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Abstract—The increasing demand for dealing with uncer-
tainty in data has led to the development of effective and
efficient approaches in the data management and mining
contexts. Clustering uncertain data objects has particularly
attracted great attention in the data mining community. Most
existing clustering methods however have urgently to come
up with a number of issues, some of which are related to a
poor efficiency mainly due to an expensive computation of the
distance between uncertain objects.

In this work, we propose a novel formulation to the problem
of clustering uncertain objects, which allows for reaching
accurate solutions by minimizing the variance of the mixture
models that represent the clusters to be identified. We define a
heuristic, MMVar, which exploits some analytical properties
about the computation of variance for mixture models to
compute local minima of the objective function at the basis of
the proposed formulation. This characteristic allows MMVar
to discard any distance measure between uncertain objects
and, therefore, to achieve high efficiency. Experiments have
shown that MMVar outperforms state-of-the-art algorithms
from an efficiency viewpoint, while achieving better average
performance in terms of accuracy.

I. INTRODUCTION

Uncertainty in data is typically due to a variety of
phenomena such as imprecision in physical measurements,
randomness implicitly present in a process of data gener-
ation/acquisition, data staling. As a result, uncertain data
is naturally present in several application domains. For
instance, sensor measurements may be imprecise at a certain
degree due to the presence of various noisy factors (e.g.,
signal noise, instrumental errors, wireless transmission) [1].
Another example is given by data representing moving
objects, which continuously change their location so that the
exact positional information at a given time instant may be
unavailable [2]. Moreover, some methods have recently been
defined to handle uncertainty in gene expression data [3].
Further examples come from distributed applications, pri-
vacy preserving data mining, and forecasting or other statis-
tical techniques used to generate data attributes [4].

The heterogeneity of application domains in which data
uncertainty is significant has led to the study of various
notions of uncertainty [5]–[7]. In general, uncertainty can
be considered at relation, tuple or attribute level [8], and is

usually specified by fuzzy models, evidence-oriented mod-
els, and probabilistic models [9], [10]. In this work, we are
interested in attribute-level uncertainty modeled according
to probabilistic models. Specifically, we focus on uncertain
data representations based on probability distributions that
are aimed at describing the likelihood that any given object
appears at each position in a multidimensional space [11]–
[14]. We hereinafter refer to data objects described in terms
of probability distributions as uncertain objects.

Knowledge discovery and mining in uncertain objects lead
to a number of special challenges which are mainly due to
the need for developing adequately effective and efficient
solutions to deal with uncertainty. Particularly, among data
mining tasks, clustering uncertain objects has gained tremen-
dous interest in the last few years [11]–[17]. Clustering
uncertain objects is challenging due to the following major
issues:

• Existing algorithms require some notion of distance
between uncertain objects, whose definition is a non-
trivial task. In this respect, the two main approaches to
compute the distance between uncertain objects have
both some weaknesses in their own. The first approach
consists in computing the distance between aggregated
values extracted from the probability distributions of
uncertain objects (e.g., expected values), and has a
complexity linear w.r.t. the number S of statistical
samples used for representing distributions. The second
approach involves the computation of the so-called
expected distance between distributions [13], which
aims to exploit the whole information available from
the distributions and works in O(S2). Although in prin-
ciple efficient, the first approach (i.e., distance between
aggregated values) may easily incur an accuracy issue,
since all the information available from the distributions
is collapsed into a single, representative numerical
value. An opposite consideration holds instead for
the expected distance based approach, which is more
accurate but also inefficient.

• A further, more critical issue concerns the efficiency
of existing algorithms. This is partially related to the



need for a distance measure between uncertain objects
discussed above, since the use of a slow measure clearly
leads to poor efficiency. However, more generally, it
intrinsically depends on the specific formulations at
the basis of existing algorithms, which constrain such
heuristics to continuously execute critical operations,
such as access to the samples of distributions (e.g.,
needed for integral approximations) and/or the com-
putation of distances between objects.

In this paper, we propose a novel formulation to the
problem of clustering uncertain objects, which aims to
overcome both the above issues, while maintaining high
accuracy. The key idea of the proposed formulation is to take
into account the mixture model of a set (cluster) of uncertain
objects and to define a criterion based on the minimization of
the variance of the mixture models that represent the clusters
to be discovered. This criterion is devised to fulfill both
accuracy and efficiency requirements: accuracy is motivated
as minimizing the variance of cluster mixture models leads
to discover highly homogeneous clusters; at the same time,
some analytical properties we derive about the computation
of mixture models and their variances lead to the definition
of a fast heuristic that does not require any distance mea-
sure between uncertain objects. Within this view, the main
contributions of this work can be summarized as follows:

1) We propose a novel formulation to the problem of
clustering uncertain objects, essentially based on the
minimization of the variance of the mixture models
that represent the clusters of uncertain objects to be
discovered.

