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Abstract

Uncertain data clustering has become central in mining\@htsse observed rep-
resentation is naturally affected by imprecision, stgling randomness that is
implicit when storing this data from real-word sources. Mesisting methods
for uncertain data clustering follow a partitional or a dgnbased clustering
approach, whereas little research has been devoted to éhardhical cluster-
ing paradigm. In this work, we push forward research in mar@al clustering
of uncertain data by introducing a well-founded solutiorthe problem via an
information-theoretic approach, following the initiakeid described in our earlier
work [26]. We propose a prototype-based agglomerativealgbical clustering
method, dubbedJ-AHC, which employs a new uncertain linkage criterion for
cluster merging. This criterion enables the comparisorsefs(of) uncertain ob-
jects based on information-theoretic as well as expecigtdsite measures. To
assess our proposal, we have conducted a comparative valuath state-of-
the-art algorithms for clustering uncertain objects, othbdmenchmark and real
datasets. We also compare with two basic definitions of aggtative hierarchi-
cal clustering that are treated as baseline methods in tefmscuracy and effi-
ciency of the clustering results, respectively. Main ekpental findings reveal
that U-AHC generally outperforms competing methods in eacyiand, from an
efficiency viewpoint, is comparable to the fastest baselgrsion of agglomera-
tive hierarchical clustering.
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theory, Probability distributions, Mixture models

1. Introduction

Uncertainty in data arises from a variety of real-world pbr@ena, such as im-
plicitrandomness in data generation/acquisition, imigfen in physical measure-
ments, and data staling [2]. It is usually related to incagtggimissing informa-
tion [31, 1], or to the probability of occurrence of a givefornmation [40, 13, 21].
For instance, sensor measurements may be imprecise due tarédeence of
various noisy factors (e.g., signal noise, instrumentadrer wireless transmis-
sion) [15]. Moving objects continuously change their logatso that the exact
positional information at a given time instant may be uniaide [50]. In data in-
tegration, uncertainty can arise from approximation aggions on the semantic
mappings between the data sources and the mediated sch@woar dnowledge
about the exact mapping [4]. The biomedical research domdamabounds of
data affected by uncertainty; as an example, in the contegene expression
microarray data, handling the so-called probe-level uag#y represents a key
aspect that enables more expressive data representatdom@e accurate pro-
cessing [42].

Uncertainty can be considered at different granularitresarious modeling
approaches have been developed in data management [47gné&mal, uncer-
tainty can be considered tble tuple or attributelevel [49]: this work focuses
on data containing attribute-level uncertainty modelecbeding to probability
distributions which has attracted major attention in data mining researce-
cent years [38, 39, 10, 41, 23]. In this work, we will henceergb anuncertain
objectas a data object represented in terms of a multidimensiegam and a
probability distribution that describes the likelihoodtlexact object representa-
tions correspond to any specific point in that region.

Mining uncertain objects is inherently difficult as the uriaenty in data rep-
resentation needs to be carefully handled in order to p@dueaningful knowl-
edge patterns. Consider for instance the scenario depgittéid). 1—uncertain
objects are represented in terms only of their domain regionthe sake of sim-
plicity (probability distribution assumed to be unifornrfall the objects). The
“true” representation of each uncertain object (blacklesan Fig. 1(a)) corre-
sponds to a point within its domain region and can be in géri@raway from
its “observed” representation (black circles in Fig. 1(B)hus, considering only
the observed representations may lead to discover grougmadér objects (i.e.,



Figure 1: Clustering in an uncertain dataset: (a) true eEprE@tions of objects and their de-
sired grouping, (b) observed representations which mayteanexpected groupings, (c) desired
grouping identified by considering the object uncertaidigniain regions).

{0}, 05}, {07, 0]}, {0, 04’} in Fig. 1(b)) that are substantially different from the
ideal ones which would be identified by considering the tepr@sentations (i.e.,
{0}, 0, 0"}, {0}, 05,05} in Fig. 1(a)). Instead, taking into account uncertainty,
i.e., considering the whole domain regions (and pdfs) ofutheertain objects,
may help to recognize the correct clustering (Fig. 1(c)).

Clustering uncertain objects has emerged in the last decadata mining
research, originally with the general mission of reviewamgl extending the tradi-
tional (deterministic data) clustering methods to a palécprobabilistic context
of data representation. Like traditional (deterministilt)stering, a crucial step
lies in the definition of a proper proximity measure. Two mapproaches to
comparing uncertain objects have been so far defined: onm@agpis to com-
pute the difference between some aggregated valueserpgcted valuggrom
the distributions of the uncertain objects; the other appihanstead exploits the
whole information available from the distributions by itwviag the computation
of the so-callecexpected distancéED) [23]. Although relatively efficient, the
expected-value-based approach may be inaccurate, siacehtble information
available from the distributions is collapsed into a singlenerical value; by con-
trast, the ED-based approach is more accurate but alsoffessre, as its com-
putation typically requires slow numerical estimationtod integrals involved.

Several studies in clustering uncertain objects have led¢ertain versions of
the classic K-means and other partitional algorithms [110,34, 23, 24], as well
as of density-based algorithms such as DBSCAN and OPTICS3E9 Surpris-



ingly, the hierarchical clustering paradigm has been geaut of focus, despite
its features (i.e., hierarchical presentation of the elisstrelative independence on
input parameters and versatility in the shape of the clsstetected) make it par-
ticularly appealing to handle uncertainty in a large vgrdtapplication domains.
In the following, we briefly discuss some of the applicatieersarios that might
benefit from a hierarchical clustering approach in an uagedata setting.

Applications. It has been widely recognized that the taskdotument clus-
tering takes large benefit from a representation of the documeata statistical
topic model, such as Latent Dirichlet Allocation or derivadels. In fact, in
recent years, a number of approaches to modeling documetdris have been
developed based on the idea that any document can be refgessra mixture of
probability distributions over its terms, and each comproé the mixture refers
to atopic. Organizing topic-model-based text data in conceptuabhthies be-
comes essential in scenarios where documents need to beed$clustered) to
multiple topics, for which an explanation in terms of hiefacally related sub-
topics is required.

As another examplegene-expression dattypically exhibit the so-called
probe-level uncertaintyi.e., uncertainty due to human/instrumental errors that
affect the data-acquisition process therein. This gives t0 gene-expression
data naturally represented as uncertain objects. Hidcaicblustering of this
probabilistically-represented gene-expression data fapgblication in the task of
predicting the protein functions. In this context, in fagtotein functions typi-
cally need to be organized in a hierarchy, since each proteirhave more than
one function, which in turn can have more than one sub-fanctHierarchical
clustering here can also support hierarchical multi-latb@$sification which is
a common task in protein function prediction, where thenirgy instances are
organized according to a hierarchy predefined in a functiga@omics setting.

Yet, in thesensor data domajrbesides the motion uncertainty that leads to
probabilistic representations of the data outputted bys#resors, a critical chal-
lenge is also represented by a partial observability of tle¢ion system, i.e.,
environmental-sensing uncertaintyhis type of uncertainty might be treated by
using different sensors (cameras) able to detect the po%fi the objects from
different perspectives. A critical task in this contextaseixploit such sensor data
in order to reconstruct a hierarchical representation efahvironment therein
where each level of the hierarchy corresponds to a reps@mof the environ-
ment at a specific level of granularity. A hierarchical caustg of the objects
according to the uncertain representations of their posifcoming from differ-



ent sensors) can be directly exploited to define such a ki@l representation
of the environment.

Challenges. Hierarchical algorithms for clustering uncertain objectsild in
principle be defined by involving one of the aforementionétahce computa-
tion approaches for uncertain objects (i.e., the fastéadc® between aggregate
values or the more accurate expected distance) into a sthadierion of cluster
linkage (e.qg., single-, complete-, or group-average lyaiaised in the classic ag-
glomerative hierarchical clustering (AHC) scheme. Uniogtely, the previously
discussed effectiveness and/or efficiency issues thatdraide from the existing
notions of uncertain object distance make this solutioppmapriate.

A major challenge in hierarchical clustering of uncertabjeats is thus the
definition of a linkage criterion that takes the advantagesxgsting notions of
distance between uncertain objects, and as such it shouddfibent yet accu-
rate. Particularly, to fulfil the accuracy requirement,hibald exploit the whole
information available from the distributions of the uneémtobjects, like EDIn-
formation TheoryIT) has represented a fruitful research area to devise uness
for comparing probability distributions. IT measures iadeompute the distance
between two distributions accurately and, in most casdisgar time with respect
to the dimensionalityn of the distributions to be compared. However, the promi-
nent existing IT measures, such as the popular ones falittggthe Ali-Silvey
class [5], cannot be directly used to define distances foemaitr objects, mainly
because of the assumption that the distributions need t@ shaommon event
space, which does not necessarily hold for distributios®@ated to uncertain
objects. Resorting to IT measures hence represents a nuehallenging ap-
proach to defining proper linkage criteria in the contextieférchical clustering
of uncertain objects.

