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Abstract

Recent advances in data clustering concern clustering
ensembles and projective clustering methods, each address-
ing different issues in clustering problems. In this paper, we
consider for the first time the projective clustering ensemble
(PCE) problem, whose main goal is to derive a proper pro-
jective consensus partition from an ensemble of projective
clustering solutions. We formalize PCE as an optimization
problem which does not rely on any particular clustering
ensemble algorithm, and which has the ability to handle
hard as well as soft data clustering, and different feature
weightings. We provide two formulations for PCE, namely
a two-objective and a single-objective problem, in which
the object-based and feature-based representations of the
ensemble solutions are taken into account differently. Ex-
periments have demonstrated that the proposed methods for
PCE show clear improvements in terms of accuracy of the
output consensus partition.

1. Introduction

Research on data clustering [8] has traditionally assumed
that, given a set of input data and a clustering problem for
that data, (i) the problem at hand is addressed by a cluster-
ing method which is usually equipped with a certain dis-
tance/similarity measure, and (ii) all the features (dimen-
sions) of the given data are considered in the clustering task.

The above assumptions are usually given for enabling a
proposed approach to satisfy some special requirements for
data clustering, such as simplicity, practical applicability,
understandability of the results, and low computational cost.
On the other hand, such assumptions may cause any clus-
tering method to incur serious issues in both effectiveness
and efficiency, especially when (1) the clustering problem
is inherently multi-faceted as there is a number of (differ-
ently relevant) aspects according to which a clustering task
is worth of being performed, and/or (2) the input data is

highly dimensional. Issue 1 is related to the fact that a so-
lution for the clustering problem is inevitably biased due to
the peculiarities of the specific clustering algorithm being
used. Issue 2 is instead related to the so-called curse-of-
dimensionality, which breaks down the significance of the
concept of proximity (thus, cluster) as the number of dimen-
sions or features increases.

In relatively recent years, methodologies have been stud-
ied to distinctly address the above issues in clustering prob-
lems, orthogonally to the existing literature on clustering
algorithms and data proximity measures.

Clustering ensembles [12, 13, 7, 5] has recently emerged
as a powerful tool to face issue 1. Given a data collection,
a set of clustering solutions, or ensemble, can be gener-
ated by varying one or more aspects, such as the cluster-
ing algorithm, the parameter setting, and the number of fea-
tures, objects or clusters. Given an ensemble, the objective
is to extract a consensus partition, i.e., a clustering solu-
tion that maximizes some objective function (the consensus
function), which is defined by taking into account different
information available from the ensemble.

Concerning the aforementioned issue 2, a major conse-
quence of the high dimensionality is that not all features are
relevant for all data in a cluster analysis. Due to the sparsity
naturally occurring in the data representation, it is unlikely
for the data to form meaningful clusters in the full dimen-
sional space. Traditional feature selection and extraction
methods aim to reduce the number of dimensions, but they
treat the dataset as a whole; consequently, some dimensions
potentially relevant for part of the data may be filtered out.
Projective clustering [10, 14, 1, 9] aims to discover clus-
ters which correspond to subsets of the input data and have
different (possibly overlapping) dimensional subspaces as-
sociated to them. Projected clusters tend to be less noisy—
because each group of data is represented over a subspace
which does not contain irrelevant dimensions—and more
understandable—because the exploration of a cluster is eas-
ier as fewer dimensions are involved.

Projective clustering is also related to the subspace clus-



tering problem, whose main goal is to find clustering struc-
tures in every possible subspace. A major difference be-
tween these two problems is that projective clustering out-
puts a single partition of the input set of data objects,
whereas subspace clustering methods aim to find a set of
clustering solutions, each one having clusters defined in a
specific subspace.

In this paper, the problem of projective clustering ensem-
bles (PCE) is addressed for the first time. The objective is to
define methods for clustering ensembles that are able to deal
with ensembles of projective clustering solutions and pro-
vide a projective consensus partition. In particular, we focus
on ensembles composed by axis-aligned (or axis-parallel)
projective clustering solutions, i.e., solutions in which the
subspace associated to each cluster is given by a subset of
the original feature space.

