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Abstract
Fairness in data analysis is a well-established and growing area of research, offering tools to understand and

mitigate specific forms of bias in decision-making systems. One of the key challenges in this context is fair

clustering, i.e., grouping data objects that are similar according to a common feature space, while avoiding biasing

the clusters against or towards particular types of classes or sensitive features.

In this work, we discuss a correlation-clustering method we recently introduced and analyze its performance

in fairness-aware scenarios. We compare it with representative state-of-the-art fair clustering approaches,

considering both standard clustering quality metrics and fairness-related measures. Empirical results on publicly

available datasets has shown that the method produces clusterings of higher quality according to traditional

validation criteria, while also accounting for fairness considerations.
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1. Introduction

We live in an era in which machine learning is increasingly pervasive in our society. Every day, we

interact with machine learning systems—often without being aware of it—and these systems are gaining

growing decision-making power in various aspects of our lives. For instance, they are used to support,

or even replace, human decision makers in financial, medical, and legal domains.

Given their critical role, machine learning systems should ensure reliable and fair behavior, avoiding

discrimination against those who are subject to their decisions. However, a major challenge arises

from the data on which these systems are trained: such data are often intrinsically biased, typically

due to flawed or unbalanced data collection processes. It is therefore important to prevent machine

learning algorithms from being influenced by, or amplifying, these biases. For example, the work in [1]

addresses this issue through the notion of disparate impact, which refers to the principle that no group

of individuals should be (even indirectly) disadvantaged by the decisions of an automated system.

In this work, we focus on the problem of fair clustering, an unsupervised machine learning task whose

goal is twofold: (𝑖) as in standard clustering, similar objects are assigned to the same cluster, whereas

dissimilar objects are assigned to different clusters; and (𝑖𝑖) the resulting clusters are not dominated by

a specific type of sensitive data class (e.g., individuals sharing the same gender).

Our key assumption is that the fair clustering problem can be effectively addressed within the

framework of correlation clustering [2, 3]. This well-established approach partitions the vertices of a

graph into clusters by maximizing intra-cluster similarity and minimizing inter-cluster similarity, based

on pairwise weights that encode positive or negative co-association.

Contributions. In this paper, we discuss the use of correlation clustering for fair clustering, with

a focus on our recent algorithm [4], and compare it to a selection of state-of-the-art methods from

diverse algorithmic paradigms. Our analysis explores how emphasizing fairness objectives can influence

the clustering quality, as measured by classic clustering-validation criteria. Our findings show that

our proposed algorithm yields higher-quality solutions than competing methods from a clustering

perspective, while also accounting for fairness-related aspects.
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2. Related Work

Although of relatively recent definition, the problem of fairness in clustering has received considerable

attention in the literature [5]. With their seminal work, Chierichetti et al. [6] were among the first to

formalize the notions around fair clustering and the related problem, following the disparate-impact

doctrine [1]. Their main contribution is a general pre-processing step, i.e., fairlets decomposition, to

enable traditional algorithms (e.g., 𝑘-center and 𝑘-median) meeting fairness principles. Following

that forerunner work, fairness has become pervasive in the clustering landscape [7, 8], leading to

a fairness-aware declination of numerous traditional clustering formulations, such as 𝑘-center [9],

𝑘-means [10], 𝑘-median [11], spectral clustering [12], and hierarchical clustering [13].

The phenomenon of fairness in clustering has also been extended to alternative approaches, such as

correlation clustering. In this regard, Ahmadian et al. [14] is the first work to leverage the correlation

clustering model for the fair clustering task. More specifically, it takes a complete and undirected graph

as input, where vertices are assigned a (single) label representing a given protected class attribute

(e.g., sex or ethnicity), and the goal is to provide a fair representation of each considered label in

the resulting clusters. Recently, Mandaglio et al. [15] proposed to model the fair clustering problem

of a relational dataset as a correlation clustering instance. Given a set of objects, defined over a set

of features, Mandaglio et al. build an associated correlation clustering instance by considering the

similarity between the tuples. Although Ahmadian et al.’s and Mandaglio et al.’s approaches aim to

cluster different types of data (graphs and tuples, respectively), both approaches reduce the original

problem to a correlation clustering instance. However, Mandaglio et al.’s formulation is more general

than Ahmadian et al.’s one, since the former deals with an arbitrary number of labels (or sensitive

attributes), while the latter is limited to a single-label setting.

3. Preliminaries

Correlation clustering. The correlation clustering problem, originally introduced by Bansal et al. [2],

consists of clustering the set of vertices of a graph whose edges are assigned two nonnegative weights,

named positive-type and negative-type weights, respectively. Such weights express the advantage

of putting any two connected vertices into the same cluster (positive-type weight) or into separate

clusters (negative-type weight). The objective is to partition the vertices so as to minimize the sum of

the negative-type weights between vertices within the same cluster plus the sum of the positive-type

weights between vertices in separate clusters (Min-CC).