2) We derive results based on analytical properties about
the objective function at the basis of the proposed
formulation, which enable the design of fast heuristics
for clustering uncertain objects.

3) We define MMVar, a heuristic algorithm to compute
good approximations of the proposed formulation.
Major features of MMVar include: (i) high efficiency,
(ii) no need for using distance measures between
uncertain objects, (iii) capability of discovering local
minima of the proposed objective function.

4) We have conducted an experimental evaluation on
several datasets to assess our MMVar from both effi-
ciency and accuracy viewpoints, as well as to compare
it with prominent state-of-the-art algorithms. In this
respect, MMVar revealed to be always faster and on
average more accurate, particularly achieving the best
maximum accuracy in more than half cases we have
considered.

II. RELATED WORK

We briefly review the main state-of-the-art algorithms for
clustering uncertain objects, paying special attention to their
computational complexities (Table I). In this respect, we

Table I
COMPUTATIONAL COMPLEXITIES OF PROMINENT STATE-OF-THE-ART

ALGORITHMS FOR CLUSTERING UNCERTAIN OBJECTS

algorithm total online offline
UK-means O(I S k n m) O(I S k n m) —
CK-means O(n m (I k + S)) O(I k n m) O(S n m)
UK-medoids O(n2(I + S2 m)) O(I n2) O(S2 n2 m)
FDBSCAN O(S2 n2 m) O(S2 n2 m) —
FOPTICS O(S n2 m) O(S n2 m) —
U-AHC O(n2(S m + log n)) O(n2(S m + log n)) —

adopt the following notation: n is the size of the input set of
uncertain objects, m is the dimensionality of the uncertain
objects (i.e., number of features), k is the desired number
of clusters, I is the number of iterations for convergence
required by partitional clustering algorithms, and S denotes
the number of statistically independent samples employed
for representing probability distributions.

One of the earliest attempts to solve the problem of
clustering uncertain objects is the partitional algorithm UK-
means [12], which is essentially an adaptation of the popular
K-means to the context of uncertain objects. UK-means has
a computational complexity of O(I S k n m).

In order to improve the efficiency of UK-means, [16] and
[18] propose some pruning techniques to avoid the calcula-
tion of redundant object-to-centroid distances, whereas the
CK-means algorithm [17] exploits the moment of inertia
of rigid bodies in order to reduce the execution time for
computing the aforementioned distances. CK-means com-
prises two main steps: in the first one (offline phase),
the distances between each object and its mass center are
computed in O(S n m), whereas the second step carries
out a classic partitional relocation scheme; in this step,
the distances computed in the first step are exploited to
obtain a K-means-like strategy working in O(I k n m).
A further partitional algorithm is UK-medoids [13], which
employs proper distances between uncertain objects that are
pre-computed offline in O(S2 n2 m); these distances are
then employed in a classic K-medoids scheme working in
O(I n2).

Density-based approaches to clustering uncertain ob-
jects have also been developed [11], [15]. In [11], the
FDBSCAN is proposed as a fuzzy version of the popular
DBSCAN, whose computational complexity, in the worst
case, is O(S2 n2 m). A similar approach is presented in
FOPTICS [15], which resorts to the well-known density-
based clustering algorithm OPTICS. By exploiting proper
data structures (i.e., core object arrays and reachability lists),
FOPTICS can be executed in O(S n2 m).

We finally mention U-AHC [14], the first hierarchical
algorithm for clustering uncertain objects, whose complexity
is O(n2(S m + log n)).



III. MODELING UNCERTAINTY

Uncertain data objects are usually represented using the
multivariate uncertainty model [14]. A multivariate uncer-
tain object o is defined as a pair (R, f), where R ⊆ <m

is the m-dimensional region in which o is defined and
f : <m → <+

0 is the probability density function of o at
each point ~x ∈ <m, such that:

f(~x)d~x = 0, ∀~x ∈ <m \ R and f(~x) > 0, ∀~x ∈ R
Note that the above definition also includes the case where

uncertain objects are represented by probability mass func-
tions, as well as the case where the pdfs are approximated
by a set of statistical samples. For the sake of brevity, we
hereinafter refer only to the continuous uncertainty model, as
the corresponding discrete version can be trivially obtained
by replacing integrals with sums.