The projective consensus partition to be discovered is
computed as a solution of an optimization problem formu-
lated by exploiting information available from the input en-
semble. Since we are interested in developing general meth-
ods for PCE, such objective functions have to meet the fol-
lowing strong requirements: (i) to discard the original fea-
ture values of the input data; (ii) to be independent of the
specific clustering algorithm and of any prior knowledge on
the setup for ensemble generation; (iii) to handle hard as
well as soft data clustering in a projective setting; (iv) to al-
low for unequally weighted feature-to-cluster assignments.

Within this view, we propose two formulations of PCE,
namely a two-objective and a single-objective. The first one
involves two objective functions which consider the data
object clustering and feature-to-cluster assignment, respec-
tively; the second formulation has one objective function
which acts as an error criterion in the computation of any
cluster (of a candidate clustering solution) by involving both
the object-based representation and the feature-based repre-
sentation of the cluster.

For each of the two proposed formulations of PCE,
we developed well-founded heuristics, in which a multi-
objective evolutionary strategy [2] and an EM-like approach
are employed. Experiments conducted on ten benchmark
datasets have shown that both the proposed algorithms lead
to more accurate consensus partitions, in terms of internal
similarity w.r.t. reference classifications (i.e., external clas-
sifications and clustering ensembles) and in terms of intra-
cluster error-rate.

We would like to point out that, among the existing clus-
tering ensemble and projective clustering methods in the lit-
erature, the Weighted Subspace Bipartite Partitioning Algo-
rithm (WSBPA) [5] is somehow related to the approaches
proposed in this work. However, WSBPA cannot represent
a valid solution for the projective clustering ensemble prob-
lem, since it does not satisfy any of the aforementioned re-
quirements. Indeed, WSBPA requires to access the original

features of the data objects, works only if the projective so-
lutions are generated by running a specific projective clus-
tering algorithm (i.e., LAC [6]), and it does not deal with
projective solutions that are soft at data clustering level.

2. Projective Clustering Ensembles

Definition 1 (projective clustering solution) Let D =
{~o1, . . . , ~oN} be a set of D-dimensional points (data ob-
jects). A projective clustering solution C defined over D is
a triple 〈L, Γ, ∆〉:

• L = {`1, . . . , `K} is a set of cluster labels which
uniquely represent the K clusters

• Γ : L × D → SΓ is a function which stores the
probability that object ~on belongs to the cluster la-
beled with `k, ∀k ∈ [1..K], n ∈ [1..N ], such that∑K

k=1 Γkn = 1, ∀n ∈ [1..N ], where Γkn hereinafter
refers to Γ(`k, ~on)

• ∆ : L × [1..D] → [0, 1] is a function which stores the
probability that the d-th feature is a relevant dimension
for the objects in the cluster labeled with `k, ∀k ∈
[1..K], d ∈ [1..D], such that

∑D
d=1 ∆kd = 1, ∀k ∈

[1..K], where ∆kd hereinafter refers to ∆(`k, d)

Definition 2 (projective ensemble) Given a set D of
data objects, a projective ensemble defined over D
is a set E = {C1, . . . , CM}, where each Cm =
〈L(m), Γ(m), ∆(m)〉 is a projective clustering solution de-
fined over D, ∀m ∈ [1..M ], and L(i) ∩ L(j) = ∅, ∀i, j ∈
[1..M ], i 6= j.

Definition 3 (ensemble label set) Let E = {C1, . . . , CM}
be a projective ensemble, where Cm =
〈L(m), Γ(m), ∆(m)〉, ∀m ∈ [1..M ]. The ensemble la-
bel set of E is defined as L = {l1, . . . , lH} =

⋃M
m=1 L(m).

Definition 4 (projective cluster representation) Let D =
{~o1, . . . , ~oN} be a set of D-dimensional data objects
and E be a projective ensemble defined over D. The
N -dimensional object-based representation and the D-
dimensional feature-based representation for the cluster la-
beled with lh, ∀h ∈ [1..H], are given by the vectors ~γh and
~δh, respectively, which are defined as follows:

~γh = (Γ′k′1, . . . , Γ
′
k′N ) ~δh = (∆′

k′1, . . . , ∆
′
k′D)

where the Γ′ and ∆′ functions are involved in the solution
C ′ ∈ E such that C ′ = 〈L′, Γ′, ∆′〉, L′ = {`′1, . . . , `′K′},
lh ∈ L′, and k′ ∈ [1..K ′] is the index such that `′k′ = lh.



