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ABSTRACT
Current deregulated energy market requires that utilities have to
face challenging issues that mainly arise from conceiving new customer-
centric frameworks instead of early supplier-centric frameworks.
Enel, a large international energy utility, is able to measure and
store load profiles of their mass-market low-voltage (LV) customers
in a flexible and effective way thanks to the well-established Telege-
store project [3, 12].
In this paper, we present a study on the characterization of LV cus-
tomers based on their consumption data. A time series based model
is used to suitably represent load profiles and enable the detection
of their characteristic trends. Besides this primary data, we also
exploit meta-data associated to the load profiles, which is useful to
enrich a-priori knowledge on the customers. We conceived a clus-
tering framework for detecting groups of customers having similar
consumption behavior. We experimentally evaluated the proposed
framework on a real application concerning the characterization of
Enel customers according to their load profiles. Preliminary exper-
iments have shown results which are significant in terms of clus-
tering validity and potentially useful to practitioners from the Enel
utility.

1. INTRODUCTION
Today energy markets are characterized by a growing insecurity
in the wake of their liberalization. Due to an increasing customer
volatility, it is becoming more difficult for utilities to plan their in-
vestments through the next decades. In addition, the problem of
characterizing and predicting their customers’ behavior and fitting
a proper tariff policy accordingly has been recognized as relevant
in this context. Designing new tariff structures allows the energy
utilities to encourage competition, efficiency, and economical use
of the resources. Defining proper tariffs makes it possible to sup-
port customers’ interests and, at the same time, to recover the cost
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of electricity in a reasonable time. Enel, a large international power
utility, has recently completed an Italian project called the Telege-
store project [3, 12]. By using up-to-date smart meters, Enel is
able to measure and store load profiles of their mass-market LV
customers in a flexible and effective way.

In recent years, technological improvement in electricity utility de-
vices has leveraged various issues in load profile data management.
In this respect, a significant research effort has been focused on load
profile classification, especially regarding clustering of medium-
voltage customers and short-term load forecasting of anomalous
days. Customer classification puts the basis for properly designing
tariff structures. The use of load pattern-based features has been
identified as a key factor for classifying customers on the basis of
their electrical consumption behavior. Classification allows utili-
ties to promote collective tariffs rather than individual ones for each
customer.

All the proposed techniques for load profile classification gener-
ally belong to pattern recognition and data mining approaches [6,
5, 4, 9, 1, 13, 14]. Load profiles are usually represented as time
sequences and the notions of proximity used for comparing them
are typically based on the Euclidean distance. In the context of
load profile clustering, the most used approaches refer to partitional
clustering and hierarchical clustering [8].

In this paper, we present a clustering framework for electricity cus-
tomer load profiles, which is supported by information on meta-
data (e.g., customer type, meter type, day, contract, location). Enel
supported this work by providing data about 30,000 LV load pro-
files of anonymous Italian customers.

A major emphasis of our study was on the most typical class of
electricity customers, i.e., private, residential domestic customers.
Each customer load profile was segmented with respect to the type
of day, which enabled a characterization of the customers’ profiles
on a per day basis.

We performed experiments by varying the algorithm and the dis-
tance measure in the proposed clustering framework. More pre-
cisely, we used the standard K-Means and the Euclidean distance
as baseline method. However, we also resort to the Dynamic Time
Warping distance, which is widely known to provide a better way
to compare time series. Moreover, we introduce a simple top-down
partitional algorithm, named TS-Part, which does not require the
user to specify a desired number of output clusters, unlike the K-
Means algorithm.



Figure 1: The Enel Telegestore architecture

Experimental results have shown that the Dynamic Time Warping
supports higher-quality clustering than the Euclidean distance, in
terms of both cluster separation and compactness. The best per-
formance corresponded to setting TS-Part with the Dynamic Time
Warping, which resulted in more clusters than those obtained by us-
ing the Euclidean distance. However, we observed that most of the
data tend to group together in a relatively small number of clusters.
This scenario enables the identification of relevant aspects which
allow for supporting the design of tariff policies.

