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Abstract—Projective Clustering Ensembles (PCE) has re-
cently been formulated to solve the problem of deriving a
robust projective consensus clustering from an ensemble of
projective clustering solutions [1]. PCE is formalized as an
optimization problem with either a two-objective or a single-
objective function, depending on whether the object-based
and the feature-based representations of the clusters in the
ensemble are treated separately. A major result in [1] is
that single-objective PCE outperforms two-objective PCE in
terms of efficiency, at the cost of lower accuracy in consensus
clustering.

In this paper, we enhance the single-objective PCE for-
mulation, with the ultimate goal of providing more effective
formulations capable of reducing the accuracy gap with the
two-objective counterpart, while maintaining the efficiency
advantages. We provide theoretical insights into the single-
objective function, and introduce two heuristics that overcome
the major limitations of the previous single-objective PCE
formulation. Experimental evidence has demonstrated the sig-
nificance of our proposed heuristics. In fact, results have not
only confirmed a far better efficiency w.r.t. two-objective PCE,
but have also shown the claimed improvements in accuracy of
the consensus clustering obtained by the new single-objective
PCE.

I. INTRODUCTION

Projective clustering and clustering ensembles represent
two recent advances in data clustering. Clustering ensem-
bles [2]-[5] are based on the idea of exploiting the in-
formation provided by a set of clustering solutions (the
ensemble) in order to extract a consensus clustering, i.e., a
clustering solution that summarizes the information available
from the ensemble. The input ensemble is usually generated
by varying one or more aspects of the clustering process,
such as the clustering algorithm, the parameter setting,
and the number of features, objects, or clusters. Projective
clustering [6]-[9] aims to discover clusters that correspond
to subsets of the input data and have different (possibly
overlapping) dimensional subspaces associated with them.
Projected clusters tend to be less noisy—each group of data
is represented in a subspace which does not contain irrel-
evant dimensions—and more understandable—exploring a
cluster is easier when few dimensions are involved.

In [1], projective clustering and clustering ensembles are
treated for the first time in a unified framework. The un-
derlying motivation of that study is related to the two major
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issues in data clustering, i.e., the high-dimensionality and the
lack of a-priori knowledge, which usually co-exist in real-
world applications. To address both issues simultaneously,
the problem of projective clustering ensembles (PCE) is
formalized in [1]. PCE is formulated as an optimization
problem by exploiting the information available from the
input ensemble, and a robust projective consensus clustering
is sought as a solution to that problem. The PCE objective
function meets desirable requirements, including the inde-
pendence from the specific clustering algorithm and from
any prior knowledge on the setup for ensemble generation,
the capability of handling hard as well as soft data clustering,
and of enabling feature weighting.

Two formulations of PCE are described in [1], namely
two-objective and single-objective PCE. The former involves
two objective functions, which separately consider the data
object clustering and the feature-to-cluster assignment. This
multi-objective optimization problem is solved by a well-
founded heuristic, in which a Pareto-based Multi-Objective
Evolutionary Algorithm, called MOEA-PCE, is used to avoid
combining the two objective functions into a single one.
However, although this strategy has been found to be par-
ticularly accurate [1], it may incur a number of issues that
are intrinsic to a two-objective PCE formulation, such as
inefficiency, hard parameter setting, and hard interpretation
of results.

The single-objective PCE formulation has instead one
objective function, which acts as an error criterion for the
computation of a candidate cluster solution. It involves both
the object-based and the feature-based representations of
a candidate cluster. Based on this formulation, the EM-
like heuristic EM-PCE [1] has been developed to overcome
the major drawbacks of two-objective PCE, inefficiency
in particular. Unfortunately, other issues arise with single-
objective PCE, which result in a weaker formulation than
the two-objective counterpart. As a result, single-objective
PCE is outperformed by two-objective PCE in terms of
effectiveness [1].