Contributions. In this paper, we propose an information-theoretic apgraac
hierarchical clustering of uncertain objects. While ourdieawork [26] initially
brought the hierarchical clustering paradigm to the candéxincertain objects,
here we revise the key notions of cluster merging criteriot distance between
uncertain cluster prototypes, and use them to originalsegbe theoretical foun-
dations of hierarchical clustering of uncertain objects.

We develop a prototype-based agglomerative hierarchioatering method,
called U-AHC, which employs as notion of cluster prototypeiature model that
summarizes the probability distributions of the objectshwia given cluster. The
cluster merging criterion relies on a noVé&ldistance measurevhich is designed
for comparing cluster prototypes effectively (as theaadty established) and ef-



ficiently (as its complexity equals that of the most efficieristing approach to
computing the distance between uncertain objects).

A major novelty of the proposed IT distance is the originahtanation of the
two opposite ways of comparing the distributions that repn¢ groups of uncer-
tain objects (uncertain cluster prototypes): measuriggdistance by involving
the entire distributions, and computing the differencevMeen the expected val-
ues of the distributions. The intuition behind this defmitiof distance lies in the
fact that comparing two probability distributions by apprate IT measures is
in general effective but not always feasible, and hencertiegoto the expected
values when needed will compensate for the lack of IT appiinaequirements.

We demonstrate the soundness of our compound distance rmaesmwing
that it exploits an IT-based criterion that allows for detering how well an
IT measure is suited for comparing cluster prototypes dmetefore, allows for
weighting the relative importance of the IT term with redgedhe expected value
based term. Even though the proposed distance measurensampfe suitable
for being coupled with any clustering scheme, we providerigcal justifications
for using such a measure as a linkage criterion into an AH@reeh Our main
theoretical finding in this regard concerns a well-foundelationship between
the proposed compound distance, the cluster prototypehamutoposed U-AHC
algorihm, which shows how the “suitability” of comparingyaiwo cluster proto-
types is monotonically increasing with the various stepthefAHC scheme.

We conducted an extensive experimental evaluation on @leglatasets, in-
cluding datasets with uncertainty generated syntheyical well as real-world
data collections in which uncertainty is inherently preas€ompared to state-of-
the-art partitional and density-based algorithms, U-AHGiaves the highest av-
erage quality on all datasets, in terms of both external at@&inal cluster-validity
criteria. U-AHC is also compared to the aforementioned/@diierarchical al-
gorithms for clustering uncertain objects, achieving adebly better accuracy
(resp. efficiency) results than the fastest (resp. mostratEunaive algorithm.

Roadmap. The rest of the paper is organized as follows. Section 2 proké-
cusses related work. Section 3 describes uncertain objdairecertain prototype
modeling. Section 4 discusses distance measures for pliopdistributions and
our proposal for comparing uncertain prototypes. SectipneSents the U-AHC
algorithm. This section also provides an insight into tHatrens existing between
U-AHC, the uncertain prototype and the prototype distaneasure. Section 6
presents experimental methodology and results, whilei@egt concludes the
paper.



2. Related Work

One of the earliest approaches to clustering uncertainctshjes UK-
meand10], which is an adaptation of the popular K-means algamitt/K-means
relies on the distance between uncertain objects and (dietistic) cluster cen-
troids, at each iteration. Improvements upon the efficiefdpat algorithm have
been proposed in [43, 34], where some pruning techniquestaneluced to avoid
the calculation of redundant object-to-centroid distsnesd in [41], where the
CK-meanwariant is defined based on a closed-form expression sitoitaat em-
ployed for computing the moment of inertia of rigid bodieK-@eans essentially
comprises two steps: in the first (offline) step, the distarween each object
and its mass center are computed, whereas the second dtmpsea classic par-
titional relocation scheme; in this step, the distancespdsd in the first step are
exploited to obtain a K-means-like strategy. A major issugred by UK-means
and all its optimizations is the deterministic represeatabdf cluster centroids.
In [23], the UK-medoidsalgorithm is introduced to overcome this issue. It em-
ploys distances between uncertain objects that are preuten offline and then
employed in a classic K-medoids scheme. A kernel-basetbvens UK-medoids
is also defined in [52].

Alternative formulations to partitional centroid-basddstering of uncertain
objects are defined in [25, 27]. More specifically, in [25], take into account the
variance of the individual set members (rather than theakt@indency only), and
propose a criterion based on the minimization of the vagari¢he mixture model
that summarizes a set of uncertain objects. In [27], we defimancertain pro-
totype of a set (cluster) of uncertain objects as an uncediject that is defined
in terms of a random variable whose realizations corresporall possible de-
terministic representations deriving from the uncertdijeots to be summarized.
A closed-form-computable compactness criterion, couplithal the proposed no-
tion of uncertain prototype, enables an effective yet effitbbjective criterion for
grouping uncertain objects. Other approaches to paréticdostering of uncertain
data have been developed focusing on the uncertain K-cpriabtem [12, 22].
Cormode and McGregor [12] propose a humber of bicriteria@pmation algo-
rithms, which have however a major weakness: they are urtalpesserve the
number of centers; this limitation is overcome in [22].

Density-based approaches to clustering uncertain objests been defined
in [38, 39]. In [38], the FDBSCAN:Is proposed as a fuzzy version of the pop-
ular DBSCAN, mainly based on the use of fuzzy distance fomstito compute
the core object and reachability probabilities. Analodggute FOPTICSalgo-



rithm [39] extends OPTICS, by producing in this case an augateordering of
the objects based on the novel notion of fuzzy object redltyatistance.

Some works have focused on the computation of the simildigiance be-
tween uncertain data objects according to their probghdlgtributions. Hung et
al. [30] propose to approximate the distance distributietwieen uncertain ob-
jects using a Gaussian or Gamma distribution. In [32], KadleLeibler diver-
gence is estimated in the continuous case by kernel derstityation and the
Gauss transform technique is exploited to speed up theasitgilcomputation.
Moreover, in [11], uncertain cross-entropy is studied urttie requirement of
estimating the uncertainty distribution of an uncertainialsle from the known
partial information.

Volk et al. [51] propose an approach based on the possibitvgoenario,
where a clustering solution is derived from each possiblddy@nd the vari-
ous solutions are eventually aggregated to form a uniqustasing by employing
standard methods for clustering aggregation. Zifle et5dl] focus on quality
guarantees of uncertain clustering results. They utilizamapling approach to
represent an uncertain dataset as a set of sample detdronilaiasets, compute
over them a set of possible clusterings, and then combirse tblesterings into
a concise set of-¢-representative clusterings, i.e., clustering solutithvas have
probability at least to be distant at most to the actual clustering of the data if
the data were certain.

Marginally related to our work is research on high dimenaliy in uncer-
tain objects by addressing the problems of subspace dhgt8] and projec-
tive clustering [3]. The work in [14] focuses on maximuméiihood parameter
estimation with application to clustering uncertain datthwategorical and con-
tinuous attributes. There are also different bodies ofystualrough set theory,
fuzzy set theory, and granular computing [17, 46, 20, 45] elmthat have been
used in uncertain information processing, although natadiy concerning uncer-
tain data clustering. More specifically, rough set theorglslevith uncertainty
that is caused by the indistinguishability of objects, fuset theory deals with
the uncertainty caused by the smooth boundedness of a dondele in a gran-
ular computing framework, any information is assumed to beeuain to some
degree and can be expressed as certain information at @cdagree. Recently,
in [53], an extension to the quotient space theory is proppos@lescribe hierar-
chical structures by using weighted equivalence relataktolerance relations.

None of the above works studies the problem of hierarchicskering of un-
certain objects. To the best of our knowledge, the only exgswvork dealing with
such a problem is the preliminary version of this paper [28jpse key notions
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of cluster merging criterion and distance between uncediaister prototypes are
revised and made theoretically well-founded in this work.