Problem 1 (Min-CC [16]). Given an undirected graph 𝐺 = (𝑉,𝐸), with vertex set 𝑉 and edge set

𝐸 ⊆ 𝑉 × 𝑉 , and weights 𝑤+
𝑢𝑣, 𝑤

−
𝑢𝑣 ∈ R+

0 for all edges (𝑢, 𝑣) ∈ 𝐸, find a clustering 𝒞 : 𝑉 −→ N+
that

minimizes: ∑︁
(𝑢,𝑣)∈𝐸,𝒞(𝑢)=𝒞(𝑣)

𝑤−
𝑢𝑣 +

∑︁
(𝑢,𝑣)∈𝐸,𝒞(𝑢) ̸=𝒞(𝑣)

𝑤+
𝑢𝑣. (1)

Min-CC is APX-hard [17], but admits approximation algorithms [16, 2, 17, 18, 19] with guarantees

depending on the type of input graph. On general graphs and weights, the best known approximation

factor is 𝒪(log |𝑉 |) [17, 20], provided by a linear programming approach. Conversely, constant-factor

approximation algorithms are possible if the graph is complete and edge weights satisfy the probability

constraint, i.e., 𝑤+
𝑢𝑣 +𝑤−

𝑢𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝑉 . Among these, the one which provides the best trade-off

between efficiency and theoretical guarantees is the Pivot algorithm [16], which simply picks a random

vertex 𝑢, builds a cluster as composed of 𝑢 and all the vertices 𝑣 such that an edge with𝑤+
𝑢𝑣 > 𝑤−

𝑢𝑣 exists,

and removes that cluster from the graph. The process is repeated until the graph has become empty.

This algorithm has 𝒪(|𝐸|) time complexity and it achieves a factor-5 expected guarantee for Min-CC

under the probability constraint or if a global weight bound holds on the overall edge weights [15].

We next discuss how to solve the fair clustering problem via a Min-CC approach.



Algorithm 1 CCBounds [15]

Input: Set of objects 𝒳 , sensitive attributes 𝒜𝐹
, non-sensitive attributes 𝒜¬𝐹

, Min-CC algorithm A

Output: Clustering 𝒞 of 𝒳
1: compute 𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣), 𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣), ∀𝑢, 𝑣 ∈ 𝒳 , as in Eqs. (3)–(4)

2: build the instance 𝐼 = ⟨𝐺 = (𝒳 ,𝒳 × 𝒳 ), {𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣), 𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣)}𝑢,𝑣∈𝒳×𝒳 ⟩
3: 𝒞 ← run A on 𝐼

Problem statement. Let 𝒳 = {𝑋1, · · · , 𝑋𝑛} be a set 𝒜 of 𝑛 objects defined over a set of attributes.

The latter is assumed to be divided into two sets, 𝒜𝐹
and 𝒜¬𝐹

. The 𝒜𝐹
set contains fairness-aware, or

sensitive, attributes such as those identifying sex, race, religion, relationship status in a citizen database

and any other attribute over which fairness is to be ensured. 𝒜¬𝐹
denotes the attributes that are

relevant to the task of interest, and thus can be regarded as non-sensitive. In both cases, we assume that

part of the attributes might be numerical, and the others as categorical (binary or multi-value). We use

subscripts 𝑁 and 𝐶 to distinguish the two types, therefore 𝒜𝐹 = 𝒜𝐹
𝑁 ∪ 𝒜𝐹

𝐶 and 𝒜¬𝐹 = 𝒜¬𝐹
𝑁 ∪ 𝒜¬𝐹

𝐶 .

We consider a clustering task whose goal is to partition the input objects with a twofold objective: (𝑖)
minimize the inter-cluster similarity according to the non-sensitive attributes 𝒜¬𝐹

; (𝑖𝑖) minimize the

intra-cluster similarity according to the sensitive attributes 𝒜𝐹
. The former objective corresponds to

the typical clustering objective, since dissimilar objects should belong to different clusters. Pursuing the

second objective, instead, would help distribute objects that are similar in terms of sensitive attributes

across different clusters, thus fostering the formation of clusters that are equally represented in terms of

the sensitive attributes. This is beneficial to ensure that the distribution of groups defined on sensitive

attributes within each cluster approximates the distribution across the dataset. Formally, the problem

we tackle in this work is:

Problem 2 (Fair-CC [4]). Given a set of objects 𝒳 , two subsets of attributes 𝒜𝐹
and 𝒜¬𝐹