In this paper, we provide an insight into the objective
function of single-objective PCE, and address its weak-
nesses. A major goal of our analysis is to develop enhanced
formulations and heuristic algorithms for PCE that overcome



the drawbacks of single-objective PCE while maintaining the
advantages w.r.t. two-objective PCE. More specifically, we
provide two formulations to enhance single-objective PCE:

o Enhanced EM-based PCE, which directly refines the
EM-like single-objective PCE formulation. It intro-
duces additional terms in the objective function to
consider, not only the feature-based representations of
the objects, but also the information about the object-to-
cluster assignments. This is achieved via a maximiza-
tion of the probability of co-membership of objects to
clusters in the ensemble solutions.

e Enhanced 2-Step-based PCE, which is designed to
overcome the mutual dependence between the object-
and feature-to-cluster assignment functions. The key
idea of this formulation is to perform a two-step
scheme: the object-to-cluster assignments are optimized
first, and independently of the feature-to-cluster assign-
ments, which are then optimized in the second step.

Experimental results have shown that both the proposed
enhanced formulations of single-objective PCE lead to a
significant improvement in accuracy w.r.t. the basic EM-like
single-objective PCE. Thus, our enhancements reduce the
effectiveness gap w.r.t. the two-objective PCE formulation,
while maintaining a large advantage in terms of efficiency.

II. BACKGROUND
A. Projective Clustering Ensembles: Problem Definition

Let D = {d1,...,0n} be a set of D-dimensional
points (data objects), where 6, = (0n1,...,0np), VN €
{1,..., N}. A projective clustering solution C' defined over
D is a triple (L, T, A):

o L={l,...,lx} is aset of cluster labels that identify

the K clusters in the solution.

e I': L xD — Sr is a function which stores the proba-
bility that object 0, belongs to the cluster labeled with
{x, such that S T'(fy,3,) = 1,¥n € {1,..., N},
where T'y,, denotes I'({y, 0y,).

o A:Lx{l,...,D} — [0,1] is a function that stores the
probability that the d-th feature is a relevant dimension
for the objects in the cluster labeled with ¢, such
that 37 A(ly,d) = 1,Vk € {1,..., K}, where Agg
denotes A(¢y, d).

A projective ensemble defined over D is a
set £E={CW ... Cc™}  where each C(™)
(£m T Alm)Y is a projective clustering solution
defined over D, Ym € {1,...,M}, and L& N L) = {,
Vi,j € {1,...,M},i # j. Clustering solutions in £ can
contain in general a different number of clusters.

A projective ensemble & is associated with a (global)
label set L, defined as L = {l;,...,15} = UY_, £™.
Each cluster labeled with 1, € L is associated with an
object-based representation and a feature-based represen-
tation given by the vectors ¥, = (yp1,...,7vnn) and

S}L = (0p1,.-.,0nD), respectively. Vector 4, contains the
probabilities that the data objects in D belong to cluster 13,
which are retrieved from the function I' of the projective
clustering solution that contains 1;; the function A defines
gh, similarly. Formally, let (m, k) be a pair corresponding
to any h € {1,...,H} such that the cluster ¢; of the
solution ™) = (£m) T(m) Ay € £ corresponds to
the cluster 1; it holds that 7, = (I'"”,... . T\")) and
5= (A A,

B. Single-objective PCE

In [1], PCE is formulated as an optimization problem with
a single objective function, which considers both the object-
to-cluster and the feature-to-cluster assignments in &:

cr = argman(C’,S) (1)
¢
s.t.
K D
D lin=1%n Y Aw=1 Y
k=1 d=1
Pin >0, Agg >0, Vk,¥n,vd 3)
where
) K N  H D )
QUC,E=D D Th > ) (Akd - 5hd) “4)

and a > 1 is an integer that guarantees that Lin ranges
within [0, 1] (instead of {0,1}).

