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Abstract
We investigate the problem of cooperative resource allocation in multi-agent systems, focusing on dynamic

scenarios such as hospital networks. In our model, agents (e.g., hospitals) aim to redistribute limited resources,

such as medical personnel, in a way that satisfies both local constraints and global equity objectives. We devise a

reinforcement learning approach to a dynamic scenario with time-varying resource needs.

We empirically evaluate the proposed approach through extensive experiments. Our results demonstrate the

effectiveness of our approach.

1. Introduction

The fair and efficient allocation of resources in decentralised environments has long been a fundamental

challenge in Artificial Intelligence (AI) and Economics [1]. In domains where autonomous agents

pursue common goals, such as healthcare networks (e.g., the British National Health Service (NHS)) [2],

wireless networks [3], or cloud computing networks [4], the ability to enable cooperation without

centralised authority is of both theoretical and practical importance.

In this work, we consider a network of agents managing local resources to achieve individual

objectives while cooperating toward a collective goal through resource exchanges (e.g., lending). This

paradigm aligns with the concept of fairness, which ensures equitable outcomes while maintaining

system functionality. Our motivating example is an idealized model of the NHS healthcare network:

hospitals manage their physician rosters but may temporarily lend doctors to others during localized

emergencies (e.g., outbreaks of transmissible diseases). This scenario shares similarities with the

interbanking scenario [5, 6], though healthcare systems differ in their universal objective of avoiding

hospital failures, unlike banking systems where central banks underwrite systemic stability.

A number of approaches have been proposed so far to allocating resources in multi-agent systems

(MARA), including Distributed Constraint Optimization [7], Social Choice Theory [8], and Market-Based

Coordination [9]. Among these, Nash Welfare Optimization (NWO) stands out as a principled method.

NWO models societal welfare as the geometric mean of individual utilities. The NWO formulation

balances efficiency and fairness by prioritizing improvements for agents with lower allocations and it

comes with no surprise that NWO has been widely studied for its theoretical guarantees and practical

effectiveness [10, 11].

However, we identify three critical limitations in its application to healthcare networks, namely:

(a) Minimum vs. Target Staffing: while NWO ensures hospitals meet baseline staffing thresholds

(that is, we assume that each hospital has at least 𝑚𝑖 doctors who ensure its functioning), it ignores

aspirational targets (that is, we assume that each hospital wants at least 𝑡𝑖 doctors) needed for optimal

service delivery. In some cases, it is appropriate to concentrate more resources in highly specialised

medical centres (such as hospitals specialising in rare diseases or hospitals involved in innovative
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clinical trials), even if this may lead to slight inequalities in the distribution of staff. The NWO method

cannot meet this requirement.

(b) Constraint Handling: NWO lacks explicit mechanisms to enforce global constraints, such as

the fact that the total number of doctors must be constant or hard lower bounds on 𝑚𝑖 thresholds.

Specifically, the constraint on the overall size of the labour force is a direct consequence of public

expenditure management policies, which in some countries impose a freeze on the recruitment of new

staff [12].

(c) Dynamic Adaptability: in emergencies (e.g., pandemics), staffing needs fluctuate rapidly. NWO (as

well as any other method based on an optimisation algorithm) requires replanning the allocation of

doctors from scratch after each change, but this is a computationally prohibitive task for large hospital

networks, and it is useless when updates in staffing requirements vary rapidly over time.

In our previous work [13], we addressed the above limitations (a)-(c) focusing on a static scenario
only, i.e., assuming that the staffing needs of each hospital are fixed over time. In this paper, we extend

that work by tackling the same problem in the novel dynamic scenario in which the demand for staff

vary over time. Particularly, we consider two specific settings: (a) Shifting Targets, i.e., the staffing needs

of a single hospital undergo a small variation (an increase or decrease of two units) at each point in

time, and (b) Shocking Targets, i.e., we assume that a randomly selected hospital loses half of its staff

due to unexpected and exceptional events, but it still satisfies the constraint of minimum operability.