, and an

object similarity function 𝑠𝑖𝑚𝑆(·) defined over the subspace 𝑆 of the attribute set, find a clustering 𝒞* to

minimize: ∑︁
𝑢,𝑣∈𝒳 ,𝒞(𝑢)=𝒞(𝑣)

𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣) +
∑︁

𝑢,𝑣∈𝒳 ,𝒞(𝑢) ̸=𝒞(𝑣)

𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣) (2)

The objective in Eq. (2) corresponds to solving a complete Min-CC instance where the set of ver-

tices corresponds to the objects in 𝒳 and, for each pair of vertices 𝑢 and 𝑣, the positive-type (resp.

negative-type) correlation-clustering weight corresponds to the similarity score between the two vertices

according to the non-sensitive (resp. sensitive) attributes.

4. Algorithm

The Fair-CC problem requires a similarity function over a set of attributes. We quantify the similarity

between objects 𝑢 and 𝑣, based on sensitive and non-sensitive attributes, by means of the following

𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣) and 𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣) measures, respectively:

𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣) := 𝜓+
(︁
𝛼¬𝐹
𝑁 · 𝑠𝑖𝑚𝒜¬𝐹

𝑁
(𝑢, 𝑣) + (1− 𝛼¬𝐹

𝑁 ) · 𝑠𝑖𝑚𝒜¬𝐹
𝐶

(𝑢, 𝑣)
)︁
, (3)

𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣) := 𝜓−
(︁
𝛼𝐹
𝑁 · 𝑠𝑖𝑚𝒜𝐹

𝑁
(𝑢, 𝑣) + (1− 𝛼𝐹

𝑁 ) · 𝑠𝑖𝑚𝒜𝐹
𝐶
(𝑢, 𝑣)

)︁
, (4)

where 𝛼𝐹
𝑁 = |𝒜𝐹

𝑁 |/(|𝒜𝐹
𝑁 | + |𝒜𝐹

𝐶 |) and 𝛼¬𝐹
𝑁 = |𝒜¬𝐹

𝑁 |/(|𝒜¬𝐹
𝑁 | + |𝒜¬𝐹

𝐶 |) are coefficients to weight

similarities proportionally to the number of involved attributes, and 𝜓+ = 𝑒𝑥𝑝(|𝒜𝐹 |/(|𝒜𝐹 |+ |𝒜¬𝐹 |)−
1) and 𝜓− = 𝑒𝑥𝑝(|𝒜¬𝐹 |/(|𝒜𝐹 |+ |𝒜¬𝐹 |)− 1) are smoothing factors to penalize correlation-clustering

weights that are computed on a small number of attributes. The latter is reasonable as, in a fair clustering

task, we usually have fewer sensitive attributes, and it should be avoided that negative-like weights can

dominate the positive-like ones. The exponential function enables a mild smoothing, which is desirable.



As Fair-CC is an instance of Min-CC, it can be solved by Min-CC algorithms. Our proposed

algorithm [4], dubbed CCBounds
1

and presented in Algorithm 1, consists of building a Min-CC

instance with vertices as the input data objects and edge weights as the similarity scores, and then

running a Min-CC algorithm A on such a Min-CC instance.

Theoretical remarks. Let 𝑇A(𝒳 ) be the running time of the algorithm A on the set of data objects 𝒳 .

CCBounds runs in 𝒪(|𝒳 |2|𝒜|+ 𝑇A(𝒳 )) time complexity since it needs to compute a similarity score,

over 𝒜 attributes, for each pair of objects in 𝒳 , and then solve the resulting Min-CC instance through

algorithm A. Also, the space complexity of CCBounds is 𝒪(|𝒳 |2) for storing the similarity scores in

memory. The specific Min-CC algorithm A used in CCBounds is the one proposed in [21], since it

provides (under the probability constraint or the global weight bound stated in [15]) constant-factor

approximation guarantee in expectation. Also, taking linear time in the size of the input graph, to the

best of our knowledge, it is the most efficient algorithm in the Min-CC literature. As a result of this

choice, the time complexity of CCBounds becomes 𝒪(|𝒳 |2|𝒜|).
Another appealing aspect of the fact that Fair-CC is an instance of Min-CC is that Fair-CC inherits

the following theoretical result:

Theorem 1 ([15]). If the condition

(︀|𝒳 |
2

)︀−1∑︀
𝑢,𝑣∈𝒳 (𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣) + 𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣)) ≥

max𝑢,𝑣∈𝒳 |𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣) − 𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣)| holds on the similarity scores and the oracle A is an

𝛼-approximation algorithm for Min-CC, CCBounds is an 𝛼-approximation algorithm for Fair-CC.