3. Uncertain objects and uncertain prototypes

Uncertain objects are typically represented accordingtdtivariate uncer-
tainty models [23], whose formal definition is reported next

Definition 1 (multivariate uncertain object)A multivariate uncertain objectis
a pair (R, f), whereR C R™ is them-dimensional region in which is defined
and f : ®™ — R is the probability density function ofat each pointt € R™,
such thatf(z) > 0,VZ € Rand f(Z¥) = 0,VZ € ™ \ R. O

An uncertain prototypas an uncertain object designed to properly summa-
rize the features of all uncertain objects in a given set.c&uncertain objects
are represented by pdfs, it is reasonable to represent ataimcprototype as
a finite mixtureobtained by the pdfs of the objects in the set to be summarized
Using finite mixtures allows for maintaining informationali the uncertainty of
the objects to be summarized, which makes the probabilisticesentation par-
ticularly accurate. This contrasts with other definitiofigmtotypes (centroids)
of uncertain objects that collapse the entire informatibaw uncertainty into a
single numerical value, like those employed in [10, 41].cAlsomputing the mix-
ture model of a set of random variables is fast as it can bepeéd in linear time
w.r.t. the size of that set.

Definition 2 (uncertain prototype)Let C' = {oy,...,0,} be a set of uncer-
tain objects, where; = (R, f;), R; € R™, for eachi € [1..n]. Theuncer-
tain prototypeof C' is a pair P = (R, f), whereR = |J;_, R; and f(Z) =
(1/n) 220 fi(@)- B

According to the above definition, it can be straightforvkargroved that any
uncertain prototype is also an uncertain object satisfydefjy 1. Also, the next
proposition describes how to compute an uncertain progtgpulting from the
union of two other prototypes in an efficient way, that is withiterating over
all the uncertain objects that are at the basis of the prp&typuch a concept is
exploited in Sect. 5 to define our U-AHC algorithm.

Proposition 1. Given two setg”, C" of uncertain objects and their correspond-
ing prototypesP’ = (R', f'), P" = (R”, f"), let C be the set given by the union
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Figure 2: Two cases of uncertain objects sharing no comngiane
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of ¢’ andC"”. The prototype of is defined as® = (7@, f) such that:

|Cl| |C//| B |Clm0//|

ﬁ:R,UR”, and f: _ f/+ ’ f// _ f”/,
€] €] €]
wheref” = (1/|C" N C"[) 3, = (Ris.fra)ccrncr J12-
Proof. Concerning the regionR, it holds that R = UrpeeR =

U(Rhfl)EC’ Ry U U(Rz,fg/)\eC” R, =R UR". - ~
As far as the pdff, instead, it results thaf = [C|7' > o f =

o (Z(Rl,fl)eC’ hrt Xrapecr f2 = Lras, pryecrner f12> -
(IC1/ICDf + (IC”/I1C) f" = (|¢” 0 €| /|C)) f-. The proposition follows. [

4. Comparing Uncertain Prototypes

Information-theoretic (IT) measures have been used forpesimg pdfs in
several application contexts. Comparing two pdfs by medn3 oneasures is
efficient, since their complexity is linear in the number ttistical samples used
for representing/approximating the pdfs to be comparedi{els measures require
just a scan of the two sets of samples), and, in most caseayibmeven linear in
the dimensionalityn of the pdfs (for the cases where a closed-form of the specific
IT measure exists for the pdfs to be compared). Also, theal§ed comparison
is generally accurate, since the whole pdf information v®iwed. However, as
mentioned in the Introduction, the comparison makes senlgeifahe two pdfs
share some common event space: if the two pdfs do not haventargection in
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their event spaces, any IT distance (resp. similarity) mesawill evaluate equal
to the maximum (resp. minimum) value. To better illustrdtis toncept, look
at the two pairs o-dimensional pdfs depicted in Fig. 2: although it is cleatth
the pdfs in Fig. 2-(a) are more similar to each other than tife m Fig. 2-(b),
IT measures will not distinguish the two cases as no commgiomes shared
between either pair of pdfs.

To overcome the above issue while retaining the (accuradyediiciency)
benefits of IT measures, we propose a generic distance neeasiar any two
uncertain prototypeg and P’ which is expressed as a functigrof two different
terms:

A(P, P/) = ¢ (Arr(P, Pl)v Apv (P, Pl))v 1)

whereA;r involves a specific IT measure, anxy,, is based on the difference
between the expected values of the pdfsifond P’. The rationale of (1) is
to suitably combine an IT measute; (which is not always applicable) with
a concise (but always available) information based on comgdhe expected
values of pdfs Agy). In the following, we show how thé\ measure can be
precisely defined.

4.1. A7 measure

The Ali-Silvey class [5] contains two of the most frequentiged dis-
tance measures for probability distributions, namelyiback-Leibler(KL) and
Chernoff From a similarity viewpoint, instead, thghattacharyya coefficient
(p) [8, 33] provides a notion of the amount of overlap betweey taro pdfs f

and f”:
o0 = [ VI @ @

The Bhattacharyya coefficient puts the basis for the desimitif various dis-
tance functions. Among these, the following measure, knas#ellinger dis-

tance[37],
H(f7f,):\/1_p(f7f/)7 (3)

has a number of advantages with respect to both other desdresed on the
Bhattacharyya coefficient, such as the common formulatitrg p, and other IT
measures, including Kullback-Leibler and Chernoff. Intfamlike all other men-
tioned measure${ ranges withir[0, 1], which makes it directly combinable with
measures that capture other aspects when comparing twoAldts 7 satisfies
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Figure 3: Two pdfs having the same expected value but diffesieape.

the additive property even though the random variables atedentically dis-
tributed (unlike Chernoff), is symmetric (unlike Kullbatkeibler), and obeys the
triangle inequality (unlike- log p, Kullback-Leibler, and Chernoff).

Due to the above reasons, we cho@sdo defineA;r. Moreover, as we
describe later, the Bhattacharyya coefficipribn which’H is based) is proven
to be a well-founded criterion for combininy;r andA gy .

4.2. Agy measure

In our formulation A £y should reflect the distance between the expected val-
ues of the pdfs of the uncertain prototypBs= (R, f), P = (R/, f’) to be
compared. Therefore)g, should depend o#(ji, i), whereji (resp. i) is the
expected value of the pgf(resp. /') ands : R™ — R is a function that measures
the distance between-dimensional points (e.g., Euclidean nofim — /i’(|2). At
the same timeA gy should preferably range withiif, 1], in order to be directly
comparable ta\ ;- (which ranges withino, 1] as well).

The above requirements could in principle be fulfilled by wiefy Az, as
done in the earlier version of this work [26], i.e., Asy = 6(fi, i)/ Emaz(D),
whereE,,.. (D) is the maximum over the pairwise distances between the &eeghec
values of the input uncertain objects. Unfortunately, ti@nition of A gy suffers
from two main drawbacks. The first one is the normalizatioAgf; by F,,...(D):

a large valuev,,.. (D) may lead toA gy values that are all close to zero, which
would make it difficult discriminating among differedt,, values. The second
weak point concerns the exclusive use of the expected valubs definition of
Agy: two pdfs can be very different while having close expeci@des, as shown
in Fig. 3.

We provide here a more accurate definition\gf, that solves both the above
issues. The normalization issue is addressed by resodiag éxponential func-
tion. The second issue is overcome by taking into accoundata deviations
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o and ¢’ of the pdfs of the prototypeE’ and P’ to be compared, along with
their expected valueg andi’. We accomplish this by approximating the pdfs
fandf’ of P andP’ asUnlform pdfsf and /' defined over the regions (hyper-
rectangles)ii — 7, ji + &) and [ji' — &', (i’ + ¢'], respectively, and defining gy

as the squared expected distaﬂdéQ [23] between such approximated Uniform
pdfs. Note that, this way, the time complexity of computihg,, remain low, as
the E D, distance between such Uniform pdfs has a closed-form esiprethat

can be efficiently computed i@ (m) as formally stated in the following theorem.

Theorem 1. Let f and f’ (f #+ f’) be two m-dimensional Uni-
form pdfs defined over the:-dimensional regions (hyper-rectangle®) =
la1,b1] x -+ X [ap,by] and R = [d},b}] x -+ x [a],, V], respec-
tively. The squared expected distanMDQ(f, f’)

ffeR g’eR’Hf B

ik f(*) ~’(zj) dZ d7 between f and f’ is equal to ED(f,f’) =
%Z;nzl[ (a +a;b; +62)+2(a +ab; 692)—3(bj+aj) (b}+a})} .

Proof. Firstly, we note that, ag and f’ are Uniform pdfs, it holds thaf(:?) =
—1 ~ -1
(nm (b — aj)) ,VZ € R, and f() = (Hz(b;.—a;)) Vi € R

7j=1
Thus, denoting witt g the producf [}~ (b; aj) 152, (b — a}) between the
areas of the region8 and 1/, it results thatf (Z) f'(7) = (Arp) ", VT, 7 € R™.