We introduce a Proximal Policy Optimisation (PPO)-based [14] reinforcement learning (RL) agent. Our

agent learns to redistribute staff incrementally, avoiding full re-optimisation. In addition, PPO uses

clipped objective functions to avoid destructive policy updates. A further novelty of our approach is that

it attempts to satisfy constraints by appropriately reshaping its reward function. Experiments reveal

that our RL approach responds well to changes in staffing requirements without having to recalculate

the optimal solution from scratch, thus it excels in dynamic scenarios such as pandemics or seasonal

shifts in demand.

While our approach is grounded in healthcare, its principles generalize to other domains requiring

cooperative resource redistribution.

The remainder of the paper is organized as follows: Section 2 presents background on our resource

allocation framework in a static settings, originally introduced in our previous work [13]. Section 3

discusses the main contribution of this paper, i.e., a dynamic scenario for staff allocation. Section 4

outlines the experimental setup and benchmarks, followed by an in-depth analysis of the results.

Section 5 discusses related literature in multi-agent resource allocation. Finally, in Section 6 we draw

our conclusions and highlight directions for future research.

2. Preliminaries

Let us begin with an idealised multi-agent resource allocation framework that models an NHS-style

healthcare domain. We are given a set of 𝑛 hospitals, denoted as ℋ = {ℎ⃗1, ℎ⃗2, . . . ℎ⃗𝑛} where each

hospital ℎ⃗ has three dimensions: the current number of doctors available, 𝑐𝑖, the target rooster, 𝑡𝑖 and

the minimum number of doctors needed for the hospital to operate, 𝑚𝑖. In a static scenario, the total

number of doctors available inℋ is fixed, i.e.,

∑︀𝑛
𝑖=1 𝑐𝑖 = 𝐶 .

Of course, if some hospital ℎ⃗𝑖 has critically-low levels of staff, i.e., 𝑐𝑖 ≤ 𝑚𝑖, the best option is to

recruit more doctors. Yet, this may not be possible, even for relatively-long interim periods. Hence,

we consider transferring doctors from other hospitals to improve the overall efficiency of the hospital

system ℋ. The idea is that ‘wealthy’ hospitals (those operating at or near full rooster) could lend

doctors to ℎ⃗𝑖. This practice is common in NHS-style health systems, e.g., in summer when population

density in tourism areas shows huge alterations. Similarly, emergency situations, such as the outbreak

of epidemics and their containment in the geographical areas where they have occurred, may require

the emergency re-assignment of medical staff to cope with the spike in hospital admissions.

The goal now is to model the emergency re-distribution scenario so as to compute solutions that

are optimal or near-optimal with respect to the global objective of maintaining all hospitals viable



and operating, while fulfilling all the constraints on the capacity of individual hospitals. In [13],

we considered a static scenario, i.e., we assume that the targets for each hospital are constant over

time. We handled such a static scenario by devising three optimisation strategies, based on quadratic

programming [15], Progressive Taxation [16], and Nash Welfare Optimisation [17, 18], respectively,

along with a hybrid approach that combines the latter two. The focus of this work is instead on a

dynamic setting, i.e., when sudden, time-varying changes in hospital demand arise. In the following

section, we describe such a dynamic scenario and present the proposed reinforcement learning approach

to handle it.

3. Multi-agent Resource Allocation: the Dynamic Scenario

In real scenarios, the size of a hospital workforce quickly (and often unexpectedly) fluctuates over time.

For example, during pandemics or natural disasters, the number of doctors on duty in a hospital is

usually much higher than what is generally considered satisfactory. In dynamic scenarios where staffing

requirements can vary over time, the approaches described in Section 2 may not be practical because

they would require solving an optimization problem from scratch for each change in staffing needs.

