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Abstract. Uncertain data objects are usually represented in terms of an uncer-
tainty region over which a probability distribution is defined. Dealing with such
data has raised several issues in data management and knowledge discovery, mainly
due to the intrinsic difficulty underlying the various notions of uncertainty. Re-
cently, there has been a growing interest in clustering uncertain data, with a special
emphasis on partitional and density-based approaches, whereas there has been a
poor research on hierarchical methods.
The goal of this work is to address the problem of hierarchical clustering of un-
certain objects. We developed a centroid-linkage-based agglomerative hierarchical
method for clustering uncertain objects, named U-AHC, 1 whose major novelty lies
in a well-founded information-theoretic approach to the computation of distance
between uncertain objects. Experiments conducted on various datasets have shown
that our method outperforms state-of-the-art methods for clustering uncertain data
from an accuracy viewpoint.
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1 Introduction

Handling uncertainty in data management has been requiring more and more importance
in a wide range of application contexts. Indeed, data uncertainty naturally arises from,
e.g., implicit randomness in a process of data generation/acquisition, imprecision in phys-
ical measurements, and data staling. In general, uncertainty can be considered at table,
tuple or attribute level [2], and is usually specified by fuzzy models [3], evidence-oriented
models [4], or probabilistic models [5].

We focus on data containing attribute-level uncertainty that is modeled according to
a probabilistic model. We hereinafter refer to this data as uncertain objects. An uncertain
object is usually represented by means of probability distributions, which describe the
likelihood that the object appears at each position in a multidimensional space [6], rather
than by a traditional vectorial form of deterministic values. Attribute-level uncertainty
expressed by means of probabilistic models is present in several application domains,
such as sensor data [7], moving objects [8], or gene expression data [9].

Dealing with uncertain objects has raised several issues in data management and
knowledge discovery; in particular, organizing uncertain objects is challenging due to
the intrinsic difficulty underlying the various notions of uncertainty. As a consequence
to this challenge, clustering uncertain objects has been attracting increasing interest in
recent years [10, 11, 12, 13, 14].

While the proposed clustering algorithms mainly differ on the clustering strategy and
the cluster model, the adopted notions of distance between uncertain objects come into
two main approaches. The first approach consists in computing the distance between
1 An early version of the U-AHC algorithm was originally presented in [1].



aggregated values extracted from the probability distributions of the uncertain objects
(e.g., expected values); the second approach instead requires to somehow compare the
whole distributions. However, both these approaches have some drawbacks in their own:
as stated in, e.g., [15], the first approach has an accuracy issue, whereas the second one
may suffer from expensive operations for approximating the probability distributions of
the uncertain objects.

Information-theory represents a fruitful research area to devise distance measures for
comparing probability distributions. However, most of the existing information-theoretic
measures, such as the popular ones falling into the Ali-Silvey class of distance mea-
sures [16], cannot be used to directly define distances for uncertain objects. Indeed, such
measures commonly require that the probability distributions being compared hold for
random variables defined over a common event space (i.e., common domain region); un-
fortunately, the domain regions of the probability distributions associated to uncertain
objects may not have wide intersections.

Within this view, we address the problem of clustering uncertain objects by proposing
a different approach to the computation of distance between probability distributions
for uncertain data, which is employed in a hierarchical clustering framework. Our main
contributions can be summarized as follows:

1. We propose a compound distance measure which is established based on two differ-
ent ways of comparing probability distributions that represent uncertain data objects:
(i) measuring the distance by involving the whole probability distributions, and (ii)
computing the difference between the expected values of the distributions. The intu-
ition behind this definition of distance lies in the fact that comparing two distributions
by an information-theoretic distance is powerful but, in principle, not always appli-
cable to uncertain objects; on the contrary, expected value of distributions is always
computable but represents a concise information that is not able to capture the real
proximity (which also depends on the shapes) between probability distributions.
We introduce a notion of adequacy of computing the distance between any two prob-
ability distributions (of uncertain objects) by means of a given information-theoretic
distance. Intuitively, this notion expresses to what degree an information-theoretic
distance measure is worth comparing two uncertain objects by involving only their
pdfs. We also prove that the adequacy of comparing any two probability distributions
provides an upper-bound for the computation of the information-theoretic measure
adopted in our framework.

2. We present a centroid-linkage-based agglomerative hierarchical algorithm for clus-
tering uncertain objects, named U-AHC. The prototype (centroid) of any given clus-
ter is computed as a mixture model that summarizes the probability distributions of
all the objects within that cluster. At each iteration of the algorithm, the pair of closest
clusters is chosen according to an information-theoretic measure that computes the
distance between the cluster prototypes. The whole information represented in the
probability distributions is exploited for comparing uncertain objects, while comput-
ing certain information-theoretic measures is a reasonably efficient operation.