To solve the above problem, the EM-based Projective
Clustering Ensembles (EM-PCE) heuristic is defined. To find
the optimal values of f;m (resp. Ak.d), while keeping Akd
(resp. f‘;m) fixed, EM-PCE iterates over two main EM-like
steps using the equations:

K 1 -1
. Xin \ o1 . A%
kn = [Z(XMJ ] and R =y

k'=1

where

H b )
Xin = Z Vhn Z (Akd - 5hd) )

h=1  d=1
N H N
Vi=) T =M I, (6)
n=1 h=1 n=1
N "
Zra =Y T > Yhn Ona (7
n=1 h=1

ITII. SINGLE-OBJECTIVE PCE: ENHANCEMENTS
A. Issues in single-objective PCE

To illustrate the issues that affect the single-objective
PCE formulation, we first provide an alternative explanation
of the function @) defined in (4). For this purpose, let us
consider each object 0,, as a multi-valued instance described
by the set of vectors {~1, X 51, e YHn X gH} ie., the



set {01,...,0m} of feature-based representations of the
projective clusters of all the solutions in the ensemble (cf.
Sect. II-A), weighted by the probabilities vy, ..., vg, that
0, belongs to any cluster 1, Vh. We refer to {71, X
51,...,7Hn X 5}1} as the feature-based representation of
object 0,,. Within this view, function @ can be interpreted
as a special version of the function optimized by the K-
means clustering algorithm, in which the following aspects
hold. Each cluster labeled with fk within the candidate
projective solution C has as centroid the vector of features
(Akl, e AkD), i.e., the values that are eventually used as
representative of the feature-to-cluster assignment of cluster
ék. The distance between any object 0,, and the centroid
of any cluster 0y, is computed by summing the Euclidean
distances between the centroid (Akl,...,AkD) and the
vectors {d1,...,0} belonging to the multi-representation
of 0, where each distance is weighted by the correspond-
ing Yn, (indeed, the distance is computed as Xy, =
Zthl Yhn ZdD:l (Akd — 5hd)2). Since the membership of
any object g, to any cluster 0, may be soft, the distances
between 4, and the centroid of cluster /j, are multiplied by
f‘gn, which denotes the probability that o,, belongs to 0.
According to the above interpretation, we can state that:

1) the feature-to-cluster assignments of any cluster 0y
(i.e., the values (Am, cel AkD)) are given by the vec-
tor that minimizes the (weighted) squared Euclidean
distance from all the vectors that compose the feature-
based representation of the objects in 0y

2) the compactness of a cluster ék is measured only
according to the feature-based multi-representation of
the data objects; indeed, it is inversely proportional to
the X}, values of any pair of objects 0,, within ék.

The first statement is reasonable since, for each cluster la-
beled with /), the probability that a feature d represents well
cluster £, is directly proportional to how well the objects in
0y, are represented by the feature d in the ensemble. On
the other hand, a major issue arises from statement 2, as
discussed in the following example.

Example:  Given a projective ensemble &£, let us first
consider two objects 0; and 0; which, according to the
information available from &, are always or often clustered
together (i.e., Y1, |vni — va;| is equal or close to 0). It is
desirable that any projective consensus function guarantees
that 0; and 0; are clustered together in the output projective
consensus clustering as well (i.e., it should be guaranteed
that Zkl,(zl [Txi — Txj| is equal or close to 0). This re-
quirement is satisfied by function @); indeed, the fact that
0; and 0; always or often belong to the same cluster in the
solutions of the ensemble clearly implies that they also share
similar 7, and 7,; values and, therefore, similar X}, and
X}; distances from any given vector (Akl, LA D)

Unfortunately, wrong decisions may be taken using func-
tion @ if the opposite situation happens, i.e., when 0; and

0; are never or seldom clustered together according to the
information available from & (i.e, when 37 [yp; —yn;] is
equal or close to 2M). This case should ideally lead to the
assignment of 0; and 0; to different clusters in the output
consensus clustering (i.e.,g:kK:1 |T'xi — ;| should be equal
or close to 2K). However, function () does not guarantee
this: it may happen, in fact, that the (distinct) clusters of
& to which 0; and &; belong, share similar feature-based
representations, which is sufficient to make Xj; = Xy , Vk.
In this case, 0; and ¢; will be clustered together with high
probability in the projective consensus clustering, which
conflicts with the information available from &. ]

The issue illustrated above arises because function
measures the distance between any pair of objects using only
their corresponding feature-based representations.