The above theorem provides approximation guarantee on the Fair-CC objective (cf. Eq. (2)), which

combines the cluster quality measure (first summation) and the fairness-related objective (second

summation). It is not known how this quality guarantee translates into the single objective, e.g., the fair

objective. This is a challenging open question which we defer to future studies.

5. Fairness Evaluation

In this section, we summarize the most-commonly adopted metrics for the evaluation of fairness aspects

in clustering. We focus on algorithm-independent measures, i.e., able to generalize across multiple

methods, following a group-level approach under the disparate impact doctrine [1].

Balance. It is one of the most adopted evaluation metrics for fairness in clustering, initially proposed

by Chierichetti et al. [6] in a context with one sensitive attribute with two protected groups. It has been

successively generalized to 𝑚 protected groups by Bera et al. [7]. According to the latter, the balance of

a clustering solution can formally be defined as follows [5]:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝒞) = min
𝐶∈𝒞,𝑏∈[𝑚]

min
{︁
𝑅𝐶,𝑏,

1

𝑅𝐶,𝑏

}︁
∈ [0, 1], (5)

where 𝑅𝐶,𝑏 is the ratio between the proportion of the objects belonging to a given protected group 𝑏 in

the considered dataset and in a given cluster 𝐶 ∈ 𝒞.

In such a formulation, the lower and upper bounds of a cluster indicate the fully unbalanced and

perfectly balanced scenarios, respectively, where the former indicates the case where all the objects in

such a cluster pertain to the same protected group, whereas the latter denotes an equal number of objects

from each of the protected groups. Therefore, the higher the balance, the better the obtained solution,

in terms of equality. Additionally, the considered generalization allows us to obtain a comprehensive

evaluation of the balance of our clustering solutions, as it looks at the dataset context, i.e., it will return

high scores provided that the balances of the clustering and the input dataset are comparable.

Average Euclidean Fairness. This metric was introduced by Abraham et al. [10] to estimate the

unfairness by assessing the deviation between the representation of groups obtained focusing on the

sensitive attributes in the whole dataset and the given clustering solution. It expresses the cluster-size

1
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weighted average of cluster-level deviations (i.e., Euclidean distances) between two frequency (sensitive)

attribute vectors, namely 𝒳𝐴, which is computed over the entire set of objects, and 𝐶𝐴, which is

computed for each cluster 𝐶 ∈ 𝒞, focusing on a sensitive attribute 𝐴 ∈ 𝒜𝐹
. Formally, it is defined as:

𝐴𝐸𝐴(𝒞) =
∑︀

𝐶∈𝒞 |𝐶| × 𝐸𝐷(𝐶𝐴,𝒳𝐴)∑︀
𝐶∈𝒞 |𝐶|

, (6)

where 𝐸𝐷 represents the Euclidean distance between the frequency attribute vectors. Since 𝐴 can be

multi-valued, such a formulation is suited to scenarios where there are multiple protected groups. Also,

as this measure is a deviation, smaller values correspond to better solutions.

6. Experimental Methodology

6.1. Competing Methods

In the following, we briefly overview the competing methods we included in our experiments. For each

of those methods, we used publicly available code, which we adopted “as-is”, i.e., without making any

changes or optimizations.

Fair Clustering Through Fairlets [6]. This method, here dubbed Fairlets, is one of the pillars of

fair clustering. It is based on the notion of fairlets decomposition, that is a grouping of the input objects

into fairlets, i.e., minimal subsets of objects that satisfy a given fairness definition, while preserving the

clustering objective. Given a good fairlets decomposition, this approach requires traditional clustering

algorithms (i.e., 𝑘-center or 𝑘-median) applied on the centers of the obtained fairlets, to yield the “fair”

solutions. Fairlets supports two types of fairlets decomposition: an accurate one based on min cost flow

(MCF), and a more efficient one. We hereinafter refer to those decompositions as MCF decomposition

and vanilla decomposition, respectively. A major limitation of Fairlets is that it can handle a single

sensitive binary attribute only. We will discuss the impact of such limitations in more detail in Section 7.

HST-based Fair Clustering [11]. This approach, here dubbed HST-FC, focuses on the 𝑘-median

formulation, and employs a quad-tree decomposition to embed the objects in a a tree metric, called HST.

By leveraging such a tree, HST-FC computes an approximate fairlets decomposition. A fair clustering is

ultimately obtained by running 𝑘-median algorithms on the produced fairlets. Like Fairlets, HST-FC

suffers from the limitation that it deals with one binary sensitive attribute only.