2 State of the art

One of the earliest attempts to solve the problem of clustering uncertain data is the par-
titional algorithm UK-means [12], which is an adaptation of the popular K-means [17]
designed for handling uncertain objects. UK-means suffers from a major weakness, that



is the expensive computation of the expected distance (ED) between uncertain objects
and cluster centroids, at each iteration of the algorithm. In order to improve the UK-
means efficiency, [13, 18] proposes some pruning techniques to avoid the computation of
redundant EDs, whereas in [14], the CK-means algorithm is proposed as a variant of UK-
means that exploits the moment of inertia of rigid bodies in order to reduce the execution
time needed for computing EDs.

Besides the efficiency issue due to EDs calculation, UK-means suffers also from an
accuracy issue. Indeed, cluster centroids are computed as deterministic objects using the
expected values of the pdfs of the clustered objects. In [19], the UK-medoids algorithm is
proposed to overcome the above issue by employing distance functions properly defined
for uncertain objects and exploiting a K-medoids scheme.

Devising a fuzzy distance function is a key aspect in density-based approaches to
clustering uncertain objects [11, 10]. In [11], the FDBSCAN is proposed as a fuzzy ver-
sion of the popular DBSCAN, which uses fuzzy distance functions to compute the core
object and reachability probabilities. A similar approach is presented in FOPTICS [10].
Like the well-known density-based clustering algorithm OPTICS, FOPTICS produces
an augmented ordering of the objects based on the notion of fuzzy object reachability-
distance, which can eventually be used to derive a cluster hierarchy.

3 Uncertain objects

Definition 1 (multivariate uncertain object). A multivariate uncertain object o is a pair
(R, f), where R = [l(1), u(1)]× · · · × [l(m), u(m)] is the m-dimensional region in which
o is defined and f : <m → <+

0 is the probability density function of o at each point
x ∈ <m, such that

∫
x∈<m\R f(x)dx = 0 and f(x) > 0, ∀x ∈ R.

3.1 Distance measures for pdfs

Probability density functions are usually compared by using information-theoretic (IT)
measures, such as those falling into the Ali-Silvey class of distance functions [16] (e.g.,
the Kullback-Leibler (KL) divergence [20] and the Chernoff distance [21]).

Using an IT proximity measure represents a natural solution for devising a notion
of distance between uncertain objects; in particular, this choice is essential to establish
a function that is able to compare two pdfs by exploiting the whole information stored
in the pdfs. However, this holds provided that the comparison makes sense: indeed, it
should be taken into account that IT measures work out for pdfs that share a common
event space (domain region). By contrast, if the two pdfs do not have any intersection in
their event spaces (i.e., there is no region in which both pdfs are greater than zero), the
distance according to any IT measure is always equal to the maximum value possible.

We introduce a notion, called IT-adequacy, which quantifies to what degree an
information-theoretic distance measure is worth comparing two uncertain objects by in-
volving only their pdfs.

Definition 2 (IT-adequacy). Let g1 and g2 be two m-dimensional pdfs (m ≥ 1), and
R1 ⊆ <m, R2 ⊆ <m be two m-dimensional regions such that (for i ∈ {1, 2}):∫
x∈<m\Ri

gi(x)dx = 0 and gi(x) > 0 , ∀x ∈ Ri The IT-adequacy between g1

and g2 with respect to R1 and R2 is defined as:

Υ R1,R2
(g1, g2) =

1
2

( ∫

x∈R1∩R2

g1(x) dx +
∫

x∈R1∩R2

g2(x) dx
)

(1)



Υ
R1,R2

(g1, g2) (which ranges within [0, 1]) expresses the adequacy of computing the
distance between g1 and g2 by using a certain IT measure. In particular, the higher
Υ R1,R2

(g1, g2), the more the information coming from g1 and g2 that is exploited in
the comparison. For the sake of simplicity of notation, we will use the symbols Υ to
denote the IT-adequacy relative to the comparison of any two multivariate uncertain ob-
jects. Formally, Υ (oi, oj) = Υ

Ri,Rj
(fi, fj) for any two multivariate uncertain objects

oi = (Ri, fi), oj = (Rj , fj).