An effective (i.e., computationally feasible yet accurate) solution to such a dynamic hospital staff

re-allocation problem is given by Reinforcement Learning (RL). We point out that a RL approach can be

applied to a static scenario. In this regard, we model our problem as a Markov Decision Process [19],

whose states correspond to the various hospitals. As described above, each hospital ℎ⃗𝑖 is described by

a three-component vector: the current number 𝑐𝑖 of doctors on duty in that hospital, the minimum

number 𝑚𝑖 of doctors needed to ensure its operation, and the number 𝑡𝑖 of doctors (target) that the

hospital would like to have.

We employ a reward given by three contributions: a) Deviation from target, i.e., the reward penalises

configurations where the current allocation of doctors is far from the desired target distribution; b)
Violations of minima, i.e, heavy penalties are given if any hospital drops below its minimum number of

staff units needed to guarantee its operation, and c) Fairness in transfer procedures, i.e., uneven transfers

of doctors discouraged; the imbalance of the entire re-allocation process is quantified by the variance of

the distribution of doctors across the various hospitals. Formally, denoting by 𝑦𝑖 the output number

of staff units at hospital ℎ⃗𝑖 after staff redistribution among hospitals and by 𝑎 the distribution of the

overall staff units transferred from a hospital to another, our rewardℛ is defined as:

ℛ=−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑡𝑖)
2⏟  ⏞  

target error

−𝜂
∑︀𝑛

𝑖=1max(0,𝑚𝑖−𝑦𝑖)⏟  ⏞  
minima violations

−𝜎2(𝑎)⏟  ⏞  
fairness

, (1)

where 𝜂 ≫ 1 is a multiplicative factor whose role is to heavily penalize violations of the minimum

staff number requirement. Here, we empirically consider 𝜂 = 100. We adopt the well-established

Proximal Policy Optimisation (PPO) algorithm of [14] to optimize the above reward. PPO, which is

outlined in Algorithm 1 has two key features that make it the best choice here. First, it can operate in

continuous spaces (thus allowing fractional resource transfer). Second, it yields a good tradeoff between

exploration policies (i.e., the generation of new doctor transfer strategies) and exploitation policies (i.e.,

the application of staff transfer strategies that proved to be effective in the past). Next, we describe how

the PPO algorithm is contextualized to our dynamic staff allocation scenario.

Our PPO agent learns to redistribute doctors to meet targets while respecting minima and, importantly,

trying to minimize resource imbalances among hospitals. The PPO algorithm uses two separate neural

networks, that is the actor and the critic.

The actor network defines the policy of the agent, i.e., it takes the current state 𝑠 as input and

computes the probability distribution 𝜋𝜃(𝑎|𝑠) of all possible actions 𝑎 for state 𝑠; such a distribution is

used to select the next action.

Following the setting of [13], a fractional transfer of resources is permitted in our scenario. Thus, we

have that the actor network parametrises a Gaussian distribution (with a predefined mean and standard



Algorithm 1 Proximal Policy Optimization for staff redistribution

1: Input:
2: agent parameters: c (current), m (minima), t (targets)

3: PPO hyperparameters: epochs 𝐾 , clip 𝜖, learning rates 𝛼𝜃 , 𝛼𝜑

4: Advantage parameters: GAE 𝜆, discount 𝛾
5: procedure PPO
6: Initialize policy 𝜋𝜃 (actor) and value function 𝑉𝜑 (critic)

7: for iteration = 1, 2, . . . do
Collect trajectories {𝜓𝑖} by running 𝜋𝜃 in environment:

8: for each agent 𝑖 ∈ {1, . . . , 𝑁} do
9: Observe state 𝑠𝑖 = [𝑐𝑖,𝑚𝑖, 𝑡𝑖]

10: Sample action 𝑎𝑖 ∼ 𝜋𝜃(·|𝑠𝑖) (transfer matrix)

11: Execute action 𝑎𝑖, get new state 𝑠′𝑖 and reward 𝑟𝑖
12: Store (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠

′
𝑖) in buffer

13: end for
Compute advantages 𝐴̂𝑡 using GAE(𝜆, 𝛾):

14: for each trajectory 𝜓 do
15: Compute 𝛿𝜏 (Equation (3))

16: Compute 𝐴̂𝜏 (Equation (4))