Fair Correlation Clustering [14]. This method, here dubbed Signed, introduces a fairlet-based

reduction for the graph clustering scenario with respect to the problem of correlation clustering, leading

to the concept of correlation clustering with fairness constraints. Specifically, given a signed graph,

i.e., an undirected graph with edges labeled as positive or negative, the algorithm performs a fairlet

decomposition (under different fair settings) over the set of vertices. The produced decomposition

is used, together with the original graph, to build a reduced (complete and unweighted) correlation

clustering instance, where the vertices correspond to the produced fairlets and the sign of the edges

between any two fairlets are built according to the majority sign of the edges between vertices within

those two fairlets. A clustering on this reduced correlation clustering instance is computed through

local-search optimization starting from all singleton clusters, and then expanded into a solution of the

original problem. As a fair setting for the fairlets decomposition, we consider the most common case of

fair decomposition where clusters are required not to have a sensitive data class. As the Signed method

requires a signed graph as input, we perform the following preprocessing step to make the relational data

compatible with this format. We derive a complete graph whose vertices are the original data objects and

an edge (𝑢, 𝑣) is labeled as positive with probability 𝑝+𝑢𝑣 = 𝑚𝑎𝑥{0, 𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣)− 𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣)} and

as a negative edge with probability 1−𝑝+𝑢𝑣 , where the similarity functions are the ones defined in Eqs. (3)–

(4). We point out that, although we can adapt the same weighting strategy as CCBounds to obtain the

edge attributes, we discarded this choice as our experiments showed that it favors the emergence of a

degenerated clustering solution (i.e., a single output cluster), due to the strong predominance of positive

weights on the edges.



Table 1
Overview of the datasets involved in our experiments.

#objs. sensitive attribute non-sensitive attribute

Adult 48 842 sex age, fnlgwt, education_num, capital_gain, hours_per_week

Bank 40 004 marital age, balance, duration

CreditCard 10 127 sex customer_age, dependent_count, avg_utilization_ratio, total_relationship_count

Diabetes 101 763 sex age, time_in_hospital

Student 649 sex age, study_time, absences

6.2. Data

We considered five real-world relational datasets, which have been commonly used in the fair clustering

literature. The main characteristics of these datasets are summarized in Table 1. As reported in the

table, in our evaluation we focused on a smaller subset of the original attributes; note that this is a

common practice, which is adopted, among others, by the competing methods outlined above.

Adult
2

reports information about the 1994 US Census. For each tuple representing an individual, we

considered age, fnlwgt, education-num, capital-gain and hours-per-week as non-sensitive attributes, and

sex (i.e., male or female) as a sensitive attribute.

Bank
2

provides details on phone calls involving direct marketing campaigns of a Portuguese banking

institution to assess whether the bank term deposit will be subscribed or not. We considered attributes

age, balance and duration as non-sensitive, and marital status (i.e., married or not) as sensitive.

CreditCard
3

concerns customer credit card services to estimate customer attrition. We considered

attributes customer_age, dependent_count, avg_utilization_ratio and total_relation ship_count as non-

sensitive, and sex as sensitive.

Diabetes
2

reports diabetic patient records, for which we considered age and time_in_hospital as non-

sensitive attributes, and sex as a sensitive attribute.

Student
2

contains student performances for Mathematics and Portuguese language in secondary educa-

tion of two Portuguese schools. We considered age, study_time and absences as non-sensitive, and sex

as sensitive.

6.3. Evaluation Goals

Our evaluation objectives concern both fairness and quality aspects of clustering. In the first case, we

use the fairness metrics defined in Section 5, which allow us to have a group-wide overview of how

a method behaves in terms of fair principles. In the second case, we assess the quality of clustering

by means of intra- and inter-clustering similarity, considering both the sensitive and non-sensitive

attributes, as described below. Finally, we evaluate running times.

Intra/Inter-cluster similarity. As stated in Section 3, we take into account the intra-cluster, resp.

inter-cluster, similarity among objects to properly distribute them into clusters, either focusing on their

sensitive and non-sensitive attributes (cf. Eqs. (3) and (4)). We define the following aggregated scores to

have an overall measure of goodness of the clusters:

𝑖𝑛𝑡𝑒𝑟(𝒜¬𝐹 ) =
1

|Θ|
∑︁

𝑢,𝑣∈Θ

𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣), 𝑖𝑛𝑡𝑒𝑟(𝒜𝐹 ) =
1

|Θ|
∑︁

𝑢,𝑣∈Θ

𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣), (7)

𝑖𝑛𝑡𝑟𝑎(𝒜¬𝐹 ) =
1

|Ω|
∑︁

𝑢,𝑣∈Ω

𝑠𝑖𝑚𝒜¬𝐹 (𝑢, 𝑣), 𝑖𝑛𝑡𝑟𝑎(𝒜𝐹 ) =
1

|Ω|
∑︁

𝑢,𝑣∈Ω

𝑠𝑖𝑚𝒜𝐹 (𝑢, 𝑣), (8)

where Ω = {𝑢, 𝑣 ∈ 𝒳 | 𝒞(𝑢) = 𝒞(𝑣)}, and Θ = {𝑢, 𝑣 ∈ 𝒳 | 𝒞(𝑢) ̸= 𝒞(𝑣)}. In particular, to obtain

fair clusters, we need to maximize (resp. minimize) the 𝑖𝑛𝑡𝑒𝑟(𝒜𝐹 ), resp. 𝑖𝑛𝑡𝑟𝑎(𝒜𝐹 ), scores, so that

objects having the same set of sensitive attributes will not be clustered together, rather they will be

2

https://archive.ics.uci.edu/ml/datasets/

3

https://www.kaggle.com/sakshigoyal7/credit-card-customers

https://archive.ics.uci.edu/ml/datasets/
https://www.kaggle.com/sakshigoyal7/credit-card-customers


Table 2
Configurations and hyper-parameters used in our evaluations w.r.t. different experimental setups [4]. 𝑘𝑎𝑣𝑔 is the

avg. number of clusters that were obtained over ten runs of CCBounds, and 𝑘 corresponds to the parameter

value provided to Fairlets and HST-FC.

𝑝, 𝑞 split ratio 𝑘𝑎𝑣𝑔 𝑘

Adult-1k 1,2 650/350 3.12 3

Bank-1k 1,2 650/350 3.48 3

Credit-Card-1k 1,6 800/200 5.6 6

Diabetes-1k 1,2 540/460 5.2 5

Student-1k 1,2 266/383 3.88 4

Adult-10k 1,2 6 500/3 500 2.96 3

Bank-10k 1,2 6 500/3 500 3.28 3

Credit-Card-10k 1,6 4 769/5 358 6.32 6

Diabetes-10k 1,2 5 400/4 600 6.44 6

Adult-Full 2,5 32 650/16 192 3.64 4

Bank-Full 2,5 12 790/27 214 3.64 4

Diabetes-Full 1,2 47 055/54 708 OOM 6

well-distributed across clusters. Conversely, we require to maximize, resp. minimize, the 𝑖𝑛𝑡𝑒𝑟(𝒜¬𝐹 ),
resp. 𝑖𝑛𝑡𝑟𝑎(𝒜¬𝐹 ), scores, to ensure that objects with the same set of non-sensitive attributes will be

clustered close with each other and not scattered across different clusters.

Running times. We measure the running times of CCBounds and the competing methods while

executing them on the Cresco6 cluster.
4

6.4. Hyper-parameters and Configurations

Data sampling and attributes selection. To test the selected competing methods under different

conditions, and run even the most computationally expensive approaches, we adopt the sampling

strategy proposed in [6]. Specifically, by sampling (without replacement) we extracted 1k or 10k tuples

from the original full set of tuples, by preserving some desired ratio between the protected classes. The

details of the sampling strategy used in our experiments are reported in Table 2, where the selected fair

attributes and split ratio (i.e., the fraction of tuples pertaining to different sensitive attribute values) are,

whenever possible, the same as [6]. Also, both Fairlets and HST-FC require two integers 𝑝 and 𝑞 as

input, whose ratio 𝑝/𝑞 corresponds to the minimum balance required by each clusters, yielded by these

algorithms. The configuration of these parameters, inspired by [6, 7], is reported in Table 2.

We highlight that, as described so far, we focus on a single and binary sensitive attribute to match the

minimum requirements that embrace all competing methods. Nonetheless, some approaches (including

our CCBounds) can deal with multiple values assigned to a single sensitive attribute.

Number of clusters. While Fairlets and HST-FC require a hyper-parameter 𝑘 in input, denoting

the desired number of output clusters, the same does not apply with the correlation clustering-based

approaches. Thus, to create a reasonable comparative environment, we use the (rounded) average

number of clusters returned by CCBounds in ten iterations as the 𝑘 parameter for Fairlets and HST-

FC. Moreover, we inherit the value 𝑘 from the nearest subset when the correlation clustering-based

approaches run out of memory.

7. Results

Table 3 summarizes the results achieved by CCBounds and the competing methods. With the exception

of very high running times and out of memory errors (indicated with NA and OOM, respectively), all

reported measurements correspond to averages over 10 runs of the tested algorithms. The similarity

values (Eqs. (7)–(8)) were obtained by using Euclidean and Jaccard similarities for numerical and

4

https://www.eneagrid.enea.it

https://www.eneagrid.enea.it


Table 3
Summary of results [4] according to the following criteria (columns from left to right): number of clusters,

balance score, avg. Euclidean fairness, avg. intra-cluster and inter-cluster similarities according to either the set

of selected sensitive attributes or the set of non-sensitive attributes (cf. Table 1), and running time. For each

criterion, bold values correspond to the best-performing methods (possibly up to the second decimal point).