2.1. Two-objective PCE

A projective consensus partition C∗ = 〈L∗, Γ∗, ∆∗〉 de-
rived from an ensemble E should meet two different kinds
of requirements: the first one is related to the data object
clustering of the solutions in E , whereas the other one re-
gards the feature-to-cluster assignment of the solutions in
E . To this purpose, the PCE problem can be naturally for-
mulated as a two-objective optimization problem:

C∗ = arg min
Ĉ

[
Ψo(Ĉ, E ,D), Ψf (Ĉ, E ,D)

]
(1)

where Ψo and Ψf are two optimization functions that ac-
count for the data clustering and the feature-to-cluster as-
signment of the projective clusterings in E , respectively, and
are defined as follows:

Ψo(Ĉ, E ,D) =
∑
C∈E

ψo(C, Ĉ) (2)

Ψf (Ĉ, E ,D) =
∑
C∈E

ψf (C, Ĉ) (3)

where ψo(Ci, Cj) (resp., ψf (Ci, Cj)) is a function that
measures the distance between the projective clustering so-
lutions Ci = 〈L(i), Γ(i),∆(i)〉 and Cj = 〈L(j),Γ(j), ∆(j)〉
in terms of their corresponding object-based partitioning
(resp., feature-to-cluster assignment):

ψo(Ci, Cj) =
1

2

(
ψo(Ci, Cj) + ψo(Cj , Ci)

)
(4)

ψf (Ci, Cj) =
1

2

(
ψf (Ci, Cj) + ψf (Cj , Ci)

)
(5)

where

ψo(Ci, Cj) =
1

|L(i)|
|L(i)|∑

k=1

(
1− max

k′∈[1..|L(j)|]
J
(
~a

(i)
k ,~a

(j)
k′

))

ψf (Ci, Cj) =
1

|L(i)|
|L(i)|∑

k=1

(
1− max

k′∈[1..|L(j)|]
J
(
~b

(i)
k ,~b

(j)
k′

))

with ~a
(y)
z =

(
Γ(y)

z1 , . . . , Γ(y)
zN

)
, ~b

(y)
z =

(
∆(y)

z1 , . . . , ∆(y)
zN

)
,

and J
(
~u,~v

)
=

(
~u ·~v)

/
(‖~u‖2 +‖~v‖2−~u ·~v)

ranging within
[0, 1] and denoting the extended Jaccard similarity coeffi-
cient between two any real-valued vectors ~u and ~v [8].

The MOEA-PCE algorithm. The NP-hard problem P
defined in Eq. (1) is a multi-objective optimization prob-
lem, in which the objectives are conflicting with each other.
An approach that has been recognized as particularly appro-
priate for this kind of problem is given by the Multi Objec-
tive Evolutionary Algorithms (MOEAs) [2]. These methods
are able to maintain the underlined multi-objective struc-
ture, i.e., they work without requiring a combination of the
objectives into a single one.

Within this view, in order to provide a valuable heuris-
tic for P , we resort to the MOEAs domain and pro-
pose the MOEA-based Projective Clustering Ensembles
(MOEA-PCE) algorithm. More precisely, we exploit the
elitist MOEA Nondominated Sorting Genetic Algorithm-II
(NSGA-II) [3], whose evolutionary strategy is based on the
notion of Pareto-ranking.

Definition 5 (domination) Let P be a multi-
objective optimization problem of the form {x∗ =
arg minx̂[f1(x̂), . . . , fs(x̂)]}, and x′ and x′′ two can-
didate solutions of P . x′ dominates x′′ (x′ ≺ x′′) if
and only if fi(x′) ≤ fi(x′′), ∀i ∈ [1..s], and (ii)
∃j ∈ [1..s] : fj(x′) < fj(x′′).

Definition 6 (Pareto-optimality) Let P be a
multi-objective optimization problem of the form
{x∗ = arg minx̂[f1(x̂), . . . , fs(x̂)]}, and S a popula-
tion of individuals for P , i.e., a set of candidate solutions
of P . S∗P ⊆ S is a Pareto-optimal solution set of P w.r.t. S
if and only if x ⊀ x∗, ∀x ∈ S , ∀x∗ ∈ S∗P .