17: end for
Optimize surrogate objective for 𝐾 epochs:

18: for epoch = 1 to 𝐾 do
19: Sample minibatch from buffer

20: Compute 𝑟𝜏 (𝜃) =
𝜋𝜃(𝑎𝜏 |𝑠𝜏 )

𝜋𝜃
old

(𝑎𝜏 |𝑠𝜏 )

21: Compute 𝐿CLIP

(Equation (5))

22: Update policy (Equation (6))

23: Update value function (Equation (7))

24: end for
25: end for
26: end procedure

deviation). The critic network is parametrised by 𝜑 and estimates the expected cumulative future reward
starting from the state 𝑠0:

𝑉𝜑(𝑠) ∼ E
(︀∑︀+∞

𝜏=0 𝛾
𝜏𝑟𝜏 |𝑠 = 𝑠0

)︀
(2)

.

The 𝛾 coefficient (which we empirically set to 0.99 here) is the discount factor and its purpose is to

reduce the effect of remote actions (i.e., actions chosen many steps before). The critic network acts as

an estimator of the advantages related to a particular action.

Our algorithm collects possible trajectories to be used in the training phase. Specifically, it observes

the current state for each time step and uses the distribution 𝜋𝜃(𝑎𝑖|𝑠𝑖) to sample the next action 𝑎𝑖. We

call 𝑠𝑖 the state after performing action 𝑎𝑖 and 𝑟𝑖 the reward received.

Our algorithm computes the Generalised Advantage Estimation (GAE), i.e., it quantifies whether

(and by how much) a given action produces benefits more than the expected benefits. To compute the

GAE, we first consider the correct reward 𝛿𝜏 obtained from the reward 𝑟𝜏 received by the agent at time

step 𝜏 , and then adds to it the difference between the critic network at time 𝜏 + 1 (weighted by the

discount factor 𝜆) and the critic network at time 𝜏 :

𝛿𝜏 = 𝑟𝜏 + 𝛾𝑉𝜑(𝑠𝜏+1)− 𝑉𝜑(𝑠𝜏 ) (3)

Next, we compute the expected advantage 𝐴̂𝜏 as the weighted average of the corrected rewards

𝛿𝜏 ; the weights used to compute the average are exponentially decreasing and they are obtained by

multiplying the discount factor 𝛾 by a coefficient 𝜆 (which we set equal to 0.95 in our tests). This leads

to the following:

𝐴̂𝜏 =
∑︀∞

𝑙=0(𝛾𝜆)
𝑙𝛿𝜏+𝑙 (4)



The 𝛾𝜆 coefficient aims to achieve a good trade-off between the bias and variance derived from the

trajectories, and, thus, it can be interpreted as a reward reshaping technique.

Our algorithm tries to improve the agent’s policy by avoiding large but risky updates that could

degrade performance. To do this, it introduces a clipping mechanism to limit how much the new policy

can differ from the old policy (the one used to gain recent experience). Specifically, our algorithm first

computes the ratio 𝑟𝜏 (𝜃) =
𝜋𝜃(𝑎𝜏 |𝑠𝜏 )
𝜋𝜃

old

(𝑎𝜏 |𝑠𝜏 ) , which quantifies how much the new policy differs from the

old one. We note that 𝑟𝜏 (𝜃) could take large values, leading to the acceptance of new policies and the

rejection of old ones; however, the new policies could cause a significant degradation in performance.

For this reason, our algorithm uses a function called clip to constrain the probability ratio 𝑟𝜏 (𝜃) to an

interval of the type [1− 𝜀, 1 + 𝜀], thus constructing the following loss function:

𝐿CLIP = E𝜏 [min(𝑟𝜏 (𝜃)𝐴̂𝜏 , clip(𝑟𝜏 (𝜃), 1− 𝜖, 1 + 𝜖)𝐴̂𝜏 )] (5)

Then the policy is updated via a standard gradient descent step:

𝜃 ← 𝜃 + 𝛼𝜃∇𝜃𝐿
CLIP

(6)

and the critic is updated via mean square minimization to improve value estimates:

𝐿VF(𝜑) = E𝜏

[︂(︁
𝑉𝜑(𝑠𝜏 )− 𝑅̂𝜏

)︁2]︂
(7)

where 𝑅̂𝜏 =
∑︀+∞

ℓ=0 𝛾
ℓ𝑟𝜏+𝑙.