Given any (multivariate) uncertain object o = (R, f),
the corresponding expected value (~µ), second order moment
(~µ2), and variance (~σ 2) are defined as follows:

~µ = (µ1, . . . , µm) =
∫

~x∈R
~x f(~x) d~x (1)

~µ2 = ((µ2)1, . . . , (µ2)m) =
∫

~x∈R
~x 2f(~x) d~x (2)

~σ2 =((σ2)1, . . . , (σ2)m)=
∫

~x∈R
(~x−µ)2 f(~x) d~x = ~µ2−~µ2

(3)
where ~µ2 denotes the vector (µ2

1, . . . , µ
2
m). Although the

notion of variance for multivariate distributions is meaning-
ful only along a particular dimension, we consider the sum
of variances along each dimension to resemble a notion of
“global” variance in terms of a single numerical value σ2.
Formally, given any vector ~σ 2 of variances, we have:

σ2 = ‖~σ 2‖1 =
m∑

j=1

|(σ2)j | =
m∑

j=1

(σ2)j =
m∑

j=1

(µ2)j−µ2
j (4)

If f is either a probability mass function or a pdf
approximated by a set S of statistical samples, (1) and (2)
can be rewritten as follows:

~µ=
(∑

~y∈S
f(~y)

)−1∑

~y∈S
~y f(~y) ~µ2=

(∑

~y∈S
f(~y)

)−1∑

~y∈S
~y 2f(~y) (5)

IV. CLUSTERING UNCERTAIN OBJECTS VIA CLUSTER
VARIANCE MINIMIZATION

Our proposed formulation to the problem of clustering un-
certain objects is based on the notion of uncertain prototype
for a given set of uncertain objects. An uncertain prototype
is essentially described by the mixture model of the random
variables representing the objects in a set. Formally, given a

set C of uncertain objects, we define the uncertain prototype
PC of C as the pair (RC , fC), where

RC =
⋃

o=(R,f)∈C

R and fC(~x) =
1
|C|

∑

o=(R,f)∈C

f(~x) (6)

The rationale behind the definition of uncertain prototype
as mixture model lies in the intuition that the compactness
of a set of uncertain objects is higher as the variance of the
mixture model (i.e., uncertain prototype) representing that
set is lower. In fact, it can be proved that the variance of an
uncertain prototype computed according to (4) is equivalent
to the expected distance between any uncertain object and
the centroid of the cluster represented by that prototype.

Based on the above considerations, we propose to formu-
late the problem of clustering uncertain objects by minimiz-
ing the variance of the uncertain prototypes of the clusters to
be identified. Formally, given a set D of uncertain objects,
the objective is to find a partition C of D that minimizes the
following objective function:

J(C) =
∑

C∈C
σ2(PC) (7)

where σ2(PC) is the variance of the prototype PC of cluster
C, which is computed according to (4).

A. The MMVar Algorithm

The objective function in (7) refers to a classic NP-
hard clustering problem. In order to define a fast heuristic,
the proposed formulation to the problem aims to exploit
analytical properties about the computation of the variance
for mixture models. We now discuss such properties in
detail.

Proposition 1: Let D be a set of m-dimensional un-
certain objects, where each o ∈ D has expected value
and second order moment denoted by ~µ(o) and ~µ2(o),
respectively. Also, let C be a partition of D, PC be the
prototype of any cluster C ∈ C, and ~µ(PC), ~µ2(PC) and
σ2(PC) = ‖~µ2(PC) − ~µ(PC)2‖1 the expected value, the
second order moment and the variance of PC , respectively.
Let us consider a new partition C′ of D obtained from C by
moving an object õ from cluster C ∈ C to cluster Ĉ ∈ C. If
we denote C ′ = C \ {õ} and Ĉ ′ = Ĉ ∪ {õ}, it holds that
the value JC(C, õ, Ĉ) := J(C′) of the objective function J
for the new partition C′ is computed as:

JC(C, õ, Ĉ)=J(C)−(σ2(PC)+σ2(PĈ))+(σ2(PC′)+σ2(PĈ′))
(8)

where
σ2(PC′) = ‖~µ2(PC′)− ~µ(PC′)2‖1
σ2(PĈ′) = ‖~µ2(PĈ′)− ~µ(PĈ′)