2. LOW-VOLTAGE ELECTRICITY
CUSTOMER DATA

The Enel expertize in measuring and storing customer load profiles
can be summarized in the Telegestore project [3, 12], whose con-
ceptual architecture is shown in Figure 1. Communication between
meters and concentrator is accomplished by a PLC (Power Line
Carrier) channel, whereas the public GPRS/GSM Network is re-
sponsible for the communication between the concentrator and the
central system. All energy related data are first collected from the
smart meters by the concentrator. Then, such data are uploaded by
the central system. The Enel Telegestore network devices consist
of more than 31 millions of smart meters and more than 350,000
concentrators installed and remotely managed [12].

Enel smart meter is able to record and store active and reactive load
profiles for all the four energy quadrants. A load profile represents
the shape of the customer consumption chronologically ordered.
Given a sampling period time, a smart meter logs the consumption
corresponding to the associated location in a circular buffer. The
sampling period is programmable and ranges from 1 to 60 minutes;
as default, this is set to 15 minutes which allows for storing 38 days
of load data, where each day is 96-sample long.

The smart meter also stores a flag register of “sample validity” in
the stream of load data. This flag indicates a critical fault occurred
during the sample measurement (e.g., a voltage interruption). In
the experimental evaluation, we used this register to identify wrong
samples and to correct each of them by using linear interpolation
between the previous and the next valid sample.

3. TIME SERIES-BASED MODELING OF
LOAD PROFILES

A time series T is a sequence [(x1, z1), . . . , (xn, zn)], where each
pair (xh, zh) is comprised of a real numeric value (xh) and a times-
tamp (zh).

Similarity search and detection in time series databases relies on a
measure of proximity among data points, which in principle should
meet the following requirements: handling local time shifting, high
efficiency in computation, low sensitivity to noise, and support for
indexing.

In order to compare and measure the proximity between time se-
ries, the major approach consists in warping the time axis of one
series to achieve the best alignment. The Dynamic Time Warping
(DTW) algorithm has long been known in speech recognition [10],
then was introduced to the data mining community as an effective
solution to the sensitivity of the Euclidean distance to small distor-
tions (i.e., fluctuations or phase shifts) in the time axis [2]. Given
two sequences T1 and T2, DTW performs a non-linear mapping of
one sequence to another by minimizing the total distance between
them. For doing this, a (|T1| × |T2|)-matrix storing the squared
Euclidean distances between the two sequences is used to find an
optimal warping path (i.e., a sequence of matrix elements) via a
dynamic programming algorithm.

4. CLUSTERING LOAD PROFILE DATA
4.1 Algorithms
According to most of research works on clustering load profiles, we
resort to the well-known paradigm of centroid-based partitional
clustering [8]. Given a set of N data objects D, the goal of a
centroid-based partitional clustering is to partition D into a num-
ber K < N of homogeneous subsets, called clusters, where each
cluster is characterized by a data value, called centroid, which acts
as a representative of that cluster. In this work we assume that the
cluster centroids are computed as simple averages of the data (load
profiles) in any specific cluster, since all the data have the same
length in our setting. Of course, this assumption does not hold in
general, and more refined methods for computing cluster centroids
in time series data might be used [7].

The exemplary centroid-based partitional method is the popular K-
Means algorithm [8]. In the experimental evaluation, we used the
K-Means algorithm as baseline method. We also developed a top-
down partitional algorithm, named TS-Part. A major feature of
TS-Part is that the number of output clusters is not required as a pa-
rameter, rather it is determined during the clustering task. This rep-
resents an advantage in many real application contexts, like ours,
in which there is no a priori information which guides the user to
properly set the number of output clusters.