B. Enhancing Single-objective PCE

1) The E-EM-PCE algorithm: Our first approach to over-
come the issues explained in the previous subsection aims to
“complete” function (), by adding a term which takes into
account the dissimilarity of any two objects measured ac-
cording to how often they are clustered together in the vari-
ous solutions {C'("), ... CM)} of the input ensemble &. For
each cluster ék, given that object g,, belongs to ék, it should
be guaranteed that any other object 0,/ (n’ # n) belongs to
/ r if and only if 7,/ is often clustered with &, in the ensem-
ble. In other words, our goal is to maximize the probability
that both the events “0,, and 0, are clustered together in
E” (denoted as A,, ) and “0, belong to ék” (denoted
as B,/) occur. Maximizing Pr(A,, N By) Yn' # n is
equivalent to minimize 1 — Pr(A,,» N By/) ¥n' # n. Since
() is minimized, the latter terms are added.

Therefore, we define (Vk,Vn) Xp, = > .., (1 —
Pr(A,n N By)), which, assuming independence between
A, and By, can be computed as:

X} = Y (1=Pr(Apn) Pr(By)) = Y (1-Pr(App) Crnr)
vn'#n Vn'#n

It can easily be shown that

M H
1
Pr(Apn) :§ :Pr(A,m, |C(m) pr(C(m) = ME :Wmm,
m=1 h=1

@®)
Thus, the final expression for X}, is
- H
k, ’
Xl;n = Z - ]\; Z Yhn Yhn! 9
Vn'#n h=1

The new function to be optimized, comprised of the terms
X.,,» becomes

A~ K N ~
Qr(C,&) =Y "> Tiu Xin (10)

k=1n=1



Algorithm 1 E-EM-PCE

Algorithm 2 E-2S-PCE

Input: a projective ensemble £ defined over a set D of data objects; the
number K of clusters in the output projective consensus clustering
Output: the projective consensus clustering C*
L* —{1,...,K}
(I'*, A*) «— randomGen(&, K)
repeat
compute I'* according to (12)
compute A* according to (13)
until convergence
C* = <E*7I‘*7A*>

A A e

where

K = gy Xin + 7 Xl (1
subject again to the constraints listed in (2)-(3). The two
terms Xy, (defined in (5)) and X, are normalized in order
to make them comparable (indeed, it can be easily proved
that Xy, € [0,2M] and X}, € [0, N—1]).

It is straightforward to see that the new objective function
(@ g mitigates the problem of single-objective PCE explained
in the previous subsection. Indeed, the additional terms X ,’m
in Qg compare any pair of objects considering not only
their feature-based representations, but also the information
on how often they are clustered together in the ensemble.

In order to provide a heuristic solution for the PCE formu-
lation involving function (), we resort to the EM paradigm
and propose an algorithm called Enhanced EM-based Pro-
jective Clustering Ensembles (E-EM-PCE) (Alg. 1). Like
EM-PCE, the proposed E-EM-PCE comprises two main
steps, which are iterated until convergence. However, the
algorithm now exploits the function Q) defined in (10) (in-
stead of @)). The objective is again to find an optimal solution
for f‘;m, while keeping Akd fixed, and vice versa. The basic
equations for the two steps are as follows (Vk, Vn, Vd):

K )?n 1

k'=1

Zid

AZdZTk

(13)
where Xin, Yy and Zig are defined in (11), (6) and (7),
respectively. The way these expressions are derived implies
that Alg. 1 converges to a local minimum of the function
Qg in a finite number of steps.

2) The E-2S-PCE algorithm: Looking at (12), it can be
noted that the object-to-cluster assignments (i.e., I'},, values)
computed by E-EM-PCE still depend on X, (1ndeed Iy,
inversely proportional to Xy, = Xy /2M + X int (N )).
This is a weakness of E-EM-PCE. Although the dependence
is mitigated by the presence of X}, , the reasoning explained
in Sect. III-A would suggest that I';;,, should not depend
on Xy, at all (see Example in Sect. III-A). Taking this
into account, we propose an alternative heuristic, called

Input: a projective ensemble £ defined over a set D of data objects; the
number K of clusters in the output projective consensus clustering
Output: the projective consensus clustering C*

I: P « pairwiseObjectDistances(E) {(14)}
. I'* « objectPartitioning(D, P, K)
o A* — deltaValues(I'™, £) {(18)}