3.2 Distance measure for uncertain objects
According to Definition 1, it can be straightforwardly noted that a poor IT-adequacy may
be computed when the pdfs of uncertain objects being compared have small (or empty)
overlapping areas. To address such cases, it may be advisable to express the proximity
between pdfs by resorting to the difference of their expected values. Within this view,
the main intuition underlying our notion of distance measure between uncertain objects
is to suitably combine an IT measure (which in principle is not always applicable) with
a concise (but always available) information given by the expected values. Formally, we
propose a distance measure ∆ for uncertain objects oi and oj which is expressed as a
function of two different terms:

∆(oi, oj) = f(∆IT (oi, oj),∆ED(oi, oj)) (2)

where ∆IT involves a comparison by means of a certain IT measure, and ∆ED measures
the distance proportionally to the difference of the expected values.

In Equation 2, the IT measure we chose for computing ∆IT is the Bhattacharyya
distance [22]:

B(g1, g2) =
√

1− ρ(g1, g2) (3)
where

ρ(g1, g2) =
∫

x∈<m

√
g1(x) g2(x) dx (4)

represents the Bhattacharyya coefficient [23], which compares any two continuous pdfs
g1, g2 from a similarity viewpoint. The basic motivations for which B has been preferred
to other IT measures (such as, e.g.,− log ρ, Kullback-Leibler or Chernoff) are the follow-
ing. B ranges within [0, 1], which makes this measure easily comparable and combinable
with other distance functions, which represents a major focus on this work. Furthermore,
B can be proved to be strictly related to Υ (Definition 2); indeed, it is based on ρ (the
Bhattacharyya coefficient), for which the following nice property holds.

Proposition 1. Let g1 and g2 be two m-dimensional pdfs (m ≥ 1), and R1 ⊆ <m,
R2 ⊆ <m be two m-dimensional regions such that (for i ∈ {1, 2})

∫
x∈<m\Ri

gi(x)dx =
0, and gi(x) > 0, ∀x ∈ Ri. It holds that ρ(g1, g2) ≤ Υ

R1,R2
(g1, g2).

Proposition 1 shows that the upper bound of the computation of ρ for any two given
pdfs is equal to the IT-adequacy between those pdfs. This represents a key aspect in our
framework since it supports the theoretical validity for combining ∆IT and ∆ED. Indeed,
in order to define a way to properly combine ∆IT and ∆ED, we resort to a factor that is
proportional to the degree of overlap (i.e., the IT-adequacy) of the pdfs of the objects to
be compared.

Definition 3 (multivariate uncertain distance). The multivariate uncertain distance be-
tween two multivariate uncertain objects oi = (Ri, fi) and oj = (Rj , fj) is defined
as

∆(oi, oj)=B(fi, fj)−
√

1− Υ (oi, oj) e−dist(E[fi],E[fj ]) (5)



In Equation (5), dist : <m → <+
0 is a function that measures the distance between m-

dimensional points (e.g., Euclidean norm), and E[f ] denotes the expected value of the
pdf f . Note that the exponential function is used to make the distance between expected
values ranging within [0, 1].

Proposition 2. Given any two uncertain objects oi and oj , ∆(oi, oj) ∈ [0, 1].

Definition 4 (multivariate uncertain prototype). Let C = {o1, . . . , on} be a set of mul-
tivariate uncertain objects, where oi = (Ri, fi), Ri = [l(1)i , u

(1)
i ] × . . . × [l(m)

i , u
(m)
i ],

for each i ∈ [1..n]. The multivariate uncertain prototype of C is a pair PC = (RC , fC),
where

RC=
[

min
i∈[1..n]

l
(1)
i , max

i∈[1..n]
u

(1)
i

]
×· · ·×

[
min

i∈[1..n]
l
(m)
i , max

i∈[1..n]
u

(m)
i

]
, fC(x) =

1
n

n∑

i=1

fi(x)

Proposition 3. Let C = {o1, . . . , on} be a set of uncertain objects. The uncertain proto-
type PC is an uncertain object according to Definition 1.

3.3 The U-AHC algorithm

Algorithm 1 U-AHC
Input: a set of uncertain objects D = {o1, . . . , on}
Output: a set of partitions D
1: C ← {{o1}, . . . , {on}}
2: D ← {C}
3: repeat
4: let Ci, Cj be the pair of clusters in C such that ∆(PCi ,PCj ) is minimum
5: C ← C \ {Ci, Cj} ∪ {Ci ∪ Cj}
6: D ← D ∪ {C}
7: until |C| = 1

Algorithm 1 outlines our AHC-based algorithm for clustering uncertain objects,
named U-AHC. Given a dataset D of n uncertain objects, the algorithm follows the clas-
sic AHC scheme to produce a hierarchy of clusters D. The merge score used to decide for
the pair of clusters to be merged at each step of the U-AHC algorithm (Line 4) employs
the proposed notion of distance between uncertain objects (Definition 3).