4. Experiments

We evaluated the effectiveness of our approach through a series of experiments mainly designed to

address the question about which reward components most significantly influence RL performance. We

considered a testbed made up of 150 randomly-generated hospitals; i.e., for each hospital the minimum

number of staff needed to function properly, the current number of doctors on the rooster, and the

target number were assigned at random. To evaluate the performance of the various methods, we adopt

the following metrics metrics:

1. Target Deviation (MAE), defined as the average difference between actual staff levels and targets:

MAE = 1
𝑁

∑︀𝑁
𝑖=1 |𝑦𝑖 − 𝑡𝑖| (8)

Ideally, we would like each hospital to have as close to the target number of doctors as possible;

thus, the lower MAE, the more effective the approach to redistributing doctors.

2. Gini Index (𝒢) [20], defined as

𝒢 =
1

𝑁

(︃
𝑁 + 1− 2

𝑁∑︁
𝑖=1

∑︀𝑖
𝑗=1 𝑦𝑗∑︀𝑁
𝑗=1 𝑦𝑗

)︃
(9)

The Gini Index is one of the most commonly used inequality measures (e.g., income inequality or

inequality in life expectancy). It ranges from 0 (perfect equality) to 1 (perfect inequality). In our

case, a 𝒢 close to 1 indicates that the available doctors are concentrated in a few hospitals, which

is undesirable. Thus, ideally, values of 𝒢 close to 0 should be achieved.



4.1. Results

We analyzed a dynamic scenario where the number of doctors per hospital varies over time. This

assumption reflects real-world conditions: for instance, tourist destinations face seasonal population

fluctuations, leading to temporary mismatches between healthcare demand and the baseline workforce

capacity, and, thus, the hospital needs extra resources.

We considered a finite time horizon 𝑇 partitioned into 50 discrete time steps and evaluated two

distinct scenarios: a) Shifting Targets, where hospital-specific targets undergo minor adjustments every

10 time steps: specifically, each hospital loses or gains at most two doctors per adjustment; b) Sudden
Shock, where a randomly selected hospital loses half its workforce at the midpoint of the time horizon

𝑇/2. We assume that the hospital that suffers the loss of doctors is able to satisfy the minimum operating

conditions.

We tested the proposed RL approach. As baselines, we employed the four methods devised in our

previous work [13] for a static setting, namely methods QP, Progressive Taxation, NWO and hybrid.

For each scenario and tested method, we ran twenty independent simulations and generated time series

tracking the evolution of Target Deviation and Gini. The results, averaged over all simulations, are

plotted in Figures 1a and 1b.

One immediate conclusion from the experiments is that the results for NWO, QP, and Hybrid are

almost stable in both scenarios. We argue that this stability in performance is due to the fact that the three

strategies (NWO, QP and Hybrid) dynamically re-plan staffing from scratch, for each hospital and for each

change in staffing needs. Therefore, they are optimal in the sense that they immediately react to change

and construct the best possible resource re-allocation, albeit with different strategies. Reallocation from

scratch, unfortunately, is unrealistic for several reasons. First, computational cost grows quickly with

the number 𝑁 of agents (hospitals). Second, the actual delays involved with staff/resource re-allocation

may fall behind the rapid pace of updates, thus rendering intermediate solutions stale before they

are executed. Third, there might be hidden size effects with large re-allocations, due to institutional,

logistical, or ethical constraints.

The second takeaway message from the experimental results is that RL is able to effectively learn
profitable re-allocation strategies, rather than recalculating optimal allocations from scratch. That

becomes apparent in the Shifting Target scenario: RL reacts well to small variations in staff levels and

achieves a relatively stable Target Deviation and Gini Index.

