084 .141
E .001 nz .003 nz nz — .303 nz -.001
U .041 .016 .193 nz .029 .004 .669 .068 .063

Yeast N .053 .031 .005 .040 .222 .003 .185 .129 .170
E nz nz nz nz nz — .120 nz nz

U nz nz nz nz nz .081 .133 nz nz

Image N .065 .074 .010 -.001 .004 .011 .341 .327 .240
E nz nz nz nz nz — .102 nz nz

U .040 .025 .071 -.018 .010 .024 .273 .050 .060
Abal. N .103 .055 .031 .086 .054 .027 .124 .119 .043

E nz nz nz nz nz — .116 nz nz

U nz nz nz nz nz .062 .210 nz .003
Letter N .352 .303 .357 -.022 .207 .107 .233 nz .004

E nz nz nz nz nz — .210 nz .003
U .069 .066 .040 .021 .133 .064 .242 .134 .197

KDDcup N .006 .092 .023 .061 .115 .006 .199 .086 .144
E .012 .088 .111 -.001 .025 — .172 .023 .166

U .047 .032 .084 .021 .133 .074 .364 .066 .089
avg score N .113 .098 .081 .061 .115 .060 .221 .126 .145

E .015 .010 .022 -.001 .025 — .195 .023 .042

overall avg. score .058 .047 .063 .027 .091 .067 .260 .072 .092
overall avg. gain +.034 +.046 +.030 +.065 +.001 +.025 -.168 +.020 —

major claims of this work. Indeed, U-AHC achieved higherΘ andQ results than
F-AHC in most cases; more specifically, it outperformed F-AHC on21 (resp.16)
out of27 dataset-by-pdf configurations, with maximum gain of0.403 (resp.0.187)
on KDDcup-Exponential (resp.Wine-Uniform) in terms ofΘ (resp.Q). Com-
pared to A-AHC, on average U-AHC behaved better in terms ofΘ, especially on
Normal and Exponential distributions, with overall average gain of 0.033, while a
relatively large gap is observed forQ results. This is actually not surprising since
the expected distanceED employed in A-AHC is the same measure as that used
for defining the cluster validity criterionQ, while this does not hold for our U-
AHC; thus, the assessment in terms ofQ is inherently biased in favor of A-AHC.
Overall, the higher performance by A-AHC might be explainedconsidering that
it employs the same hierarchical scheme as U-AHC, however equipped with the
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Table 4: Accuracy results on real datasets.
Quality (Q ∈ [−1, 1])

dataset # clusters UKM CKM UKmed FDB FOPT RepClus A-AHC F-AHC U-AHC

2 .057 .059 .044 -.004 .010 .071 .452 .143 .917
3 .061 .058 .047 -.004 .017 .071 .880 .187 .670
5 .060 .062 .043 -.004 .009 .067 .803 .141 .847

Neuroblastoma 10 .068 .066 .048 -.004 .008 .075 .830 .093 .607
15 .060 .062 .044 -.004 .010 .077 .667 .066 .578
20 .061 .060 .047 -.004 .009 .077 .594 .061 .487
25 .065 .057 .041 -.004 .009 .071 .524 .056 .465
30 .047 .053 .043 -.004 .008 .072 .458 .049 .466
2 .207 .266 .221 -.018 .068 .061 .698 .219 .445
3 .392 .316 .256 -.018 .080 .068 .657 .238 .258
5 .451 .372 .245 -.018 .061 .074 .829 .153 .160

Leukaemia 10 .455 .368 .238 -.018 .213 .081 .899 .135 .150
15 .451 .320 .246 -.018 .192 .070 .737 .111 .145
20 .479 .322 .213 -.018 .186 .071 .764 .091 .126
25 .558 .296 .215 -.018 .353 .075 .707 .088 .127
30 .448 .296 .213 -.018 .369 .059 .678 .082 .122

Neuroblastoma avg. score .060 .060 .045 -.004 .010 .072 .651 .100 .630
Leukaemia avg. score .430 .320 .231 -.018 .190 .070 .746 .140 .192

overall avg. score .245 .190 .138 -.011 .100 .071 .699 .120 .411
overall avg. gain +.166 +.221 +.273 +.422 +.311 +.340 -.288 +.291 —

more accurate expected distance between uncertain objects; on the other hand, as
discussed later in this section, A-AHC is much less efficientthan U-AHC.