Definition 7 (Pareto-ranking) Let P be a multi-
objective optimization problem of the form {x∗ =
arg minx̂[f1(x̂), . . . , fs(x̂)]}, and S a population of indi-
viduals for P . The Pareto-ranking function ρ : S → N for
P is defined as ρ(x) = min{r ∈ N, r > 0 : x ∈ S∗P,r},
∀x ∈ S , where S∗P,z is the Pareto-optimal solution set of P
w.r.t. the population SP,z = {x′ ∈ S : ρ(x′) ≥ z}.

The MOEA-PCE algorithm (Algorithm 1) starts by ran-
domly generating the initial population S (Line 1), and pro-
ceeds by performing the main loop until a maximum num-
ber I of iterations has been reached (Lines 3-9). At each
iteration, the Pareto-ranking function ρ, defined w.r.t. the
current population S , is computed according to Definition 7,
where the problem denoted with P is the one reported in
Eq. (1) (Line 4). The procedure used for computing ρ is the
one described in [3]. The ρ values of each individual in S
are then exploited for sorting S and partitioning it into two
equal-size subsets, i.e., S ′ and S ′′, so that each individual in
S ′ has a ρ value not greater than any other individual in S ′′
(Line 5). The subset S ′ undergoes a crossover-and-mutation
step, which is performed as described in [11] (Line 6); the
mutation step consists in adding random Gaussian noise to
the solutions in S ′. The result of this step is the “offspring”
set S ′CM of new individuals which, along with S ′, forms
the new population (Line 7). Finally, the Pareto-optimal
solution set S∗ (i.e., the set of output projective consensus
partitions) is derived from the population S computed at the
last iteration (Line 11).

2.2. Single-objective PCE

The two-objective projective clustering ensembles for-
mulation may incur issues concerning the parameter setting



Algorithm 1 MOEA-PCE
Input: a projective ensemble E of size M , defined over a set D of N

D-dimensional objects; the number K of clusters in the output pro-
jective consensus partitions; the population size t; the maximum
number I of iterations

Output: a set S∗ of projective consensus partitions

1: S ← populationRandomGen(E, t, K)
2: it ← 1
3: repeat
4: ρ ← computeParetoRanking(S) {see Def. 7}
5: 〈S′,S′′〉 ← 〈Š′ ⊂ S, Š′′ ⊂ S〉 : |Š′| = |S|/2, |Š′′| =

|S|/2, Š′ ∪ Š′′ = S, ρ(x′) ≤ ρ(x′′),∀x′ ∈ Š′, x′′ ∈ Š′′
6: S′CM ← crossoverAndMutation(S′)
7: S ← S′ ∪ S′CM
8: it ← it + 1
9: until it = I

10: ρ ← computeParetoRanking(S)
11: S∗ ← {x′ ∈ S : ρ(x′) ≤ ρ(x′′),∀x′′ ∈ S, x′′ 6= x′}

and the interpretation of the convergence criterion. Within
this view, we alternatively propose a different and simpler
formulation that is based on a single objective function:

C∗ = arg min
Ĉ

Q(Ĉ, E) (6)

s.t .
K∑

k=1

Γ̂kn = 1, ∀n ∈ [1..N ] (7)

D∑

d=1

∆̂kd = 1, ∀k ∈ [1..K] (8)

Γ̂kn ≥ 0, ∆̂kd ≥ 0,

∀k∈ [1..K], n∈ [1..N ], d∈ [1..D] (9)

where Q(Ĉ, E) =
∑K

k=1

∑N
n=1 Γ̂

α

kn

∑H
h=1 γhn

∑D
d=1

(
∆̂kd−

δhd

)2
and α > 1 is an integer that guarantees the nonlin-

earity of Q w.r.t. Γ̂kn, which is needed for ensuring that the
values of Γ̂kn range within [0, 1] (instead of {0, 1}).

The EM-PCE algorithm. In order to provide a heuristic
solution for the NP-hard problem in Eq. (6)-(9), we define a
novel procedure that is inspired by the popular Expectation
Maximization (EM) algorithm [4].