In the Sudden Shock scenario, the RL strategy initially experiences a sharp decline in both metrics

following the drastic loss of staff at one location. However, the RL agent has learned an effective

resource redistribution strategy that allows it to stabilise Target Deviation and Gini, indeed at slightly

lower levels that before the shock.

4.2. Ablation study

A controlled ablation study was designed to systematically evaluate how individual reward components

influence the performance of reinforcement learning in our scenarios. We trained four different RL

agents: (1) the proposed agent equipped with the full reward formulation (Target Deviation + minimum

staffing penalty + fairness), (2) an agent without the fairness term, (3) an agent without the minimum

staffing penalty, and (4) an agent without the Target Deviation component. Each configuration was

evaluated over five independent trials to ensure statistical robustness.

The results of this ablation study are reported in Figure 2. The figure shows that the Target Deviation

component is the most significant factor for both Target Deviation and Gini Index. The ablation study

also reveals how the removal of the minimum and fairness component leads to a lower Gini Index than

in the case of full reward, but at the price of a consistent deterioration of Target Deviation. All in all,

the full reward allows for reaching the best tradeoff between Target Deviation and Gini Index.



(a) Average Target Deviation (MAE) and Gini Index

of the RL (proposed), NWO, QP, Hybrid (baselines)

strategies in the Shifting Targets scenario.

(b) Average Target Deviation (MAE) and Gini Index

of the RL (proposed), NWO, QP, Hybrid (baselines)

strategies in the Sudden Shock scenario.

Figure 1: Comparison of RL (proposed), NWO, QP, Hybrid (baselines) strategies in the dynamic scenario

Figure 2: Ablation study of the proposed RL strategy for each component of the reward.

5. Related Work

Multiagent resource allocation (MARA) constitutes a fundamental challenge in multiagent systems,

requiring autonomous agents to distribute limited resources in ways that balance efficiency and fairness.

Such problems arise ubiquitously [1]. As systems grow in scale and complexity, designing mechanisms

that reconcile individual agent incentives with collective welfare becomes increasingly critical.

At its core, MARA involves agents negotiating resource distributions, often encountering dilemmas

where self-interest conflicts with group optimality. These interactions necessitate formal frameworks

that model agent behavior while guaranteeing allocations beneficial to all stakeholders [21]. Central to

this challenge is the concept of fairness, a principle vital to both human societies and artificial systems.



In applications ranging from traffic control to cloud computing, equitable resource distribution directly

impacts system stability, productivity, and long-term performance [22]. The dual challenge lies in

formalizing fairness mathematically while enabling practical implementation in dynamic environments.

Two dominant fairness paradigms guide allocation strategies, namely proportional fairness, according

to which resources are allocated proportionally to agents’ contributions or needs, and envy-freeness,
which ensures no agent prefers another’s allocation over their own [22, 23]. While extensively studied

in static settings, recent work extends these criteria to dynamic environments where resources and

agent populations evolve over time [24]. This shift reflects real-world demands for adaptive solutions

that maintain fairness guarantees amid uncertainty.

Our work can be positioned under the broad umbrella of MARA. Specifically, we propose novel

strategies for the re-allocation of resources in a multi-agent, cooperative setting.

Centralized vs. decentralized approaches. Traditional centralized methods, such as the Hungarian

and Gale-Shapley algorithms, rely on a central authority with full system knowledge to compute optimal

allocations [9]. Nash Welfare Optimization (NWO) offers a principled framework for fair resource

distribution by maximizing the geometric mean of agent utilities. The NWO approach inherently

balances efficiency and equity, prioritizing improvements for agents with lower initial utility [8]. It

occupies a middle ground between utilitarian welfare (maximizing total utility) and egalitarian welfare
(maximizing minimum utility) and satisfyies key axiomatic properties such as scale invariance, Pareto

efficiency, and independence of irrelevant alternatives [11, 10]. Due to these strengths, NWO has been

applied successfully in collective decision-making, project funding allocation, and fair division problems

[10]. For multi-agent bandits, NWO provides fair allocations when multiple agents have heterogeneous

preferences [11].