#𝑐𝑙𝑢𝑠𝑡. balance ↑ AE ↓ 𝑖𝑛𝑡𝑟𝑎(𝒜¬𝐹 ) ↑ 𝑖𝑛𝑡𝑟𝑎(𝒜𝐹 ) ↓ 𝑖𝑛𝑡𝑒𝑟(𝒜¬𝐹 ) ↓ 𝑖𝑛𝑡𝑒𝑟(𝒜𝐹 ) ↑ time (s) ↓

Adult-1k

CCBounds 3.12 0.565 0.007 0.685 0.524 0.415 0.334 < 1
Fairlets 3 0.805 0.004 0.585 0.319 0.596 0.335 < 1
HST-FC 3 0.971 0.01 0.616 0.335 0.599 0.336 < 1
Signed 41 0.66 0.03 0.59 0.32 0.60 0.33 240

Adult-10k

CCBounds 2.96 0.52 0.03 0.65 0.43 0.43 0.33 3.86

Fairlets 3 0.82 0.003 0.60 0.32 0.615 0.33 < 1
HST-FC 3 0.98 0.006 0.626 0.336 0.618 0.336 3.03

Signed NA NA NA NA NA NA NA > 48h

Adult-Full

CCBounds 3.64 0.56 0.003 0.69 0.47 0.42 0.24 75.5

Fairlets 4 0.66 0.02 0.59 0.32 0.62 0.34 6.5
HST-FC 4 0.96 0.008 0.63 0.34 0.62 0.34 72.86

Signed NA NA NA NA NA NA NA > 48h

Bank-1k

CCBounds 3.48 0.565 0.006 0.727 0.587 0.441 0.369 < 1
Fairlets 3 0.828 0.002 0.606 0.354 0.613 0.364 < 1
HST-FC 3 0.968 0.007 0.621 0.365 0.617 0.365 < 1
Signed 41 0.7 0.03 0.61 0.35 0.63 0.36 224

Bank-10k

CCBounds 3.28 0.52 0.0007 0.78 0.63 0.45 0.36 4.74

Fairlets 3 0.7 0.001 0.59 0.32 0.63 0.36 < 1
HST-FC 3 0.969 0.004 0.656 0.365 0.656 0.365 3.07

Signed NA NA NA NA NA NA NA > 48h

Bank-Full

CCBounds 3.64 0.55 0.0004 0.72 0.55 0.45 0.37 51.1

Fairlets 4 0.68 0.001 0.62 0.34 0.65 0.36 5.3
HST-FC 4 0.94 0.008 0.66 0.37 0.66 0.37 28

Signed NA NA NA NA NA NA NA > 48h

CreditCard-1k

CCBounds 5.6 0.613 0.127 0.6 0.497 0.46 0.362 < 1
Fairlets 6 0.4 0.042 0.485 0.355 0.486 0.375 < 1
HST-FC 6 0.756 0.026 0.513 0.373 0.481 0.377 < 1
Signed 171 0.56 0.1 0.56 0.41 0.49 0.38 173

CreditCard-10k

CCBounds 6.32 0.496 0.17 0.6 0.46 0.46 0.32 4.1

Fairlets 6 0.94 0.01 0.497 0.34 0.49 0.337 < 1
HST-FC 6 0.955 0.013 0.52 0.337 0.491 0.337 2.52

Signed NA NA NA NA NA NA NA > 48h

Diabetes-1k

CCBounds 5.2 0.45 0.33 0.622 0.519 0.512 0.352 < 1
Fairlets 5 0.92 0.015 0.537 0.381 0.532 0.385 < 1
HST-FC 5 0.872 0.05 0.585 0.386 0.529 0.386 < 1
Signed 106 0.85 0.04 0.58 0.36 0.54 0.38 257

Diabetes-10k

CCBounds 6.44 0.48 0.22 0.65 0.54 0.5 0.36 4.72

Fairlets 6 0.92 0.01 0.53 0.38 0.53 0.39 < 1
HST-FC 6 0.799 0.065 0.59 0.388 0.53 0.386 2.84

Signed NA NA NA NA NA NA NA > 48h

Diabetes-Full

CCBounds OOM OOM OOM OOM OOM OOM OOM OOM

Fairlets 6 0.93 0.01 OOM OOM OOM OOM 22.2
HST-FC 6 0.81 0.06 OOM OOM OOM OOM 761.2

Signed OOM OOM OOM OOM OOM OOM OOM OOM

Student-1k

CCBounds 3.88 0.51 0.10 0.625 0.463 0.471 0.224 < 1
Fairlets 4 0.82 0.013 0.528 0.339 0.543 0.357 < 1
HST-FC 4 0.93 0.024 0.563 0.357 0.541 0.358 < 1
Signed 55 0.82 0.04 0.57 0.34 0.55 0.36 71

categorical attributes, respectively. Moreover, as for the Fairlets method, as previously discussed in

Section 6.1, we report results only for the vanilla fairlets decomposition, since the min-cost-flow (MCF)

counterpart has very high running times (more than 7 minutes on the smallest dataset, i.e., Student-1k)

and produces solutions that are very similar to the vanilla one (results not shown for the sake of brevity).