The proposed algorithm, called EM-based Projective
Clustering Ensembles (EM-PCE) (Algorithm 2), consists of
two main EM-like steps, which are iterated until a conver-
gence criterion is met. Such steps exploit the function Q and
aim to find an optimal solution for Γ̂kn (resp., ∆̂kd) values,
while maintaining fixed ∆̂kd (resp., Γ̂kn) values. The basic
equations for the two steps are:

Γ∗kn =

[
K∑

k′=1

(
Xkn

Xk′n

) 1
α−1

]−1

(10)

∆∗
kd =

Zkd

Yk
(11)

Algorithm 2 EM-PCE
Input: a projective ensemble E of size M , defined over a set D of N

D-dimensional data objects; the number K of clusters in the output
projective consensus partition;

Output: the projective consensus partition C∗

1: L∗ ← {1, . . . , K}
2: 〈Γ∗, ∆∗〉 ← randomGen(E, K)
3: repeat
4: compute Γ∗ according to Eq. (10)
5: compute ∆∗ according to Eq. (11)
6: until convergence
7: C∗ = 〈L∗, Γ∗, ∆∗〉

where Xkn =
∑H

h=1 γhn

∑D
d=1

(
∆̂kd − δhd

)2,
Yk =

∑N
n=1 Γ̂

α

kn

∑H
h=1 γhn, and Zkd =∑N

n=1 Γ̂
α

kn

∑H
h=1 γhn δhd.

The expressions reported in Eq. (10) and (11), i.e., the
solutions for the problem P defined in Eq. (6)-(9), have
been derived by means of the conventional Lagrange mul-
tipliers method, considering the relaxed problem P ′ ob-
tained by temporarily discarding the inequality constraints
from the constraint set of P . In particular, we define
the new (unconstrained) objective function Qλ for P ′ as
Qλ(Ĉ, E) = Q(Ĉ, E) +

∑N
n=1 λ′n

(∑K
k′=1 Γ̂k′n − 1

)
+∑K

k=1 λ′′k
(∑D

d′=1 ∆̂kd′−1
)
, and, for a fixed assignment of

∆̂kd, we compute the optimal Γ∗kn by solving the system of
equations given by ∂ Qλ/∂ Γ̂kn = α (Γ̂kn)α−1 Xkn+λ′n =
0 and ∂ Qλ/∂ λ′n =

∑K
k′=1 Γ̂k′n − 1 = 0, whose solution

is given by Eq. (10). Analogously, for a fixed assignment of
Γ̂kn, we compute the optimal ∆∗

kd by solving the equations

∂ Qλ/∂ ∆̂kd =
∑N

n=1 Γ̂
α

kn

∑H
h=1 2 γhn

(
∆̂kd−δhd

)
+λ′′k =

0 and ∂ Qλ/∂ λ′′k =
∑D

d′=1 ∆̂kd′ − 1 = 0 which are solved
by Eq. (10). Since, according to the solutions for P ′ re-
ported in Eq. (10) and (11), it holds that Γ∗kn ≥ 0, ∆∗

kd ≥ 0,
∀k ∈ [1..K], n ∈ [1..N ], d ∈ [1..D], then such solutions
satisfy the inequality constraints that were temporarily dis-
carded in order to define the relaxed problem P ′; thus, they
represent the optimal solutions of the original problem P .

3. Experimental evaluation

3.1. Evaluation methodology

Datasets. We used eight benchmark datasets from the
UCI Machine Learning Repository,1 namely Iris, Wine,
Glass, Ecoli, Yeast, Segmentation, Abalone and Let-
ter, and two time-series datasets from the UCR Time Se-
ries Classification/Clustering Page,2 namely Tracedata and
ControlChart. Table 1 specifies the main characteristics of
the selected datasets.

1http://archive.ics.uci.edu/ml/
2http://www.cs.ucr.edu/∼eamonn/time series data/



Table 1. Datasets used in the experiments
dataset objects attributes classes
Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Segmentation 2,310 19 7
Abalone 4,124 7 17
Letter 7,648 16 10
Tracedata 200 275 4
ControlChart 600 60 6

Ensemble generation. For each set of experiments and
dataset we generated twenty different ensembles; all the
reported results were averaged over the runs obtained on
each of these ensembles. Ensembles for each dataset were
generated by the LAC algorithm [6], where the diversity of
the solutions was guaranteed by randomly choosing the ini-
tial centroids and varying the parameter h in LAC.3 LAC
yields projective clusterings that are hard at data cluster-
ing level and have feature-to-cluster assignments unequally
weighted; consequently, in order to test the ability of the
proposed algorithms to deal also with soft clustering so-
lutions and with solutions having feature-to-cluster assign-
ments equally weighted, we generated each ensemble E as
a composition of four equal-size subsets, namely E1, E2, E3,
and E4 such that:

• E1 contains solutions hard at data clustering level
and having feature-to-cluster assignments unequally
weighted, i.e., solutions obtained by standard LAC;

• E2 contains solutions that are hard at data clustering
level and have feature-to-cluster assignments equally
weighted. Starting from a LAC solution C =
〈L, Γ, ∆〉 defined over a set of N D-dimensional ob-
jects, where L = {`1, . . . , `K}, we derived the cor-
responding projective clustering C ′, having feature-
to-cluster assignments equally weighted, as C ′ =
〈L, Γ, ∆′〉, where ∆′

kd = b∆kd + 1/Dc, ∀k ∈
[1..K], d ∈ [1..D];

• E3 contains solutions that are soft at data cluster-
ing level and have feature-to-cluster assignments un-
equally weighted. Starting from a LAC solution C =
〈L, Γ, ∆〉 defined over a set of N D-dimensional ob-
jects, where L = {`1, . . . , `K}, we derived the cor-
responding soft projective clustering C ′′ as C ′′ =
〈L, Γ′′, ∆〉, where Γ′′kn = Pr(k|n), ∀k ∈ [1..K], n ∈
[1..N ]. Pr(k|n) is the probability of the cluster labeled
with `k given the observation of the object ~on, which
is computed as described in [5].

• E4 contains solutions that are soft at data clustering
level and have feature-to-cluster assignments equally

3This parameter controls the incentive for clustering on more features
according to the local variance of data along each dimension.

weighted, which were derived from the standard LAC
solutions according to the methods employed for gen-
erating E2 and E3, respectively.

Setting of the proposed algorithms. We experimentally
observed that our methods were scarcely influenced by any
specific setting. This allowed to easily select values well-
suited for all the evaluation datasets. Precisely, in the case
of MOEA-PCE, the population size (t) was set equal to 15%
of the ensemble size and the number I of maximum iter-
ations equal to 200. The random Gaussian noise needed
for the mutation step was obtained by performing a Monte
Carlo sampling on a Gaussian probability density function
with zero mean value and variance equal to one. In the case
of EM-PCE, the α parameter of the objective function Q
was set equal to 2.

Evaluation criteria. For each datasetD = {~o1, . . . , ~oN},
where ~on = (on1, . . . , onD), ∀n ∈ [i..N ], accuracy of out-
put consensus partitions Č = 〈Ľ, Γ̌, ∆̌〉, |Ľ| = Ǩ, was
evaluated in terms of:

1. similarity w.r.t. the (hard) reference classifica-
tion C̃, which is defined as follows. C̃ =
〈L̃, Γ̃, ∆̃〉, where L̃ = {˜̀1, . . . , ˜̀K̃} and Γ̃ are
directly available from D, whereas ∆̃ as in [6]:
∆̃kd =

(
exp (−Xkd/h)

)
/
( ∑D

d′=1 exp (−Xkd′/h)
)
,

∀k ∈ [1..K̃], d ∈ [1..D], where Xkd =(∑N
n=1 Γ̃kn

)−1 ∑N
n=1 Γ̃kn

(
ckd − ond

)2
, ckd =(∑N

n=1 Γ̃kn

)−1 ∑N
n=1 Γ̃kn ond; moreover, LAC’s pa-

rameter h was set equal to 0.2. The evaluation between
Č and C̃ was performed according to both object- and
feature-based representations, by using 1−ψo (Eq. (4))
and 1− ψf (Eq. (5)), respectively;

2. error-rate (E) [6], which is an internal criterion that
measures the intra-cluster compactness: E(Č) =∑Ǩ

k=1

∑D
d=1

(
∆̌kd/

(∑N
n=1 Γ̌kn

) ∑N
n=1 Γ̌kn

(
ckd −

ond

)2.

3.2. Results

For each algorithm, dataset and ensemble, we performed
fifty different runs and reported average results, and maxi-
mum (best) results with relative standard deviation.