2
3
4 L* —{1,...,K}
5. C* = (£*,T*, A%)

Enhanced 2-Step-based Projective Clustering Ensembles (E-
28-PCE) (Alg. 2). The proposed E-2S-PCE discards the EM-
like optimization paradigm to embrace a scheme consisting
of two main steps which are executed sequentially. Since
I';,, values should not be influenced by A} ; values (whereas
the vice versa should not hold), the key idea is to first
compute I';,~independently of A}, (first step), and, once
the optimal I'},  are available, choose Aj ; consistently with
I';,, (second step). This technique removes the undesired
“dependences” (i.e., I'j,, on Aj,) while maintaining the
desirable ones (i.e., A}, on I'} ).

In Alg. 2, the first step (Lines 1-2) is carried out by
resorting to a well-established idea in standard clustering
ensembles, i.e., performing a clustering task over the input
set D of data objects based on pairwise distances derived
from the so-called co-occurrence matrix P. In order to
consider (possibly soft) projective clustering solutions, we
define any entry P,,,» (n # n') of P as one minus the
probability (cf. (8)) that o,, and o, are clustered together
according to the information available in &:

mwﬂ——zwmw (14)

Once the objects in D have been clustered according to the
pairwise distances in P, the feature-to-cluster assignments
are computed exploiting the information available from both
the results obtained by the clustering task and the ensemble
(Line 3). The objective is to represent the set of objects in
each cluster discovered in the first step to reflect the feature-
to-cluster assignments as accurately as possible. To this end,
we define the following optimization problem:

A* = argrnians(A,F*,E) (15)
A
S.t.
K
ZAkd:LVk’ and Ay > 0,Vk,Vd (16)
k=1
where

H D
Qa5(A,T*,€) ZZF Z%nZ(Akd—(Shd)Q a7
=1

k=1n=1 h=1

Note that Qo is the same as @ (cf. (4)) in which I" values
are fixed (i.e., they are given by function I'* computed
in the first step of E-2S-PCE). This choice is essentially
motivated by the reasoning reported in Sect. III-A. Indeed,



according to function @), the feature-to-cluster assignments
A%y, ..., A}p of any cluster 0y, are computed by consid-
ering the “average” feature-to-cluster assignments of the
objects within cluster Ek, i.e., the final A* represents a kind
of centroid for the objects assigned to 0, according to the
I'* function. The optimal solution of the problem (15)-(16)
is given by (Vk, Vd):

Ay = 2k (18)

where

N
Yk =M Z an and de = Z Fkn Z"}/}m 5hd

n=1 n=1

3) Computational remarks: Let D be a set of N D-
dimensional objects, £ be a projective ensemble of size
M defined over D, and K be the number of clusters
in the output projective consensus clustering; also, let us
assume that H is O(K M). It can be proved that the
computational complexities of the proposed E-EM-PCE and
E-2S-PCE are O(MKN(IK+D)) and O(MKN(N+D)),
respectively. Note that MOEA-PCE and EM-PCE have costs
O(ItMK?(N + D)) and O(M K N D), respectively.

IV. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation was to assess
accuracy and efficiency of the consensus clusterings obtained
by the proposed E-EM-PCE and E-2S-PCE, and to compare
them against the MOEA-PCE and EM-PCE algorithms. To
this end, we followed the methodology described in [1] for
generating ensembles, for setting the parameters of MOEA-
PCE and EM-PCE, and for selecting the test datasets. We
used eight benchmark datasets from the UCI Machine Learn-
ing Repository [10], namely lris, Wine, Glass, Ecoli, Yeast,
Segmentation, Abalone and Letter, and two time-series
datasets from the UCR Time Series Classification/Clustering
Page [11], namely Tracedata and ControlChart.

A. Assessment criteria

We assessed the quality of a consensus clustering C' =
(L,T,A), with |£| = K, by evaluating the similarity of C
w.r.t. a reference classification.