Accuracy on real datasets. Table 4 shows accuracy results obtained onNeu-
roblastoma andLeukaemia, and also summarizes(i) the scores on each dataset
by averaging over the cluster numbers, and(ii) the scores and gains by averaging
over all cluster numbers and datasets (for short,overall average score). Due to the
unavailability of reference classifications for such datasets, we varied the number
of clusters and assessed the results based onQ only. Specifically, we varied the
number of clusters from2 to 30, sinceFDB (which is able to automatically dis-
cover the number of clusters) detected a number of clusters around15 for both
datasets.

Compared to the non-hierarchical competing methods, looking at the average
scores, U-AHC outperformed all of them onNeuroblastoma, with average gains
above 0.620, whereas onLeukaemia U-AHC had varying competitive behavior.
In general, U-AHC achieved the best overall average performance, with maxi-
mum, average and minimum gains of0.422 (w.r.t. FDB), 0.217, and0.166 (w.r.t.
UKM), respectively. Like for the benchmark datasets, our U-AHC was inferior
to A-AHC and superior to F-AHC; more specifically, U-AHC was more accurate
than F-AHC on all16 dataset-by-number-of-clusters configurations, with average
gains of0.530 and0.052, onNeuroblastoma andLeukaemia, respectively.
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Table 5: Efficiency results (seconds).
dataset (benchmark) dataset (real)

algorithm Iris Wine Glass Ecoli Yeast Image Abalone Letter Neuroblast. Leukaemia
U-AHC 0.43 0.58 0.83 1.95 46 118 416 1,459 7,054 8,284
F-AHC 0.08 0.09 0.12 0.29 12 33 133 520 4,568 5,479
A-AHC 68.09 137.07 175.31 355.29 8,030 30,773 60,281 315,559>1.0E+6 >1.0E+6

U-AHC/F-AHC 5.4 6.1 6.9 6.6 4.0 3.6 3.1 2.8 1.5 1.5
A-AHC/U-AHC 157.1 237.6 212.2 182.1 173.1 260.7 145.0 216.3 — —
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Figure 5: Efficiency results (ms).

Efficiency. It is widely known that the knowledge learned by hierarchical clus-
tering algorithms comes with the cost of a time complexity generally higher than
partitional or density-based schemes. For this reason, ourefficiency evaluation
was devised to focus on a comparison of the running times of our U-AHC algo-
rithm with those of its naı̈ve hierarchical counterparts only, i.e., F-AHC and A-
AHC.4 The main goal of this evaluation was to prove a major claim of this work:
the proposed U-AHC outperforms A-AHC while performing closely to F-AHC.

The runtimes of all algorithms are summarized in Table 5 and displayed in
Figure 5; in the table, details are also reported on the ratioof the U-AHC runtime
to the F-AHC runtime (second last row) and the ratio of the A-AHC runtime to
the U-AHC runtime (last row). Times refer to a number of samplesS = 500 and
to the Normal pdf, as we observed that the relative performances of the algorithms
were never significantly affected by the form of distribution.

Looking at Table 5 and Figure 5, results confirm our time complexity analysis,
as U-AHC and F-AHC were always much faster than A-AHC while U-AHC and
F-AHC performed similarly to each other. Focusing on the ratios between the U-

4Experiments were carried out exploiting computing resources of CRESCO/ENEAGRID High
Performance Computing infrastructure [19].
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AHC runtime and F-AHC/A-AHC runtime, we found that A-AHC runtime was
always two orders of magnitude slower than U-AHC, while the U-AHC runtime
was always of the same order as F-AHC; Interestingly, the ratio U-AHC/F-AHC
decreases for larger datasets, which is explained as, increasingn, the termn2

becomes dominant overSm, thus making the complexity of the main loops of
the two algorithms (O(n2(S m + logn)) for U-AHC, O(n2 log n) for F-AHC)
comparable.

As concerns evaluation onKDDcup, efficiency analysis on this dataset repre-
sents a challenge because of its very large size that makes any hierarchical cluster-
ing process computationally expensive in practice. For this dataset we therefore
devised a different stage of evaluation, which was based on an implementation
of modified versions of our methods based on a parallel computing architecture.5

We remark that all the methods involved in our comparison share the same under-
lying hierarchical scheme, and thus the parallel implementation was the same for
all methods as well. This ensured a fair comparison. Resultswere in line with the
ones observed for the other datasets: U-AHC was 2.7 times slower than F-AHC
and 186 times faster than A-AHC.