Hence,EDQ(f, Iz ) can be expressed as follows:

£0,(F.F) / /||x—y||2 P d dj =
ZeER YER!
1 " )
= €T d7Z dvy =
Ar / /Z( J 3/]) Yy

ARR’ — —
ZER R’ J=
whereZ") = [ [ 22 dZ dy, T = r di di, and ¥ =
J J Y £ i Yj Y,
FER GER! FER R
| [ yjz dz dy.
FER JER/
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As far asI , it holds that:

= o fofo o fof
Tj—1

Tjt1 Zj

= _a/dﬂfl /dSU] 1/137J+1 /iﬂfm/iyl /dym

Tj—1 Tj+1
(b—aj)(a—i—ajb—i—b)

- — ]3 L T ok —ar) [ —ar) =

kelgl;;m], kell..m]
J
a? + a;b; + b2 a? + a;b; + b2
= %H(bk—ak)n(bk—%) = %ARR’-
ke[l..m] ke(l..m)
Analogously, it results thaf = ( + albl + b’Z) Agpr. ConcerningZ](?),
we have:
Z](?) = /dxl /dxj 1/dxj+1 /dxm/dyl /dyj 1/dy]+1 /dym/x]dx]/y]dy] =
Tj+1 j—1 Yj+1 j
(H—a)@?—d%
= e [T oe—ar) [0 —ar) =
ke[l..m], ke[l.m],
k#j k]
(b; + a;) (U, + d’) (bj + a;)(b; + aj)
= ]4 ’ ’ H(bk_ak)H(b;s_a;e) - : ]4 ’ = Argr-
kell..m] ke[l..m]

In conclusion, we can state thaD, (f, f’) A Y0 1( 21 )+I](.3)> —
%Zﬁlp@?+%@+@)+2@f+%@+@%+3ag+%ﬂ%+%ﬂ,
which proves the Theorem.
In summary, the proposedi ;- distance between prototypés= (R, f) and
P’ = (R, f") is defined as:
Apy(P,P) =1- ¢ B2(5T), (@)

Itis easy to see thakgy € [0,1], and the lower the distandgD, between the

Uniform approximationsf and f’, the lower the value of\y,, and vice versa,
thatislimy,, 7 7)o Apv(P, P')=0, andlim, 7 7 Agy(P,P)=1.

"—+o0
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(@) (b)

Figure 4: Uncertain objects sharing a wide common regiordisgimilar from each other: two
cases

4.3. CombiningA;7 andAgy

The combination of\ ;- and Ay needs to satisfy the following requirements.
A should prevail omA gy as long as discriminating among different cases by
means of IT-measures is possible; more precisely, it shioold that, if the IT-
based comparison is meaningful, th&n= A;r. Conversely, if the comparison
by means of IT-measures does not guarantee sufficientmisaiion (like in the
example in Fig. 2), ther\ should consider onlA gy, i.e., A = Agy.

The above requirements are motivated as follows: if the @iapn based on
IT-measures is meaningful, theX; is sufficient for effectively computing the
distance between prototypes, hence there is no need tatek@@dditional term
A gy as thisis implicitly taken into account ;. Conversely, if the comparison
in terms ofA ;7 is likely to be scarcely reliable, therefofes;,, should have greater
relevance.

In the earlier version of this work [26], we attempted to Sfgtithe above
requirements by resorting to a linear combinationqf and Agy, where the
importance of the term\ ;7 was determined by a factgre [0, 1] in a way directly
proportional to the amount of overlap between the domailnsgpf the objects to
be compared. This solution may incur some issues, as dliestin Fig. 4. Let us
consider two pairs of-dimensional uncertain objects, whose corresponding pdfs
are very dissimilar; hence, for both pairs it happens thatviddue A is close
to its maximum value (i.eA;r close to 1). This is also the value of the overall
A, as both the pairs of objects have large overlap, thus regutt v close tol.
Therefore, the objects in either pair are recognized as dssimilar, although
the objects on the left are clearly closer to each other thawlbjects on the right.

To overcome the above issue, we combine the tepsand Agy in a dif-
ferent way, that is exploiting the Bhattacharyya coeffitieneported in (2). By
definition, p is directly proportional to how much the pdfs to be comparestiap
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in their event space. In other wordgsis directly proportional to the “suitability”
of comparing any two pdfs by means of any IT-measure, andehérily com-
plies with the previously discussed requirements to satigfen combiningA
andAgy. For this purpose, we incorporatanto our definition ofA so that the
greaterp, the larger (resp. the smaller) the contribution giver\yy (resp.Agy)
and vice versa. Indeed, jf is small, there is no way fo ;7 to discriminate
among the various distances, and hence, in this case, the\tgy: should prevail
(both the pairs of objects in Fig. 4 hayeclose to zero); on the other handpifs
high, then the comparison performed Ay is highly reliable, hence there is no
need to exploit the term\ zy too.

Based on the above intuition, we defideas a linear combination oh
and Agy. Denoting byUB(A ;) an upper bound to thé,; term, it is easy
to see that a reasonable form for such a combination woulchbe A;r +
(1 — UB(Arr))Agpy. Similarly, denoting byUB(1 — A;7) an upper bound
to the similarity counterpart — A;r, the linear combination would become
A=1-[1-Ar)+ (1=UB(1-Arr))(1—Agy)]. Within this view, the ob-
jective now is to derive an upper boub@®(1—A;r) that complies with the rea-
soning explained above, that is it should rely @m such a way that the higher
p, the higher the weight given to th®;; term in the overall combinatioA. The
expression of such an upper bound is given by the followirog@sition.

Proposition 2. For any two pdfsf, f’ it holds thatl — A;7 < UB(1—Ar) =

Vo (f f).

Proof. 1 - App=1-H< pel-yI-p< pe(l-yp)'<l-pe
2p —2,/p <0< p < /p, which holds ag < 1 according to (2). O

Doing the math, we therefore obtain the following expres$ar A:
A = 1-[(1-Amr)+ (1 -UB(1-Arr))(1-Apv)] =
= 1-[(1-A1) + (1= p)(1-Apv)] =H - (1 = /p)e P2,
which leads to the next formal definition.

Definition 3 (uncertain distance)Theuncertain distancbetween two uncertain
prototypesP = (R, f) and P' = (R, f’) is defined as\(P, P') = H(f, ') —

(1 - \/m) ¢~ ED(FF) 0
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4.4. Remarks on the proposed distance function

We now provide an insight into the behavior of the propossthdice function
A. First, it can be noted that the requirements ahoate satisfied, as it can be
straightforwardly proved from Def. 3that=1 = A = A;r,andp =0 =
H=Armr =1 = A = Agy. Moreover, the definition of\ is well-founded
and the overall combination is correctly relatedhtoTo demonstrate this, let us
consider the behavior ak when the two terma\;r and Agy are close to their
extreme values.

CaseA;r =1 It holds thatA]T =H=1 = p = 0 = A= Agy.
As required, ifA;r is high, the only way to effectively discriminate among the
various cases is to ugkgy .

CaseA;r = 0: SinceA;r = H = 0 if and only if the two pdfs to be com-
pared are the same, aitl= 0 impliesthatp = 1, itholdsthatA;r =0 = A =
0. The distance between any two uncertain prototypes is citynecognized as
equal to zero if they are represented by the same pdf.

CaseAgy = 1. Itholds thatAgy =1 = A = H = A;pr. The proto-
types to be compared can still be similar to a certain degrea yay inversely
proportional toA;r) even if the distance measured Ay, is maximum.

CaseAgy = 0: It holds thatApy = 0 = A = A+ (Vp—1) =
VI—=p + (/P —1). Hence, in this case) is a function ofp; in particular, it
is correctly equal t@ whenp is equal to either its extreme value (i.8.and1).
Indeed, the conditiop = 0 = A = 0 is sound because, if = 0, then only
the contribution given byA z should be taken into account, aid;y is zero in
this case; also, the conditigpn=1 = A = 0 is sound too, ag = 1 implies
maximum similarity, and hence maximum suitability of measy the distance
according to IT-measures (and minimukndistance). As concerns middle values
of p, it holds thatA < 2v/0.5 — 1 ~ 0.42 (particularly, the maximum is reached
for p = 0.5). As desirable, in this case, the two prototypes may be mazed
as somehow distant from each other, though, = 0 would suggest that such
prototypes are identical; indeed, we recall that;,, = 0 implies only that both
the expected values and the standard deviations of thetppetoare equal to each
other, but this does not necessarily mean that the two pdfotbave dissimilar
forms.