Let C = (L,T,A) denote a reference classifica-
tion, where £ = {fi,...,{z} and T' are provided
with D, and A s computed as suggested in [8], i.e.,
as Apg = exp(—Xpa/h)/ S5 _; exp(—Xpar/h), Vk €
{1,...,K},d € {1,...,D}, where the LAC’s parameter
h was set equal to 0.2 and:

N ~
Xpd = ( > Fim>
n=1
N (-1 N _
Ckd = ( Z Fkn) z Irnona
n=1

n=1

-1 N

Z Ty (Ekd - Ond)2
n=1

Similarity between C' and C was computed in terms of the
Normalized Mutual Information, by taking into account their
object-based (NNMI,) representations, feature-based repre-
sentations (NMIy), or both (INMI, ), and by adapting the
original definition given in [2] to handle soft solutions. Due
to space limitations, here we report the formal definition of
NMI,; (NMI, and NMI¢ can be derived in a similar way):

Z Z i xlog (i)
NMI,;(C,C) = ==L =
VHor(C) x Hop(C)

where N b
Crrr=> Y TinBralkrnAra
n=1d=1
N D N D
=Y Trnlpa, =) Tpwnlpyg
n—=ld=1 n—=ld=1
i K B K )
Hop(C)==Y %log%, Hop(C)=— % log %
k=1 k=1
Toy ZZ(ZFerAkd>(ZFk’nAk/d)
n=1ld=1 k=1

This evaluation stage was devised to demonstrate that the
consensus clusterings computed by the proposed methods
are generally closer to the reference classification than any
clustering solution randomly chosen from the ensemble.
The ultimate goal was to assess the gain/loss in similarity
between C' and C' w.r.t. the average similarity between C' and
the solutions in the ensemble. Formally, we were interested
in evaluating the quantities ©,¢, ©,, and Oy (the larger
each of these quantities, the better the quality of C'); Oor
is defined as NMI,;(C, C)— avgoee NMI 5 (C, C) (©, and
© are defined similarly).

B. Results

1) Accuracy: For each algorithm, dataset and ensemble,
we performed 50 different runs. We report clustering results
obtained by the proposed E-EM-PCE and E-2S-PCE, and
the earlier EM-PCE and MOEA-PCE in Table L.

Both E-2S-PCE and E-EM-PCE were able to produce
consensus clusterings with higher ©,; than EM-PCE (first
3-column groups in Table I), on average by 0.137 and
0.129, respectively. In particular, compared to EM-PCE,
E-EM-PCE obtained an average improvement of 0.018,
with a maximum gain of 0.071 (Ecoli), whereas E-2S-PCE
obtained an average improvement of 0.026, with peaks above
0.050 on three datasets up to a maximum of 0.084 (Trace).
Comparing E-2S-PCE with E-EM-PCE, the former achieved
higher quality on nearly all datasets, with an average gain of
about 0.010 and peaks on Trace (0.064) and Wine (0.058).



Table I
EVALUATION W.R.T. THE REFERENCE CLASSIFICATION
O O, Eh

E- E- E- E- E- E-

MOEA| EM | EM | 2S ||MOEA| EM | EM | 2S ||[MOEA| EM | EM | 2§

data PCE |PCE|PCE|PCE|| PCE |PCE|PCE|PCE|| PCE |PCE|PCE|PCE
Iris || +146 [+168]+167|+098]| +319 [+228[+252[+169(| +198 [-095[-092[-017
Wine || £136 [+083[+090[+ 148 +201 [+130[+134[+294|[ +152 [+030[+030[-006
Glass || £105 [+162|+173[+165|| 092 [+134|+134|+141|| +£048 [+060[+059|+224
Ecoli || +164 |+086|+157|+144|| +245 [+125|+159|+144|| +042 [+042|+044|+219
Yeast || +£049 |+021[+036|+057|| +090 |+066|+076(+057| +006 [+090{+092(+080
Segm. || +137 [+144[+158]+159]| +102 [+206[+207|+182|| 075 [+079[+079]+055
Abal. || 116 [+111]+129[+137|| +141 [+116]+129[+138]| +093 [+092[+093[+120
Letter || +111 [+107[+128[+137|| +146 [+122|+134[+143[| £092 [+097[+087|+125
Trace || +097 [+019[+039[+103]| +032 [+026[+033|+087|| -007 [+114[+115]-013
Contr. || £091 [+204]+209(+220]| +050 [+011[+034[+027|| +233 |+416|+416|+416
min || +049 [+019[+036[+057[] 032 [+011]+033[+027[| -007 [-095]-092-017
max || 164 [+204[+209(+220|| +319 |+228|+252(+294|| +233 |+416|+416|+416
avg || 115 |[+110[+129|+137|| +142 |+116|+129|+138|| +093 |[+093|+092|+120