In this work, we provide a novel contextualization of NWO to the multi-agent, cooperative resource

re-allocation setting, Specifically, in our scenario, the utility of an individual agent is defined as the

logarithm of the difference between the number of doctors 𝑦𝑖 allocated to hospital ℎ⃗𝑖 and the minimum

required𝑚𝑖 (possibly incremented by one to ensure positivity in the logarithmic function). Consequently,

the hard constraint 𝑦𝑖 ≥ 𝑚𝑖 is embedded within the objective function. However, NWO provides no

guarantee that allocations will achieve target staffing levels 𝑡𝑖, which represent aspirational goals for

optimal service delivery. To address this limitation, we propose a novel staff reallocation method

based on quadratic programming that explicitly minimizes deviations from target staffing levels while

enforcing minimum operational constraints.

Dynamic resource allocation. In real-world applications, resource allocation evolves over time, ne-

cessitating adaptive strategies. Constrained multi-agent Markov decision processes (MDPs) [25] formalize

sequential allocation problems, modelling resource constraints that couple otherwise independent

agents. Reinforcement Learning (RL) methods have proven effective in dynamic environments by con-

tinuously learning from system feedback: agents refine policies through trial-and-error interactions,

achieving both higher overall utility and reduced violation of fairness requirements compared to tra-

ditional strategies [26, 4]. Recent applications span cloud computing [4] and healthcare services [2],

where RL adapts to fluctuating demands without manual intervention.

Our work advances this line of research by proposing the first RL-based approach in multi-agent,

cooperative resource re-allocation scenarios. We employ the Proximal Policy Optimization (PPO)

algorithm [14], ensuring operational feasibility by limiting the number of doctors transferred at each

step. To address competing objectives—minimizing Target Deviation, avoiding minima violations, and

ensuring fair workforce distribution—we design a composite reward function that integrates these goals.

This formulation enables the agent to learn adaptive redistribution strategies while respecting hard

constraints, overcoming the limitations of static methods.

6. Discussion, Conclusions and Future Work

This paper addressed the problem of cooperative resource re-allocation in dynamic multi-agent envi-

ronments, focusing on the redistribution of hospital staff. By combining classic optimization techniques



with Reinforcement Learning (RL) approaches, we demonstrated that learning-based strategies, in

particular Proximal Policy Optimization (PPO), offer superior adaptability and scalability in dynamic

settings. Our experimental evaluation showed that RL can effectively maintain fairness and minimise

resource mismatches under uncertain and evolving conditions.

While our results are encouraging, several limitations remain. First, the study focuses on PPO, but

other alternative RL algorithms such as DDPG, SAC, or A3C are available. Future work will extend

the evaluation to a wider range of RL methods and assess their relative strengths and weaknesses.

Furthermore, our model currently assumes fully cooperative agents; however, in realistic scenarios,

agents may behave selfishly or misreport their needs. Investigating mechanisms for dealing with partial

cooperation and strategic behaviour is an important direction for future research. For example, we

could experiment with Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [27], a method

for learning in partially cooperative environments, to deal with semi-cooperative hospitals. Another

limitation concerns the lack of formal guarantees regarding fairness and optimality under dynamic

reallocation policies. While empirical results are promising, deriving theoretical performance bounds

for RL-based allocation remains an open challenge. In addition, expanding the evaluation to include

health-care-specific metrics – e.g., resilience to recurrent shocks, hospital load variance, and service

continuity – will make the performance assessment more comprehensive.

Looking ahead, we see several promising developments. One direction involves the integration of

online learning mechanisms to make agents continuously adapt their resource allocation strategies

without offline retraining. Another direction is to embed explainability in allocation policies, making

them transparent and interpretable to human operators–a crucial aspect in sensitive domains such as

healthcare. Finally, hybrid frameworks that combine offline planning with online reactive adjustments

may provide an effective tradeoff between optimality and adaptability.
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