As a further insight into the proposed distance measure eweark that our
function A is asemimetri¢ as it satisfies the axioms of non-negativity, identity
of indiscernibles, and symmetry. Instead, it does not gdlyeobey the triangle
inequality. We however point out that this is not a weak pohbur measure,
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as the triangle-inequality property is not a strict requieat in the context of
clustering [36]. A classical example in this regardn®rmation-theoretic clus-
tering [16], which uses the well-known Kullback-Leibler divergenas a (non-
metric) distance measure and whose strengths have beely aftidsted in several
contexts (e.g., document clustering [7]).

4.5. ComputingA

The most critical operation for computing the proposed uage distance
measureA is the calculation of the Bhattacharyya coefficienteported in (2).
Hershey and Olsen [29] show how to compyt®r mixture models knowing in
advance the pairwise values between the components of the mixturesh&wur
more, Nielsen et al. [44] show that the Bhattacharyya caefftdetween any two
pdfs belonging to the same exponential family has a closed-£xpression that
can be efficiently computed i@ (m), wherem is the number of dimensions (at-
tributes) of the uncertain objects to be compared. Althabhgrexponential fami-
lies include many of the most common probability distribas (such as Normal,
Bernoulli, Beta, Binomial, Chi-square, Dirichlet, Expaoti@al, Gamma, Multino-
mial, Poisson, and Weibull), it is however desirable to jmewa method for com-
puting p efficiently even when no closed-form can be exploited. Frplarpose,
we resort to a commonly used approach in the context of ¢lagtencertain ob-
jects: approximate uncertain objects with sets of staisBamples [38, 10, 23].

Given an input datasé? of uncertain objects, all samplesused for comput-
ing approximated representations are common to all urinestgects withinD;
such samples form a sét calleddomain sample setvhich is a discrete set of
m-~dimensional points defined ovef, R, with o = (R, f) € D. Given a domain
sample se&, the Bhattacharyya coefficieptbetween any two uncertain objects
o= (R, f)andd = (R, f') can be approximated as follows:

NI

Pt 1) = <Z ) x Zf’(@) > V(@) fr(w). (5)

weS weS weS

Computingp takesO(|S| m) time, which is also the overall time complexity of
A. We recall that, in general, the expected distafi¢erequires the approximated
representations of the objects to be compared, with ovenadl complexity of
O(|S|* m). Thus, even if no closed-form expression is usedsfathe proposed
uncertain distancé& remains more efficient than the standard).
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5. Clustering Uncertain Objects

5.1. The U-AHC algorithm

We present here the proposed prototype-based AHC algofithroluster-
ing uncertain objects, calledncertain AHC(U-AHC), whose outline is given
in Alg. 1. We focus on the most general case where a domainlsaseps is
needed by U-AHC for computing the Bhattacharyya coefficient

The input of U-AHC is a datasé? of n uncertain objects and a numbgiof
pdf samples used for computing the domain sample set; thpribista hierarchy
T of clusters (a dendrogram). The algorithm follows the ¢a8$1C scheme. A
priority queue Q) is exploited to efficiently store the inter-cluster distas—the
lower the distance between a pair of clusters, the highepiloety in Q.

The initialization steps (Line$-6) are in charge of computing the domain
sample se&, the approximated representations of each object withiand the
initial setC of clusters. Particularly¢ containsn pairs, each one composed by
a singleton cluster and the associated prototype, whictesponds to the only
object belonging to that cluster. The initialization phasds with the computation
of the initial pair-wise distances by means of fretotypedistanceprocedure,
which exploits the approximated representations of theopypes to be compared
and the uncertain distance function defined in Def. 3.

The main loop of the algorithm (Linés16) is repeated until the whole hierar-
chy has been built. At each iteration, the two p&is, P’'), (C”, P"”) having the
minimum distance are extracted from the priority queue glshand exploited
by thecomputeprototypeprocedure for computing the new pad’, P) (Line 9).
The procedureomputeprototypemerges cluster§’ andC” into a single cluster
C, and computes the corresponding prototﬁ)ﬁsom P’ andP” by applying (1).
Afterwards, the priority queue is updated (Link5s14).

The computational complexity of U-AHC is stated in the feliog proposi-
tion. Again, we focus on the most general (worst) case whiges when the
Bhattacharyya coefficient is computed according to (5), @eploiting no closed-
form expressions.

Proposition 3. Given a datase® of n m-dimensional uncertain objects and
a domain sample set composed ®fsamples, the U-AHC algorithm takes
O(n?*(S m + logn)) time.

Proof. The costs of the various steps of U-AHC are summarized nex.asV
sume that the operations of insertion/deletion/extractibany object into/from
the priority queu&) may be performed i (log |Q]).
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Algorithm 1 U-AHC

Input: asetD = {oy,...,0,} of uncertain objects, an integérdenoting the size of the domain

sample set oveb.

Output: a set of partitiondI" (i.e., a dendrogram).

12:
13:
14:
15:
16:

S + domain_sample_set(S), C + {{{o1},01),...,{{on},0n)}
T+ {C}, Q0

forall (C’, P"),{C",P"y e C,C"# C" do

A «+ prototype_distance(P’, P")
Q.insert({(C', P"), (C", P"), A)

1
2
3
4
5
6: end for
7.
8.
9
10
11

repeat
(C', P, (C", P")) + Q.removeMin()
(C, P) « compute_prototype((C’, P'), (C", P""))
forall (C,P)eC,C #C',C # C"do
Q.remove((C, P),(C", P)), Q.remove({C, P),(C",P"})
A < prototype_distance(P, ]3)
Q.insert((C, P, (C, P),A)
end for o
C«C\{(C,P)(C",P"YYu{(C,P)}, T+ TU{C}
until |C| =1

» computing the domain sample set, the approximated repiasen of each
object withinD, and the initial set of clusters (Linel) take O(S n m),
O(S nm),andO(n) time, respectively; also, the initialization of the prior-
ity queue (Lines3-6) is performed inD(n? (S m +logn)) time, asn? pairs
have to be inserted intQ and theprototypedistanceprocedure computes
the uncertain distanc& in O(S m);

» the main loop (Line§-16) is repeated:-1 times; therefore, each step of this
loop has the followingylobal time complexity:

— extracting fromQ the pair having the minimum distance (Li8gis
O(n logn);

— computing the new pah(@, ﬁ) by means of the procedureom-
pute prototype (Line 9) comprises three steps, i.e(l) merging
the clustersC’, C”, (ii) computing the new prototyp® from P’
and P” according to (1), andiii) computing the approximated
representation ofP according to (1). The first two steps take
O(m Y1~} maxgeer [C]) = O(m 37 i) = O(n? m), whereC™)
is the set of clusters computed at theh iteration. The approxi-
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mated representation ofis computed according to (1) (whose cost is
O(1)) for eachm-dimensional sample withif; thus, it globally takes
O(S nm);

— in the internal loop (Linesl0-14), inserting/deleting into/from the
priority queue (Linesl1 and 13) takesO(n? logn) (because insert-
ing/deleting into/fromQ is O(log |Q]) with |Q| = O(n?), and the

n—1

internal loop is repeate@(n Y ;| (n — i)) = O(n?) times), whereas
the prototype distance (Ling2) takesO(S n* m);

* updatingC andT (Line 15) can be performed i®(n).

In conclusion, summing up all above costs, it holds that UGAMorks in
O(n*(S m + logn)) time. O

5.2. Impact ofA on the U-AHC algorithm

As any uncertain prototype is an uncertain object satigfijaf. 1 (cf. Sect. 3),
the proposed functioi\ defined in Def. 3 may in principle be used as a distance
measure between uncertain objects, and it can be thus ed/atvo any cluster-
ing scheme. But, as discussed in Sect. 4, the significanceimg A to compare
uncertain objects mainly depends on the Bhattacharyydicieet » between the
two objects; particularly, we are aware that the contrinuiof the IT termA ;-
to the overallA is minimal for low p. Nevertheless, we point out that our objec-
tive is not to define a general distance measure for uncestgacts, but rather
a prototype-based criterion suitable for hierarchicabt#ung of uncertain ob-
jects. And in the context of hierarchical clustering of uiam objects we are
interested in, we theoretically show that the above aspecbrnes irrelevant as
involving uncertain prototypes defined as mixture modeis aprototype-based
AHC algorithm and comparing such prototypes by means ofois makes the
significance of comparing any two uncertain prototypes nmmioally increasing
with the iterations of the AHC scheme.

In other words, our main goal here is to show how the proposgdrtte func-
tion finds theoretical justifications when used as a linkagereon into an AHC
scheme, while this is not generally true when other clustesichemes are em-
ployed. This makes the proposed distance well-suited icdinéext of hierarchi-
cal clustering of uncertain objects we consider in this work

We state the main theoretical finding in the next theorem.