The superior performance of E-2S-PCE and E-EM-PCE
w.r.t. EM-PCE was also confirmed in terms of object-based
representations, with average ©, equal to 0.138 and 0.129,
and average improvement w.r.t. EM-PCE of 0.022 and 0.013,
respectively. In terms of feature-based representations, the
two outperforming methods led to an average O equal to
0.12 and 0.092; compared to EM-PCE, E-2S-PCE obtained
an average improvement of 0.028 and E-EM-PCE was
substantially comparable to EM-PCE.

A further important remark is that the proposed algorithms
in general reduce the gap between MOEA-PCE and the basic
EM-PCE. Indeed, looking at Table I, E-EM-PCE and E-2S-
PCE obtained average © values which are comparable or
even better than MOEA-PCE. More precisely, E-EM-PCE
and E-2S-PCE improved MOEA-PCE by 0.014 and 0.022,
respectively, in terms of ©,;. Furthermore, E-2S-PCE out-
performed MOEA-PCE by 0.027 in terms of ©y, and was
still comparable in terms of ©,.

2) Efficiency: Table II reports the runtimes of the algo-
rithms MOEA-PCE, EM-PCE, E-EM-PCE, and E-2S-PCE.
EM-PCE maintained its advantage in terms of efficiency
w.r.t. E-2S-PCE and E-EM-PCE; nevertheless, the advantage
w.r.t. E-EM-PCE and E-2S-PCE was noticeable only when
the ratios K/D (i.e., the number of clusters to the number
of features) and N/D (i.e., the number of objects to the
number of features) increase, respectively. As an example,
the relative times of EM-PCE, E-EM-PCE and E-2S-PCE
were close to each other on Tracedata and ControlChart,
which are the datasets having the minimum K/D and
N/D ratios. Nevertheless, the major claim of this work
is confirmed: both the proposed E-2S-PCE and E-EM-PCE
algorithms maintain a large efficiency gain w.r.t. MOEA-
PCE, like the basic EM-PCE.

V. CONCLUSION

The projective clustering ensembles (PCE) problem was
originally introduced in [1] to provide a robust projective
consensus clustering from a given ensemble of projective
clustering solutions. In this paper, we have focused on

Table II
EXECUTION TIMES (MILLISECONDS)

MOEA- | EM- | E-EM-| E-25-
’ data H PCE ‘ PCE ‘ PCE ‘ PCE ‘
Iris 17223 | 55 | 250 | 353
Wine || 21,098 | 184 | 477 | 522
Glass || 61,700 | 281 | 1.257 | 939
Ecoli || 94762 | 488 | 2,354 | 2,291
Yeast || 1,310,263 | 1477 | 5,459 | 80,158
Segm. || 1,250,732 | 11,465 | 37,048 | 154,720
Abal. _||13,245,313] 34,000 |312,485]1,875,968
Lefter || 7.765.750 | 54,641 [451,453(2,057,187
Trace || 86,179 | 4,880 | 4,138 | 2.285
Conir._ || 291,856 | 2,313 | 2.900 | 9.874

the formulation of PCE as a single-objective optimization
problem, and proposed new, well-founded enhancements to
single-objective PCE in order to overcome major limitations
of the early formulation in terms of effectiveness. As a result,
we have developed two heuristics, namely E-EM-PCE and
E-2S-PCE, which follow different approaches to embedding
both object-based and feature-based cluster representations
in the objective function. Experimental evidence has shown
that the new single-objective PCE algorithms achieve sig-
nificant improvements in accuracy. At the same time, they
still maintain a large advantage in terms of efficiency w.r.t.
the two-objective PCE.
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