TS-Part starts by considering the input dataset as a single cluster,
then two main steps are iteratively repeated until the convergence
is reached. The first step consists in finding the best split for each
cluster in the current clustering. The second step recomputes the
cluster centroids and reassigns all data according to the current
clustering, similarly to the K-Means algorithm. The convergence
of the algorithm is reached when the split procedure does not per-
form any split.

In the splitting step, the quality of a given clustering solution is
computed as the difference between the inter-cluster distance (i.e.,
the average pair-wise distance between all the cluster centroids) and
the intra-cluster distance (i.e., the average distance between all the
individual data within the cluster and the corresponding centroid).



The split operation hence depends on a threshold of minimum qual-
ity, which is initially set as the quality of the input clustering.

4.2 Assessment criteria
We evaluated compactness and separation of the solutions obtained
by the clustering algorithms. More precisely, we employed two
of the most used validity criteria in load profile clustering, namely
Mean Index Adequacy (MIA) and Clustering Dispersion Indicator
(CDI) (e.g., [5, 4, 13, 14]). Both criteria are based on information
on the data to be clustered, the centroids of the clustering solution,
and the number of desired clusters. MIA measures the compactness
of a clustering solution by averaging the distances between each
object within a cluster and its centroid. CDI expresses the degree
of cluster separation as directly proportional to the average of the
intra-cluster distance between the objects within the same cluster
and inversely proportional to the pair-wise distances between the
cluster centroids.

5. EXPERIMENTS
5.1 Data description and preparation
We were granted access to about 30, 000 Enel Italian LV customer
load profiles, measured during the period between the first week
of February 2009 and the last week of March 2009. All the load
profiles have been provided in anonymous form.

The load profile set was preliminarily partitioned according to meta-
data associated to each individual customer. Such meta-data repre-
sents commercial and technical extra attributes that Enel provided
with each load profiles. Specifically, customer meta-data includes
the following attributes:

• Meter type: specifies the power capacity and the number of
phases (i.e, single-phase, multi-phase) of the meter associ-
ated to the customer;

• Contractual power: the maximum contractual power allowed
to the customer;

• Contract date: the start date of the customer’s contract;

• Commercial category: identifies the type of customer, in-
cluding residential domestic, non-residential domestic, pub-
lic lightning, etc.;

• Product category: identifies a particular (private or public)
usage of the energy contract;

• Zone: refers to the geographical location of the customer.

According to the above information, we filtered in the available
load profiles which correspond to the most common customer type,
namely the “private”, “residential domestic” customer. We consid-
ered only the active energy part of each load profile. The resulting
5, 000 load profiles were segmented in order to extract daily pro-
files. Since each daily profile is comprised of 96 samples, we ob-
tained 30 daily profiles of 96 samples from each customer profile.
Moreover, daily profiles were further partitioned depending on the
type of day; precisely, we distinguished “weekdays” profiles from
“saturdays” profiles and “sundays/holidays” profiles.

clustering distance # of clusters MIA CDI
algorithm measure
K-Means Euclidean 10 9.775 0.682
TS-Part Euclidean 10 9.103 0.914

K-Means DTW 66 7.986 0.008
TS-Part DTW 72 5.514 0.004

Table 1: Best (average) performance of clustering: Weekdays
load profiles

clustering distance # of clusters MIA CDI
algorithm measure
K-means Euclidean 19 7.456 0.100
TS-part Euclidean 19 6.520 0.124

K-means DTW 31 12.942 0.010
TS-part DTW 37 10.310 0.009

Table 2: Best (average) performance of clustering: Saturdays
load profiles

clustering distance # of clusters MIA CDI
algorithm measure
K-means Euclidean 17 9.964 0.109
TS-part Euclidean 17 6.946 0.156

K-means DTW 29 13.773 0.014
TS-part DTW 32 11.646 0.012

Table 3: Best (average) performance of clustering: Sun-
days/holidays load profiles

5.1.1 The Rialto suite for data mining.
Experiments and analysis described in this work were conducted
using Exeura Rialto™ [11]. Rialto is a graphical environment for
performing data mining and knowledge discovery tasks. In contrast
to other similar data mining tools, Rialto contains most of the func-
tionalities required by one user-friendly tool that allows users to
design, create, explore, analyze, and execute data mining tasks, as
well as to deploy predictive and descriptive models into other tools,
applications, and systems. Thanks to the possibility of extending
the capabilities of Rialto, it was possible to generate a set of ad-hoc
plug-ins for managing the data from the Enel legacy repositories.