2‖1
and

~µ(PC′)=
|C|×~µ(PC)−~µ(õ)

|C|−1
~µ2(PC′)=

|C|×~µ2(PC)−~µ2(õ)
|C|−1



Algorithm 1 MMVar
Input: A set D of uncertain objects; the number k of output clusters
Output: A partition C of D

1: compute ~µ(o), ~µ2(o), ∀o ∈ D {(1)–(2), (5)}
2: C ← randomPartition(D, k)
3: compute ~µ(PC), ~µ2(PC), ∀C ∈ C {Prop. 1}
4: v ← J(C) {(7)}
5: repeat
6: for all o ∈ D do
7: let C ∈ C be the cluster s.t. o ∈ C
8: C∗ ← arg min

Ĉ
JC(C, o, Ĉ) {(8)}

9: if C∗ 6= C then
10: v = JC(C, o, Ĉ) {(8)}
11: recompute C by moving o from C to C∗
12: recompute ~µ(PC), ~µ2(PC), ~µ(PC∗), ~µ2(PC∗) {Prop. 1}
13: end if
14: end for
15: until no object in D is relocated

~µ(PĈ′)=
|C|×~µ(PC)+~µ(õ)

|C|+1
~µ2(PĈ′)=

|C|×~µ2(PC)+~µ2(õ)
|C|+1

Proposition 1 states that, given any partition C of D and
any other partition C′ obtained from C by moving an object
from a cluster to another one, the value of the objective
function J for C′ can be computed in O(m) from J(C)
according to (8). This result puts the basis for our proposed
heuristic algorithm, called MMVar, whose major feature
lies in the capability of efficiently finding local minima of
function J , without requiring any distance measure between
uncertain objects.

The outline of MMVar is reported in Alg. 1. To exploit
the result of Proposition 1, MMVar has only to store the
expected values and second order moments of both the
objects within D (i.e., vectors ~µ(o) and ~µ2(o)) and the
prototypes that are identified at each iteration (i.e., vectors
~µ(PC) and ~µ2(PC)). MMVar consists of two main steps. In
the first step, an initialization phase (Lines 1-4) is carried out
to compute: (i) expected values and second order moments
of each object within D, according to either the exact (cf.
(1)-(2)) or approximated (cf. (5)) formulas (Line 1), (ii) an
initial random partition C of D (Line 2), (iii) expected values
and second order moments of the prototypes of the clusters
in C according to Proposition 1 (Line 3), and (iv) the value v
of function J for C according to (7) (Line 4). In the second
step, the main cycle of the algorithm (Lines 5-15) is repeated
until convergence (i.e., no object is relocated during any
specific iteration). At any iteration of the main cycle, for
each object o ∈ D, the cluster C∗ is discovered (Lines 7-8)
so that the maximum decrease in the objective function J is
obtained if o is moved to it. C∗ is discovered by applying
(8) to the current partition C; note that (8) is computed by
taking into account the value v of the objective function J
for the current partition C. If C∗ is not the same as the
cluster C which o currently belongs to (i.e., there exists at
least one cluster but C such that function J decreases if o
is moved to it), then o is moved to C∗ and both the new
value v of function J and the expected values and second

Table II
DATASETS USED IN THE EXPERIMENTS

dataset # objects # attributes # classes
Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Image 2,310 19 7
Abalone 4,124 7 17
Letter 7,648 16 10

order moments of the prototypes of clusters C and C∗ are
recomputed (Lines 9-13).

It can be proved that Alg. 1 converges to a local minimum
of function J defined in (7) in a finite number of steps and
its computational complexity is O(n m (I k + S)), where
I is the number of iterations needed for convergence. This
complexity reduces to O(I k n m) when the moments of the
various uncertain objects are computed according to some
closed-form expression in O(m), which typically happens
in a wide number of real cases. Thus, looking at Table I, it
is easy to note that the complexity of the proposed MMVar
algorithm is at worst equal to and very often (far) lower
than that of other existing algorithms for clustering uncertain
objects. This result also supports a major claim of this work,
which concerns the efficiency in solving the problem of
clustering uncertain objects.