As for the balance, we notice that, although CCBounds does not match the high scores obtained

by “fairness-native” methods (i.e., Fairlets and HST-FC), it is still able to score comparably with its

direct competing method, i.e., Signed. Exceptions arise in the case of Student-1k and Diabetes-1k, where

CCBounds sets up to lower scores, and for some large datasets, where Signed does not terminate in

reasonable time, while our CCBounds still obtains good results in reasonable time. The paradigm shifts

when we consider small yet heavily unbalanced datasets (i.e., CreditCard-1k, with an 80:20 ratio); here,

although several competing methods struggle to obtain high scores, CCBounds achieves the second-best



balance score. Overall, as the balance obtained by CCBounds in all evaluation scenarios ranges from

0.45 to 0.613, we can conclude that it is able of guaranteeing satisfactory balance scores.

In the case of avg. Euclidean fairness, CCBounds obtains very good scores under different scenarios:

it is among the best-performer approaches for the Adult-1k, Adult-Full and Bank-1k datasets, and

outperforms all the other methods by an order of magnitude on Bank-10k and Bank-Full. Conversely,

on the remaining datasets, CCBounds does not reach the top scores of some competitors.

Considering the similarity computed on the sensitive attributes, CCBounds does not achieve the

best intra-cluster similarity, meaning that it tends to group a few more objects with the same sensitive

attribute value than the other methods. Nevertheless, the inter-cluster similarities are comparable

with the other methods, thus indicating that CCBounds is still able to properly separate the objects

into clusters, when accounting for the sensitive attribute. Instead, when we focus on the similarity

computed on the non-sensitive attributes, CCBounds achieves the best performance in all the considered

evaluation scenarios, yielding very high-quality clusters.

Finally, we also investigated on running times, spotting Fairlets as the best performer, followed by

HST-FC and CCBounds, which both guarantee reasonable running times. Although CCBounds has

quadratic time complexity due to pairwise similarity calculations (cf. Section 4), we managed to perform

in parallel such time-consuming steps. On the contrary, Signed requires excessively long execution

times, often resulting infeasible in practice, along with an abnormal number of clusters produced,

which is particularly large even when considering the smallest 1k datasets. Overall, it should be noted

that, albeit the observed running times should be taken with grain of salt due to the (lack of) code

optimizations, major remarks are consistent with the time complexities of the corresponding methods.

Discussion. A number of remarks arise from our experimental evaluation. First, although native

fairness-aware approaches are able to produce clustering solutions that optimize fairness notions, we

found out that such a capability comes with a cost, as the produced clusters are often far from being

qualitatively good. On the other hand, CCBounds demonstrated itself to be effective and versatile: it

was recognized as the best-in-case approach among the tested ones when it comes to find good-quality

clusters, while also being able not to excessively penalize aspects related to fairness.

Second, although we unveiled the weakness in quality shown by the native fair-clustering approaches,

we nonetheless shed light on how the approaches based on correlation clustering might suffer from

computational issues, by being slower than the other methods, and requiring more memory. This is

particularly evident with Signed, as it is unable to terminate in all datasets having more than 10k

tuples, while it is kept under control in CCBounds, which goes down only in the case of Diabetes-Full

(containing more than 100k tuples, cf. Section 6.2), thanks to the numerous optimization adopted under

the hood. However, such a dataset makes it difficult to calculate similarities even for traditional and

more efficient approaches, despite the computing capabilities at our disposal.

Finally, our approach achieves fairness-aware performance comparable to its direct competitor

(Signed), while outperforming all considered methods in producing high-quality clusters, without

compromising fairness.

8. Conclusions

We showed how the correlation clustering method [4], CCBounds, effectively addresses fair clustering.

Experiments on real data confirm the quality of its solutions, which outperform competing methods in

standard clustering metrics while preserving fairness.

Future work includes evaluating CCBounds with multiple protected values, exploring alternative

similarity definitions, and extending its applicability to more complex scenarios with multiple sensitive

attributes and/or uncertainty [22], enhancing its practicality and versatility.
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