4 Experimental evaluation

Our U-AHC algorithm was evaluated in performing effective clustering of uncertain data.
The experimental evaluation was also conducted to give a comparison of U-AHC with ex-
isting partitional algorithms (i.e., UK-means, CK-means, and UK-medoids) and density-
based algorithms (i.e., FDBSCAN and FOPTICS).

Datasets. Table 1 shows the main characteristics of the datasets used in the experiments.
We selected eight benchmark datasets with real-value attributes available from the UCI
Machine Learning Repository, 2 namely Iris, Wine, Glass, Ecoli, Yeast, Segmenta-
tion, Abalone, and Letter.
2 http://archive.ics.uci.edu/ml/



Table 1. Datasets used in the experi-
ments
dataset objects attributes classes
Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
Segm. 2,310 19 7
Abalone 4,124 7 17
Letter 7,648 16 10

Table 2. Accuracy results (F-measure)

dataset pdf UK-means CK-means UK-medoids FDBSCAN FOPTICS U-AHC
Iris U 0.948 0.962 0.907 0.929 0.907 1

N 0.859 0.897 0.888 0.929 0.907 0.962
Wine U 0.735 0.747 0.761 0.767 0.713 0.826

N 0.707 0.705 0.749 0.691 0.713 0.795
Glass U 0.677 0.703 0.653 0.575 0.636 0.779

N 0.540 0.551 0.579 0.868 0.828 0.891
Ecoli U 0.787 0.790 0.728 0.443 0.477 0.743

N 0.745 0.740 0.560 0.416 0.477 0.795
Yeast U 0.533 0.538 0.622 0.599 0.528 0.684

N 0.455 0.457 0.318 0.374 0.420 0.486
Segm. U 0.780 0.801 0.765 0.482 0.419 0.837

N 0.628 0.637 0.649 0.415 0.419 0.684
Abalone U 0.288 0.290 0.531 0.499 0.439 0.492

N 0.215 0.217 0.288 0.497 0.558 0.572
Letter U 0.637 0.636 0.763 0.320 0.318 0.798

N 0.442 0.435 0.595 0.353 0.318 0.613

All the selected datasets were originally created to contain deterministic values. We
synthetically generated uncertainty in the data as follows. For each object o, we produced
an uncertain interval I(h) for each attribute a(h), h ∈ [1..m]. The interval I(h) was ran-
domly chosen as a subinterval within [minoh

,maxoh
], where minoh

(resp. maxoh
) is

the minimum (resp. maximum) deterministic value of the h-th attribute, over all the ob-
jects belonging to the same ideal class of o. The uncertainty region R was finally defined
as the product of the intervals randomly generated for each attribute of o. As concerns f ,
we considered Uniform and Normal pdfs. We set parameters of Normal pdfs so that their
mode corresponded to the deterministic value of object o.

Clustering validity criteria. To assess the quality of clustering solutions we exploited
the availability of reference classifications for the datasets. The objective was to evaluate
how well a clustering fits a predefined scheme of known classes (natural clusters). To this
purpose, we resorted to the well-known F-measure [24] (ranging within [0, 1]), which is
defined as the harmonic mean of the total precision and recall values, which in turn are
computed by averaging over the classes the values of precision and recall obtained for
each pair cluster-class.

Results. Table 2 summarizes the F-measure results obtained by U-AHC and the other
methods on the various datasets. On average, U-AHC outperformed the other methods
on all the datasets, with average gains that ranged from 10% (vs. UK-medoids) to 18%
(vs. FOPTICS). Among the competing methods, UK-medoids behaved better than the
other ones—6 out of 16 times—obtaining an average quality gain up to 8%. Also, the
partitional algorithms performed slightly better than the density-based algorithms in the
univariate case.

5 Conclusion
We addressed the problem of clustering uncertain data by proposing U-AHC, a centroid-
linkage-based agglomerative hierarchical algorithm. We introduced a notion of uncer-
tain (cluster) prototype which is based on mixture densities from the pdfs associated
to the objects belonging to a cluster. The cluster merging criterion in U-AHC exploits a
new information-theoretic-based distance between uncertain prototypes. Our U-AHC has
been experimentally shown to outperform major competing methods in terms of accuracy
on all the datasets used in the evaluation.
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