Theorem 2. Consider a generic iteration of the U-AHC algorithm whefele-
notes the current set of cluster§;,C” € C the two clusters being merged,
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C = C'U C” the new cluster formed, and any cluster belonging t& such
thatC # C"andC # C". LetP' = (R, f), P" = (R", f"), P = (R f)
and P = (R, f) be the prototypes of”, C”, C, and C, respectively. Then

o(1. 1) = (IC11€1) o, 1) + (IC"1/1€1) ol 7).

Proof. As according to (2) it holds that(f1, f2) = [s. /1 fo A7, to prove the
theorem we have to demonstrate that:

frfar = ipa T Vi e

According to Proposition 1, we have that= (|C’|/|C|> I+ <|C”|/|§|) 1=

(\C’ N C”\/|@|) fr. Since the two clusters to be merged are disjoint, (6) besome
= (\C’\/|@|) f+ (\C”|/\€*\> f”, which can be rewritten as:

<1, 1 . &) .

—ffA—=ff"dx / —/f + \/ff” dz. (7)
/ C| C C| C|

Denoting withg, (%) (resp.g»(Z)) the function within the integral at the left (resp.

right) hand side of (7), it can be noted that to prove (7) ituffisient to demon-

strate thayl( ) > g2(%), VZ € ™. Tothisend, led = \/f f', B=+/f f", and

a=|C"/IC|,b=|C"|/|C| (a + b= 1); it results that:

C/ C//
0i(@) = '|C"ff'+" ‘|ff” Vi AL B
()= ||€~||‘/ Py ‘CC”\/ Fi—a A+ B,

Thus, g; (resp. g2) is defined as the weighted quadratic (resp. arithmetic)mea
of the termsA and B, where the weights are given byandb. As the (weighted)
guadratic mean is never lower than the (weighted) aritromagan, it holds that
g1(%) > g2(%), VZ € R™. The theorem follows. O

Corollary 1. It holds that

{ p(f. ) = plf, ) = p(f, ), it p(f. f)=p(f, [

p(f, ) > ||Cé|| o(f, [+ ||C|‘ (f,f"),  otherwise
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The above theorem states that, at each iteration of the peopd-AHC al-
gorithm, the value op(f, f) between the prototypes of clust€rand the clus-
ter C formed by merging the closest cluster$ and C”, is never lower than
the (weighted) arithmetic mean ok f, /'), p(f, f”) betweenC and C’, C".
Moreover, Corollary 1 shows that the bound derived from Taep2 is strict
it p(f, f') # p(f, ")

Sincep is considered as a measure of the “suitability” of compagng two
prototypes by means of an IT proximity measure, the abouwdtseshay be inter-
preted as follows: the suitability of comparing any clusteto the new formed
one(' acts as a monotonic property w.r.t. the (weighted) aritihmmeéan of the re-
spective suitabilities of the merging clusters. Theseltesonfirm that the overall
accuracy of comparing any pair of clusters in the proposéXHG is not decreas-
ing (and, in many cases, strictly increasing) at each itavaif U-AHC.

6. Experiments

We evaluated U-AHC in terms of effectiveness and efficieaogl compared
it with existing algorithms for clustering uncertain objgc partitional meth-
ods, i.e., UK-means (UKM) [10], CK-means (CKM) [41], and UKedoids
(UKmed) [23], density-based methods, i.eF,DBSCAN (FDB) [38], and
FOPTICS (FOPT) [39], and sampling-based methods, i.e., Represeatdtus-
tering (RepClus) [54] (cf. Sect. 2).

In the evaluation we also involved tviiaselinehierarchical algorithms, called
F(ast)-AHC and A(ccurate)-AHC, which correspond to twaveadpproaches to
clustering uncertain objects that focus on either effigreffc AHC) or accuracy
(A-AHC). Particularly, F-AHC follows a standard AHC strgiealong with a
group-averagecluster merging criterion based on a distance between tancer
objects that is efficiently computed ({8(.S m) time) as difference between ex-
pected values. The asymptotic time complexity of F-AHO{®?(S m + logn)),
and is the same as the proposed U-AHC. A-AHC follows the saiM€ Acheme
as F-AHC, but employs the more accurate yet less efficieraarg distancé& D,
which takesO(S? m) time and contributes to increase the overall time complex-
ity to O(n?(S? m +logn)). As a result, F-AHC is expected to be efficient but
not that accurate. The opposite (i.e., high accuracy andgfboiency) is instead
expected for A-AHC. The ultimate goal of this comparisonhigd to assess that

We used the implementation of Representative Clustericigded in the extended version of
the ELKI framework [48].
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Table 1: Datasets used in the experiments: benchmark t&téefe) and real datasets (right).

dataset # objects # attributes # classes dataset # objects # attributes
Iris 150 4 3 Neuroblastoma 22,282 14
Wine 178 13 3 Leukaemia 22,690 21
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Image 2,310 19 7
Abalone 4,124 7 17
Letter 7,648 16 10
KDDcup 4,000,000 42 23

U-AHC is able of achieving the best tradeoff between acgueatd efficiency,
thus demonstrating that U-AHC i$) (more accurate than F-AHC (while remain-
ing comparable to it in terms of efficiency), and) (more efficient than A-AHC.

Domain sample sets and approximated representations afnitertain ob-
jects were computed by the Monte Carlo and Markov Chain M@#do sam-
pling method<. To avoid that results were biased by random chance (due to non
deterministic operations, such as computing initial cad/medoids/partitions),
all accuracy and efficiency measurements were averaged>0vems. More-
over, we performed a tuning phase for parameteasid ;. of FDBSCAN and
FOPTICS, and we ultimately set these parameters to the vidlaeallowed each
method to achieve the best accuracy results. As far as tls¢edlug methods
and the distance between clusterings to be used by Repaégentlustering,
we follow what suggested in the original paper [54] and us&SDEBN [18] and
PAM [35] for producing the base clusterings and the ultimaiasensus clus-
tering, respectively, and Adjusted Random Index (ARI) asstadce measure
between clusterings.

Quality of clustering solutions was evaluated by means o leaternal and
internal criteria. External criteria exploit the availktyi of reference classi-
fications in order to evaluate how well a clustering fits a pfestd scheme
of known classes (natural clusters). We employed the weslkn F-measure
(F), which ranges within[0, 1] such that higher values correspond to better
quality results. Denoting witle = {6‘1,...,@} a reference classification

2We used the SSJ library, http://www.iro.umontreakesimardr/ssj/
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and withC = {C,...,Cy} a clustering solution, F-measure is defined as
F(C,C) = |D|7' Yo, |Cil maxjen 4 Fyj, whereFy; = 2 P Ri;/(Py + Ry),
P, =|C; N Ci|/|Cy], and Ry; = |C; N Ci|/|Cl, for eachi € [1..h], j € [1..k].

We also used internal criteria based iotra-cluster (intra(C)) and inter-
cluster(inter(C)) distances (for a given clustering soluti@nwhich express clus-
ter cohesiveness and cluster separation, respectivaiir dstance values were fi-
nally combined in a single valug(C) = inter(C) — intra(C), such that the lower
intra(C) and the higheinter(C), the better the clustering quality(C). Since
intra andinter values were normalized withi, 1], @ ranges withif—1, 1].

Experiments were carried out on benchmark and real dafasbtsse main
characteristics are summarized in Table 1. Benchmark elstage selected
from [6], whereas real datasets correspond to two micrgatetasets available
from [9] which are about gene expressions in biologicaliessgenerated by mi-
croarray analysis. Note that we synthetically generategainty in benchmark
datasets, as they originally contain deterministic vglgesversely, this was not
necessary for real microarray datasets since they inhgrexiibit probe-level
uncertainty, which can easily be modeled in the form of Ndnpaiés according to
themulti-mgMOSmethod [42]

Uncertainty generation in benchmark datasets. Based on previous work [10],
we developed the following uncertainty generation strat&@jven a (determinis-
tic) benchmark datasé®?, we firstly generated a pdf; for each (deterministic)
point«w within D. We considered thelniform, NormalandExponentialpdfs, as
they are commonly encountered in real uncertain data scsn@j. Every f;
was defined in such a way that its expected value correspowdsyetow (i.e.,
i(fz) = W), whereas all other parameters (such as the width of thevadteof the
Uniform pdfs and the standard deviation of the Normal pdfsjenrandomly cho-
sen. We exploited the pdif; to simulate what actually happens in real contexts
of uncertain data (cf. Fig 2). Thus, we focused on two evanatases: 1) the
clustering task is performed by considering only the obs@fve., non-uncertain)
representations of the various data objects; 2) the clagtéask is performed by
involving an uncertainty model. The ultimate goal was tceassvhether the re-
sults obtained in Case 2 are better than those obtained smLas

In Case 1, we generatedperturbed dataseD’ from D by adding to each
point«w € D random noise sampled from its assigned pglf Thus, each point

Swe used the Bioconductor package PUMRrdpagating Uncertainty in Microarray Analygisavailable at
http://www.bioinf. manchester.ac.uk/resources/puma/.
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w € D gives rise to gerturbedpointw’ € D’. As a result,D’ still contains
deterministic data. Then, each of the selected clusterieods was run o’
S0 as to output a clustering denoted®y A scoreF'(C’,C) was hence obtained
by comparing’’ to the reference classification ©f (denoted bﬁ) by means of
F-measure.