V. EXPERIMENTAL EVALUATION

The proposed MMVar algorithm was evaluated in per-
forming effective and efficient clustering of uncertain ob-
jects. Moreover, MMVar was compared with existing par-
titional algorithms, i.e., UK-means (UKM), CK-means
(CKM), and UK-medoids (UKmed), density-based algo-
rithms, i.e., FDBSCAN (FDB) and FOPTICS (FOPT),
and the hierarchical algorithm U-AHC.

A. Methodology

Experiments were performed on both benchmark and real-
world datasets. Due to the space limits of this paper, here
we present experiments conducted on benchmark datasets
only [19] (Table II). These datasets were originally es-
tablished as collections of data with deterministic values,
therefore we generated uncertainty in these collections syn-
thetically; for this purpose, we followed the method as
described in [14].

To assess the quality of clustering solutions, we exploited
the availability of reference classifications for each dataset.
This allowed us to evaluate how well a clustering fits
a predefined scheme of known classes. For this purpose,
we resorted to the well-known F-measure (F ), which is
defined as the harmonic mean of two standard notions in
Information Retrieval, namely precision and recall. If we
denote with C̃ = {C̃1, . . . , C̃h} a reference classification and



Table III
ACCURACY RESULTS (F-MEASURE)

F-measure (F ∈ [0, 1])
data pdf UKM CKM UKmed FDB FOPT UAHC MMVar

U 0.84 0.93 0.925 0.8 0.907 0.934 0.975
Iris N 0.853 0.876 0.873 0.8 0.907 0.854 0.893

B 0.634 0.503 0.838 0.5 0.906 0.544 0.871
U 0.5 0.726 0.854 0.5 0.853 0.933 0.83

Wine N 0.5 0.708 0.599 0.499 0.714 0.76 0.723
B 0.5 0.581 0.604 0.5 0.714 0.693 0.496
U 0.65 0.663 0.668 0.286 0.596 0.724 0.609

Glass N 0.549 0.586 0.504 0.534 0.438 0.75 0.609
B 0.389 0.318 0.629 0.286 0.438 0.47 0.801
U 0.653 0.786 0.677 0.318 0.477 0.542 0.778

Ecoli N 0.593 0.734 0.507 0.523 0.477 0.509 0.748
B 0.556 0.413 0.682 0.333 0.477 0.537 0.699
U 0.503 0.562 0.598 0.198 0.535 0.465 0.623

Yeast N 0.476 0.462 0.282 0.396 0.316 0.484 0.715
B 0.413 0.31 0.456 0.2 0.316 0.402 0.722
U 0.811 0.807 0.774 0.25 0.42 0.579 0.604

Image N 0.623 0.633 0.44 0.25 0.42 0.628 0.529
B 0.533 0.353 0.644 0.25 0.42 0.537 0.701
U 0.323 0.295 0.582 0.111 0.494 0.287 0.742

Abal. N 0.282 0.217 0.257 0.343 0.209 0.307 0.386
B 0.373 0.209 0.318 0.111 0.608 0.306 0.789
U 0.528 0.633 0.757 0.182 0.319 0.546 0.685

Letter N 0.446 0.44 0.483 0.182 0.319 0.559 0.649
B 0.411 0.214 0.646 0.182 0.319 0.572 0.646
U 0.601 0.675 0.729 0.331 0.575 0.626 0.731

avg score N 0.54 0.582 0.493 0.441 0.475 0.606 0.657
B 0.476 0.363 0.602 0.295 0.525 0.508 0.716

overall avg. score 0.539 0.54 0.608 0.356 0.525 0.58 0.701
overall avg. gain 0.162 0.161 0.093 0.345 0.176 0.121 —

with C = {C1, . . . , Ck} a clustering solution, F-measure is
defined as:

F (C, C̃) =
1
|D|

h∑

i=1

|C̃i| max
j∈[1..k]

Fij

where Fij = (2 Pij Rij)/(Pij +Rij) such that Pij = |Cj ∩
C̃i|/|Cj | and Rij = |Cj ∩ C̃i|/|C̃i|, for each j ∈ [1..k]
and i ∈ [1..h]. F-measure ranges within [0, 1], where higher
values correspond to better quality results.

B. Results

1) Accuracy: Table III shows accuracy results on bench-
mark datasets for Uniform (U), Normal (N), and Binomial
(B) distributions. The last rows of this table also report, for
each method, (i) the score for each type of pdf averaged over
all datasets (for short, average score), (ii) the score averaged
over all datasets and pdfs (for short, overall average score),
and (iii) the overall average gain of MMVar computed as
the difference between the overall average score of MMVar
and the overall average scores of the other algorithms.