5.2 Preliminary results
We present here main results from clustering experiments on the
three types of daily load profile sets, namely “weekdays”, “satur-
days”, and “sundays/holidays”. For each of the three cases, we
performed multiple runs of both clustering algorithms (i.e., K-
Means and TS-Part) and finally averaged the quality results, in
terms of MIA and CDI, obtained over the runs. Each algorithm
was equipped with Euclidean distance or DTW as distance mea-
sure. For each setting, the number of clusters was determined by
TS-Part and then used to set the parameter (i.e., initial value of the
number of output clusters) for the K-Means.

Tables 1–3 summarize the best (average) performance of the clus-
tering algorithms obtained on the three cases. Using the DTW as
distance measure mostly enabled either clustering algorithm to pro-
duce higher quality clustering solutions w.r.t. the ones obtained by
using the Euclidean distance. This always holds in terms of CDI
for all the cases, and also in terms of MIA for the “weekdays” case
(which corresponds to the largest set of daily load profiles). The



Figure 2: Distribution of weekdays load profiles over clusters
obtained by TS-Part with DTW

better separation (CDI) obtained by using DTW reflects an increase
in the number of clusters, which is explained by the fact that DTW
is more sensitive than the Euclidean distance to time shifts and,
consequently, it is capable of detecting more specific/descriptive
clusters. The best results in each table correspond to the use of
our TS-Part algorithm equipped with DTW. It should be noted that
the better performance of TS-Part against K-Means concerns both
MIA and CDI.

However, as we can see in Figure 2 referring to TS-Part with DTW,
most of the profile data were assigned to a relatively small number
of clusters, whereas a significant part of clusters likely corresponds
to untypical habits of certain residential domestic customers (e.g.,
customers spending most of their time in residences which are lo-
cated in places different from those declared in the contract).

It should be emphasized that the presence of a few, large clusters
attracts major attention from a perspective of tariff policy design;
conversely, the many, small clusters will be probably discarded. We
indeed observed that, in typical behaviors of residential domestic
customers, most of the energy consumption is concentrated on the
lunch and dinner hours.

6. CONCLUSION
We presented a framework for clustering load profiles of electricity
customers. Load data are managed and selected according to meta-
data associated to the customers, which mainly concern customer
type, meter type, day, contract, and location. The proposed frame-
work has been conceived to perform standard methods for cluster-
ing load profiles (i.e., K-Means and Euclidean distance). However,
it also involves the well-known Dynamic Time Warping approach
for comparing load profiles as time series. We also presented a new
partitional algorithm which, unlike the K-Means algorithm, deter-
mines automatically the number of output clusters.

We performed experiments by differently combining clustering al-
gorithms and distance measures. Experimental results have shown
that the best performance is achieved by using the Dynamic Time
Warping distance, which leads to better cluster separation and com-
pactness. This also corresponds to clustering solutions having most
of the data grouped together in a relatively small number of clus-

ters. Such a scenario enables the identification of relevant aspects
which allow for supporting the design of tariff policies.

We plan to extend the evaluation of our framework with more clus-
tering methods and assessment criteria; in particular, we would
like to exploit approaches specifically used in the power systems
domain along with more general-purpose approaches from pattern
recognition. More experiments are currently being carried out in
order to consider both the active and reactive energy in the load
profiles, and to enhance the evaluation of the framework by assess-
ing its performances by significantly varying the sizes of the output
clustering solutions.
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