In Case 2, when uncertainty is taken into account, we creaadhcertain
datasetD” from D’ as follows. For each perturbed poidat € D', we derived
an uncertain objeat = (R, f) so thatf = fz (i.e., a pdf whose expected value
corresponds ta’'), while R was defined as the region containing most of the area
(e.9.,95%) of fz. Again, we run each of the selected methoddXrso as to get
a clustering solutiog” and a scoré’(C”,C).

Finally, we compared the scores obtained in Case 1 and Cassg&ctively,
by computingo(C’,C",C) = F(C".C) — F(C',C), © € [—1,1]; the higherO,
the better the quality of” w.r.t. C’, and, therefore, the better the performance of
the clustering method when the uncertainty is consideretl the no-uncertainty
case.

Results

All accuracy and efficiency results obtained by U-AHC retettte version of
the algorithm that involves the sampling method for commyithe Bhattacharyya
coefficientp described in Sect. 4; as previously discussed, in this wayvere
able to assess the behavior of our proposed algorithm in dst general case.

Accuracy on benchmark datasets. Tables 2—3 show accuracy results on bench-
mark datasets for Uniform (U), Normal (N), and Exponentig) distributions, in
terms of external®) and internal Q) cluster validity criteria, respectively. In both
tables, we report for each methdd: the score for each type of pdf averaged over
all datasets (for shorgverage pdf scode(ii) the score averaged over all datasets
and pdfs (for shoripverall average scodeand(iii) the overall average gain of our
U-AHC computed as the difference between the overall aeesagre of U-AHC
and the overall average scores of the other algorithms. thatethe implemen-
tation of the RepClus method within the ELKI framework [4&]e3 not provide
support for exponential distributions. Thus, we will repBepClus results only
for Uniform and Normal distributions.

Let us first focus on comparison with non-hierarchical contpes. Consider-
ing © results, U-AHC performed better than the other methods iovest datasets
and distributions (especially Normal and Exponential). gbneral, looking at
the overall average scores, U-AHC outperformed all of nemanchical meth-
ods, with the following order7DB, RepClus,FOPT, UKM, CKM, and UKmed.
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Table 2: Accuracy results on benchmark datasets (exteatidity criteria).

Theta(© € [—1,1])
dataset | pdf UKM CKM UKmed FDB FOPT RepClus | A-AHC F-AHC | U-AHC
U -.062 .028 .023 -.102 .005 .037 .058 -.015 .003
Iris N -.010 .013 .010 -.063 .044 .051 .030 .054 .033
E -.249 -380 -.045 -.383 .023 — .024 -.088 -.147
U -.179 .047 175 -.179 174 -.029 .035 .083 179
Wine N -.184 .024 -.085 -.185 .030 -.015 .010 .054 .196
E -.208 -127 -.104 -.208 .006 — .022 -.138 .022
U .066 .079 .084 -.298 .012 -.015 .150 167 221
Glass N -.025 .012 -.070 -.040 -.136 -,.044 .216 .243 153
E -.231  -.302 .009 -.334 -.182 — .203 .032 214
U .199 .332 .223 -.136 .023 -.061 .337 .325 114
Ecoli N 131 272 .045 .061 .015 -.064 .270 .213 227
E -.160 -.303 -.034 -.383 -.239 — 114 -.122 .120
U .220 .279 .315 -.085 .252 -.047 446 .219 .251
Yeast N .159 .145 -.035 .079 -.001 -.107 .307 .344 .365
E -.098 -.201 -.055 -311 -.195 — 144 -.007 157
U .278 274 .241 -.283 -.113 112 .026 -.099 -.113
Image N 122 132 -.061 -.251 -.081 127 -.081 -.048 174
E -.024 -204 .087 -.307 -.137 — .002 -.119 .064
U .120 .092 .379 -.092 .291 -.038 454 .204 324
Abal. N .034 -.031 .009 .095 -.039 -.101 213 181 .289
E .080 -.084 .025 -.182 315 — 415 .130 .390
U .008 113 .237 -.338 -.201 -.092 .189 .206 .386
Letter N -.076 -.082 -.039 -.340 -.203 -.107 -.024 -.071 .037
E -.202 -.399 .033 -.431 -.294 — .048 -.182 .045
U .008 .009 .031 -.117 127 .011 -.074 -.195 -.196
KDDcup N .077 .047 .029 -.013 .021 .001 -.002 -.099 .265
E -.133 -.095 -.110 =171 .059 — .092 -.208 195
U .073  .139 .190 -.181 .063 -.014 .180 .099 .130
avg score N .025 .059 -.022 -.073 -.039 -.029 .104 .097 1193
E -.136  -.233 -.022 -.301 -.072 — 119 -.078 118
overall avg. score| -.013 -.011 .049 -.185 -.016 -.021 114 .039 147
overall avg. gain| +.160 +.158 +.098 +.332  +.163 +.168 +.033 +.108 —

More in detail, among the competitotEDB had the worst performances on all
types of distributions, while UKmed (resp. CKM) was the masturate method
using Uniform and Exponential (resp. Normal) distribugsoAlso in terms of cri-
terion, U-AHC achieved higher results than the competing methmuayerage.
For this evaluation, the least yet significant gain by U-AH&vagainst RepClus,
while FOPT behaved slightly worse than U-AHC on average (howeviegtsg-
nificantly less accurate than U-AHC on Normal and Exponéuigtributions),
and the other density-based method confirmed to be the wanfsirmiing method
in general — this might be explained due to the difficulty ittisg parameters
andy.

Concerning the two hierarchical competitors, U-AHC was @mgral much
more accurate than its fast naive counterpart (F-AHC) tdaunfirming one of the
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Table 3: Accuracy results on benchmark datasets (inteadality criteria). Notationnz stands
for values with precision over three decimal digits (i.@lues within (-5.0E-4, +5.0E-4))

Quality (Q € [—1,1])
dataset | pdf UKM CKM UKmed FDB FOPT RepClus | A-AHC  F-AHC | U-AHC
U 151 .145 .148 197 .093 .331 146 144 152
Iris N .263 .194 .194 .238 135 .244 .298 .203 .324
E 118 -.001 .081 -.004 .202 — 274 .029 .050
U -.001 -.002 .012 -.002 .128 .007 .608 -.002 .185
Wine N -.020 .012 .042 .022 .009 .009 .282 .009 .031
E nz nz .001 nz nz — 337 nz nz
U .001 .001 .060 -.013 .001 .079 .510 .006 .004
Glass N .057 .062 .041 .042 .006 .105 .202 164 .201
E .004 .001 .006 -002 nz — 192 .024 .026
U 101 .031 .187 nz 449 .016 .642 144 .089
Ecoli N 141 .060 .029 .086 .284 .027 .344 .084 141
E .001 nz .003 nz nz — .303 nz -.001
U .041 .016 .193 nz .029 .004 .669 .068 .063
Yeast N .053 .031 .005 .040 222 .003 .185 129 .170
E nz nz nz nz nz — 120 nz nz
U nz nz nz nz nz .081 133 nz nz
Image N .065 .074 .010 -.001 .004 .011 341 327 .240
E nz nz nz nz nz — .102 nz nz
U .040 .025 .071 -.018 .010 .024 273 .050 .060
Abal. N .103 .055 .031 .086 .054 .027 124 119 .043
E nz nz nz nz nz — 116 nz nz
U nz nz nz nz nz .062 .210 nz .003
Letter N .352 .303 .357 -.022 .207 .107 .233 nz .004
E nz nz nz nz nz — .210 nz .003
U .069 .066 .040 .021 .133 .064 242 134 197
KDDcup N .006 .092 .023 .061 115 .006 .199 .086 144
E .012 .088 111 -.001 .025 — 172 .023 .166
U .047 .032 .084 .021 .133 .074 .364 .066 .089
avg score N 113 .098 .081 .061 115 .060 221 126 .145
E .015 .010 .022 -.001 .025 — 195 .023 .042
overall avg. score| .058 .047 .063 .027 .091 .067 .260 .072 .092
overall avg. gain| +.034 +.046 +.030 +.065 +.001 +.025 -.168 +.020 —

major claims of this work. Indeed, U-AHC achieved higlkeand( results than
F-AHC in most cases; more specifically, it outperformed FEAbh 21 (resp.16)
out of 27 dataset-by-pdf configurations, with maximum gai @3 (resp.0.187)

on KDDcup-Exponential (respWine-Uniform) in terms of© (resp. ). Com-
pared to A-AHC, on average U-AHC behaved better in term@,afspecially on
Normal and Exponential distributions, with overall avezagin of 0.033, while a
relatively large gap is observed f@rresults. This is actually not surprising since
the expected distandéD employed in A-AHC is the same measure as that used
for defining the cluster validity criteriory, while this does not hold for our U-
AHC,; thus, the assessment in termg.pis inherently biased in favor of A-AHC.
Overall, the higher performance by A-AHC might be explaicedsidering that
it employs the same hierarchical scheme as U-AHC, howewsippgd with the
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Table 4: Accuracy results on real datasets.