Evaluation w.r.t. reference classification. Table 2 and
Table 3 show the performance on the various datasets in
terms of similarity w.r.t. the reference classifications, using
the object-based representation and the feature-based repre-
sentation, respectively.

In both cases, we observed that the proposed algorithms
lead to an average similarity of the consensus partition(s)
that is comparable or far better than the average intra-
ensemble similarity. Using the object-based representation



(Table 2), the average improvements (gains) obtained by
MOEA-PCE and EM-PCE over all datasets are 13.6% and
4.3%, respectively, with peaks above 16% on five out of
ten datasets by MOEA-PCE (up to 29% on Iris), and peaks
above 10% on three datasets by EM-PCE (up to 13% on
Iris). Using the feature-based representation (Table 3), the
average improvements achieved by MOEA-PCE and EM-
PCE over all datasets are 13.3% and 7.3%, respectively.

Table 2. Similarity results w.r.t. reference
classification (object-based representation)

ensemble MOEA-PCE EM-PCE
gain gain
w.r.t. w.r.t.
ens. ens.

data avg-max avg max-std (avg) avg max-std (avg)
Iris .632 .925 .919 .925 .015 +.287 .762 .767 .040 +.130

Wine .738 .910 .913 .928 .105 +.175 .782 .840 .028 +.044
Glass .565 .775 .683 .768 .046 +.118 .639 .644 .002 +.074
Ecoli .421 .689 .603 .686 .054 +.182 .329 .419 .040 -.092
Yeast .675 .750 .723 .745 .015 +.048 .638 .641 .001 -.037
Segm. .590 .821 .755 .835 .049 +.165 .653 .663 .004 +.063
Abal. .509 .520 .518 .558 .043 +.009 .512 .542 .002 +.003
Letter .522 .640 .597 .612 .031 +.075 .554 .562 .006 +.032
Trace .772 .868 .862 .998 .059 +.090 .875 .935 .030 +.103
Contr. .681 .981 .895 .965 .049 +.214 .790 .806 .007 +.109

Evaluation in terms of error rate. We also compared the
performance of MOEA-PCE and EM-PCE with both the
reference classification and the ensemble, for each dataset,
in terms of error rate. Due to the space limits of this pa-
per, here we summarize that evaluation with the following
remarks.

MOEA-PCE outperforms the standard ensemble, obtain-
ing an average improvement (gain) over all the datasets of
+0.6 w.r.t. the reference classification and +0.358 w.r.t.
the ensemble. EM-PCE also improves upon the error rate
of the reference classification (+0.51) and of the ensemble
(+0.27).

4. Conclusion

In this paper we addressed for the first time the projec-
tive clustering ensembles problem (PCE). Given an ensem-
ble of projective clustering solutions, PCE aims to find a
proper projective consensus partition, i.e., a new projec-
tive clustering computed by optimizing one or more criteria
properly defined by exploiting the information from the en-
semble. We proposed two different formulations of PCE,
according to which the problem at hand was defined as
a two- and single-objective optimization problem, respec-
tively, and provided heuristic algorithms for solving both
PCE problems. Experimental results show the improved ac-
curacy of the projective consensus partition obtained by the
proposed algorithms, in terms of both external and internal
evaluation criteria.

Table 3. Similarity results w.r.t. reference
classification (feature-based representation)

ensemble MOEA-PCE EM-PCE
gain gain
w.r.t. w.r.t.
ens. ens.

data avg-max avg max-std (avg) avg max-std (avg)
Iris .662 .998 .988 1 .029 +.326 .845 .895 .043 +.183

Wine .822 .989 .955 .997 .027 +.133 .869 .899 .080 +.047
Glass .731 .891 .851 .900 .027 +.120 .817 .877 .041 +.086
Ecoli .763 .879 .858 .884 .016 +.095 .903 .953 .052 +.140
Yeast .720 .805 .790 .804 .009 +.070 .684 .690 .003 -.036
Segm. .618 .720 .729 .737 .049 +.111 .625 .632 .008 +.007
Abal. .716 .754 .759 .849 .023 +.043 .726 .748 .013 +.010
Letter .646 .693 .767 .818 .012 +.121 .780 .786 .007 +.134
Trace .661 .818 .755 .811 .0.25 +.094 .753 .773 .021 +.092
Contr. .663 .894 .880 .910 .016 +.217 .734 .774 .022 +.071
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