7. Conclusion

We have provided a principled solution to the problem of hierarchical clus-
tering of uncertain data. Starting from a revision of the method described in our
earlier work [26], the key idea of this new approach lies in a well-founded linkage
criterion (for the cluster merging step of the hierarchicalalgorithm) which takes
into account information-theoretic properties of the probability distributions as-
sociated to the uncertain objects to be clustered. This prompted us to study the
conditions that determine the suitability of using information-theoretic and ex-
pected distance measures in a combined way, in order to integrate their respective
strengths. Our method has been experimentally shown to outperform major com-
peting methods in terms of average accuracy on all datasets used in the evaluation.
Also, from an efficiency viewpoint, our method outperforms the baseline group-
average AHC algorithm equipped with the accurate expected distance, while being
comparable to the fast baseline version of group-average AHC that computes the
pair-wise distances of the uncertain objects as the difference between expected
values.

5We used the 4864-core ENEAGRID CRESCO4 cluster [19] for thistask.
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[28] S. Günnemann, H. Kremer, and T. Seidl. Subspace clustering for uncertain
data. InProc. SIAM Int. Conf. on Data Mining (SDM), pages 385–396, 2010.

[29] J. R. Hershey and P. A. Olsen. Variational bhattacharyya divergence for
hidden markov models. InProc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), 2008.

[30] E. Hung, L. Xiao, and R. Y. S. Hung. An efficient representation model of
distance distribution between uncertain objects.Computational Intelligence,
28(3):373–397, 2012.

[31] T. Imielinski and W. Lipski Jr. Incomplete informationin relational
databases.Journal of the ACM, 31(4):761–791, 1984.

[32] Bin Jiang, Jian Pei, Yufei Tao, and Xuemin Lin. Clustering uncertain data
based on probability distribution similarity.IEEE Trans. on Knowledge and
Data Engineering (TKDE), 25(4):751–763, 2013.

[33] T. Kailath. The divergence and bhattacharyya distancemeasures in signal
selection.IEEE Trans. on Communication Technology, 15(1):52–60, 1967.

[34] B. Kao, S. D. Lee, F. K. F. Lee, D. W. L. Cheung, and W. S. Ho.Clustering
uncertain data using voronoi diagrams and r-tree index.TKDE, 22(9):1219–
1233, 2010.

34



[35] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley, 1990.

[36] Jon M. Kleinberg. An impossibility theorem for clustering. In Proc. Neural
Information Processing Systems Conf. (NIPS), pages 446–453, 2002.

[37] S. Kotz and N. Johnson.Encyclopedia of Statistical Sciences. Wiley, 1981.

[38] H. P. Kriegel and M. Pfeifle. Density-based clustering of uncertain data. In
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(KDD), pages 672–677, 2005.

[39] H. P. Kriegel and M. Pfeifle. Hierarchical density-based clustering of uncer-
tain data. InProc. IEEE Int. Conf. on Data Mining (ICDM), pages 689–692,
2005.

[40] L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Subrahmanian.
Probview: A flexible probabilistic database system.ACM Transactions on
Database Systems (TODS), 22(3):419–469, 1997.

[41] S. D. Lee, B. Kao, and R. Cheng. Reducing uk-means to k-means. InProc.
IEEE ICDM Workshops, pages 483–488, 2007.

[42] X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. A tractable probabilistic
model for affymetrix probe-level analysis across multiplechips. Bioinfor-
matics, 21(18):3637–3644, 2005.

[43] W. K. Ngai, B. Kao, R. Cheng, M. Chau, S. D. Lee, D. W. Cheung, and K. Y.
Yip. Metric and trigonometric pruning for clustering of uncertain data in 2d
geometric space.Information Systems, 36(2):476–497, 2011.

[44] F. Nielsen, S. Boltz, and O. Schwander. Bhattacharyya clustering with appli-
cations to mixture simplifications. InProc. Int. Conf. on Pattern Recognition
(ICPR), pages 1437–1440, 2010.

[45] W. Pedrycz.Granular computing: analys and design of intelligent systems.
CRC Press, Francis Taylor, 2013.

[46] Y. H. Qian, J. Y. Liang, Y. Y. Yao, and C. Y. Dang. MGRS: a multi-
granulation rough set.Information Sciences, 180(6):949–970, 2010.

35



[47] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for
uncertain data. InProc. IEEE Int. Conf. on Data Engineering (ICDE), pages
7–18, 2006.

[48] E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, and A. Zimek. A
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