Quality (@ € [-1,1))

dataset | #clusters| UKM CKM UKmed FDB FOPT RepClus | A-AHC F-AHC | U-AHC
2 .057  .059 .044  -004 .010 .071 452 143 917
3 .061 .058 .047  -.004 .017 .071 .880 187 .670
5 .060 .062 .043  -.004 .009 .067 .803 141 .847
Neuroblastoma 10 .068 .066 .048  -.004 .008 .075 .830 .093 .607
15 .060 .062 .044  -.004 .010 .077 .667 .066 .578
20 .061 .060 .047  -.004 .009 .077 .594 .061 .A87
25 .065 .057 .041  -.004 .009 .071 .524 .056 .465
30 .047  .053 .043  -.004 .008 .072 .458 .049 466
2 207 .266 221 -.018 .068 .061 .698 219 .445
3 392 316 .256  -.018 .080 .068 .657 .238 .258
5 451 372 245  -.018 .061 .074 .829 153 .160
Leukaemia 10 455  .368 238  -.018 .213 .081 .899 135 .150
15 451 .320 .246 -.018 192 .070 737 A11 .145
20 479 322 213 -.018 .186 .071 .764 .091 126
25 .558  .296 215 -.018 .353 .075 .707 .088 127
30 448 296 213 -.018 .369 .059 .678 .082 122
Neuroblastoma avg. score| .060 .060 .045 -.004 .010 .072 .651 .100 .630
Leukaemia avg. score| .430 .320 231 -.018 .190 .070 .746 .140 192
overall avg. score| .245 .190 .138 -011 .100 .071 .699 .120 411

overall avg. gain| +.166 +.221 +.273 +.422 +311 +.340| -.288 +.291 —

more accurate expected distance between uncertain gljedise other hand, as
discussed later in this section, A-AHC is much less efficiaah U-AHC.

Accuracy on real datasets. Table 4 shows accuracy results obtained\mu-
roblastoma andLeukaemia, and also summariz€g the scores on each dataset
by averaging over the cluster numbers, @ifdthe scores and gains by averaging
over all cluster numbers and datasets (for stomerall average scoje Due to the
unavailability of reference classifications for such datsswe varied the number
of clusters and assessed the results base@ only. Specifically, we varied the
number of clusters frora to 30, since /DB (which is able to automatically dis-
cover the number of clusters) detected a number of clustetsd 15 for both
datasets.

Compared to the non-hierarchical competing methods, tapét the average
scores, U-AHC outperformed all of them dleuroblastoma, with average gains
above 0.620, whereas dreukaemia U-AHC had varying competitive behavior.
In general, U-AHC achieved the best overall average pedora, with maxi-
mum, average and minimum gains®22 (w.r.t. #DB), 0.217, and0.166 (w.r.t.
UKM), respectively. Like for the benchmark datasets, ouAME was inferior
to A-AHC and superior to F-AHC; more specifically, U-AHC wa®ra accurate
than F-AHC on alll6 dataset-by-number-of-clusters configurations, with ager
gains 0f0.530 and0.052, on Neuroblastoma andLeukaemia, respectively.
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Table 5: Efficiency results (seconds).

dataset (benchmark) dataset (real)
algorithm| Iris  Wine Glass Ecoli Yeast Image Abalone Letter | Neuroblast. Leukaemia
U-AHC | 043 0.58 0.83 1.95 46 118 416 1,489 7,054 8,284
F-AHC | 0.08  0.09 0.12 0.29 12 33 133 520 4,568 5,479
A-AHC | 68.09 137.07 175.31 355.29 8,030 30,773 60,281 31%5591.0E+6 >1.0E+6
U-AHC/F-AHC| 5.4 6.1 6.9 6.6 4.0 3.6 3.1 2.8 15 1.5
A-AHC/U-AHC| 157.1 237.6 212.2 1821 173.1 260.7 145.0 216.3 — —

1.0E+09

1.0E+08 | COJU-AHC BF-AHC MWA-AHC |

1.0E407
“1.0E+06
E10r+05
V1 0E+04
“S1.0E+03
1.0E402
1.0E401
1.0E+00

Iris Wine Glass Ecoli Yeast Image Abalone Letter Neur. Leuk.

Figure 5: Efficiency results (ms).

Efficiency. It is widely known that the knowledge learned by hierarchatas-
tering algorithms comes with the cost of a time complexitgeyally higher than
partitional or density-based schemes. For this reasongffiaiency evaluation
was devised to focus on a comparison of the running times oUe&HC algo-
rithm with those of its naive hierarchical counterpart$ypne., F-AHC and A-
AHC.* The main goal of this evaluation was to prove a major claimhaf work:
the proposed U-AHC outperforms A-AHC while performing atsto F-AHC.

The runtimes of all algorithms are summarized in Table 5 asglayed in
Figure 5; in the table, details are also reported on the cdtibe U-AHC runtime
to the F-AHC runtime (second last row) and the ratio of the A@runtime to
the U-AHC runtime (last row). Times refer to a number of sagspl = 500 and
to the Normal pdf, as we observed that the relative perfooesnf the algorithms
were never significantly affected by the form of distributio

Looking at Table 5 and Figure 5, results confirm our time caxipy analysis,
as U-AHC and F-AHC were always much faster than A-AHC whildHE and
F-AHC performed similarly to each other. Focusing on thesbetween the U-

4Experiments were carried out exploiting computing resesiaf CRESCO/ENEAGRID High
Performance Computing infrastructure [19].
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AHC runtime and F-AHC/A-AHC runtime, we found that A-AHC riime was
always two orders of magnitude slower than U-AHC, while théd”HC runtime
was always of the same order as F-AHC; Interestingly, the t#AHC/F-AHC
decreases for larger datasets, which is explained as,asiogn, the termn?
becomes dominant ovefm, thus making the complexity of the main loops of
the two algorithms @ (n?(S m + logn)) for U-AHC, O(n?logn) for F-AHC)
comparable.

As concerns evaluation ddDDcup, efficiency analysis on this dataset repre-
sents a challenge because of its very large size that majkéseaaarchical cluster-
ing process computationally expensive in practice. Fa tlataset we therefore
devised a different stage of evaluation, which was basednomalementation
of modified versions of our methods based on a parallel camgpatchitecture.
We remark that all the methods involved in our comparisomestiee same under-
lying hierarchical scheme, and thus the parallel impleieigom was the same for
all methods as well. This ensured a fair comparison. Rewdts in line with the
ones observed for the other datasets: U-AHC was 2.7 timegeslian F-AHC
and 186 times faster than A-AHC.

7. Conclusion

We have provided a principled solution to the problem of dmehical clus-
tering of uncertain data. Starting from a revision of the metdescribed in our
earlier work [26], the key idea of this new approach lies inedlyiounded linkage
criterion (for the cluster merging step of the hierarchalglorithm) which takes
into account information-theoretic properties of the @bty distributions as-
sociated to the uncertain objects to be clustered. This prednus to study the
conditions that determine the suitability of using infotioa-theoretic and ex-
pected distance measures in a combined way, in order taatéstheir respective
strengths. Our method has been experimentally shown t@datm major com-
peting methods in terms of average accuracy on all datasetsin the evaluation.
Also, from an efficiency viewpoint, our method outperforrhe baseline group-
average AHC algorithm equipped with the accurate expecstartte, while being
comparable to the fast baseline version of group-averagé #idt computes the
pair-wise distances of the uncertain objects as the diffaxdetween expected
values.

SWe used the 4864-core ENEAGRID CRESCO4 cluster [19] forttsk.
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