Looking at the overall average scores and overall average
gains, it can be noted that MMVar performed better than
any other competing method. In particular, the maximum
gain obtained by MMVar was equal to 0.345 as compared
to FDB; this algorithm revealed to be the least accurate
method, probably due to the difficulty in setting the param-
eters ε and µ. Among the other competitors, UKmed and
UAHC achieved the best results, with gaps from MMVar

equal to 0.093 and 0.121, respectively. Moreover, UKM and
CKM were comparable to each other, and in general were
less accurate than the best competing methods (i.e., UKmed
and UAHC).

Considering the average scores on the various distribu-
tions, accuracy of MMVar remained on average higher than
those of all competitors. The maximum average gain over all
competing algorithms corresponded to Binomial pdf (0.254),
whereas the minimum average gain to Normal pdf (0.134).

The results obtained on the single dataset-by-pdf config-
urations further confirmed the high accuracy of clustering
solutions obtained by MMVar in relation to the other algo-
rithms. In fact, MMVar achieved the best absolute results
on 13 out of 24 dataset-by-pdf configurations; on nine more
configurations (i.e., all the remaining ones except Wine-
Binomial and Image-Uniform), MMVar remained compa-
rable to the relative best method, with gaps below 0.15.
Finally, we point out that MMVar was in general much more
accurate than the method having the lowest computational
complexity among the competitors, which is CKM (cf.
Table I); more precisely, MMVar outperformed CKM on 19
out of 24 dataset-by-pdf configurations, with maximum gain
of 0.483 obtained on Abalone-Binomial.

2) Efficiency: We evaluated time performance of our
MMVar and the other algorithms on the selected datasets.1

We only present results for the three largest datasets, namely
Image, Abalone, and Letter; aside from the space limits
of this paper, this choice is motivated by the fact that the
performance trends observed on the remaining datasets were
roughly similar to those of the datasets we report here.

Figure 1 shows total (i.e., offline plus online) execution
times; for this analysis, we considered the computationally
most expensive version of our MMVar, which corresponds
to setting the moments of the distributions as approximated
according to a set of statistical samples (cf. Section IV).

MMVar always performed faster than all the competing
algorithms. Particularly, with the only exception of CKM,
all the other algorithms obtained execution times at least
one order of magnitude higher than MMVar. UAHC and
UKmed were mostly the slowest method (3-5 and 3-4
orders of magnitude slower than MMVar, respectively),
which should be ascribed to the intrinsic complexity of
hierarchical approaches (in the case of UAHC) and to the
slow offline computation of expected distances between
every pair of uncertain objects (in the case of UKmed). Apart
CKM, the best average performance among the competitors
was obtained by FDB, which was 1-2 orders slower than
MMVar. FDB performed as good as or better than the
other density-based algorithm FOPT (which was, in turn,
2-3 orders slower than MMVar), although the computational
complexity of FDB (in the worst case) is greater than that of

1Experiments were conducted on a quad-core platform Intel Pentium IV
3GHz with 4GB memory and running Microsoft WinXP Pro.



(a) Image (b) Abalone (c) Letter

Figure 1. Execution times (milliseconds)

FOPT (cf. Table I); this was probably due to the procedure
employed by FDB for pruning unnecessary distance calcula-
tions which behaved pretty well on the selected datasets. The
partitional algorithm UKM was always 2 orders slower than
our MMVar, comparable to or slightly faster than FOPT,
and comparable to, one order slower than, or even slightly
faster than FDB.

VI. CONCLUSION

We presented a novel formulation to the problem of
clustering uncertain objects, which essentially consists in
minimizing the variance of the mixture models that represent
the clusters to be discovered. The rationale of the proposed
criterion is twofold: on the one hand, it allows for effectively
recognizing clusters of uncertain objects, as the variance
of the mixture model of any set of uncertain objects is
inversely proportional to the compactness of that set; on
the other hand, computing the variance of mixture models
can be carried out in a very efficient way by exploiting
some analytical properties. This led us to the development
of a fast algorithm, called MMVar, to compute local optima
of the objective function at the basis of the proposed
formulation, which does not require any distance measure
between uncertain objects. Based on experiments conducted
on benchmark datasets, MMVar revealed to be faster than
prominent state-of-the-art algorithms for clustering uncertain
objects, while achieving better average accuracy.
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