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Abstract. Given a set of objects and nonnegative real weights express-
ing “positive” and “negative” feeling of clustering any two objects to-
gether, min-disagreement correlation clustering partitions the input ob-
ject set so as to minimize the sum of the intra-cluster negative-type
weights plus the sum of the inter-cluster positive-type weights. Min-
disagreement correlation clustering is APX-hard, but efficient constant-
factor approximation algorithms exist if the weights are bounded in some
way. The weight bounds so far studied in the related literature are mostly
local, as they are required to hold for every object-pair. In this paper, we
introduce the problem of min-disagreement correlation clustering with
global weight bounds, i.e., constraints to be satisfied by the input weights
altogether. Our main result is a sufficient condition that establishes when
any algorithm achieving a certain approximation under the probability
constraint keeps the same guarantee on an input that violates the con-
straint. This extends the range of applicability of the most prominent ex-
isting correlation-clustering algorithms, including the popular Pivot, thus
providing benefits, both theoretical and practical. Experiments demon-
strate the usefulness of our approach, in terms of both worthiness of
employing existing efficient algorithms, and guidance on the definition
of weights from feature vectors in a task of fair clustering.

1 Introduction

Correlation clustering [8] is a popular clustering formulation that has received
considerable attention from both theoreticians and practitioners, and has found
application in several contexts, including document clustering, duplicate detec-
tion, computational biology, image segmentation [10, 22].

The input of correlation clustering is a set V' of objects, and two nonnegative,
real-valued weights w, , w,, for every (unordered) object pair u,v € V. Any
“positive” w;, (resp. “negative” w,) weight expresses the benefit of clustering
u and v together (resp. separately). This input can equivalently be represented
as a graph G with vertex set V' and edge weights w;,, w,,,, for all u,v € V, and
with edge (u,v) being drawn only if at least one among w, and wy, is nonzero.

The objective of correlation clustering is to partition V' so as to either mini-

mize the sum of intra-cluster negative-type weights plus the sum of inter-cluster
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positive-type weights (min-disagreement), or maximize the sum of intra-cluster
positive-type weights plus the sum of inter-cluster negative-type weights (maz-
agreement). The two formulations are equivalent in terms of exact optimization
and complexity class (both NP-hard [8,25]), but they have different approxi-
mation properties, with the maximization variant being easier in this respect.
Apart from being more theoretically appealing, min-disagreement correla-
tion clustering tends to be more relevant than the maximization counterpart
in practice too. The reason is twofold. First, the best known approximation al-
gorithms for max-agreement correlation clustering either yield trivial solutions
(single-cluster and all-singletons solutions are %—approximate solutions for com-
plete graphs with binary weights [26]), or are inefficient and provide unpracti-
cal clusterings with a fixed number of clusters (like semidefinite-programming
Swamy’s algorithm for general graphs [26], which is very expensive and always
yields a 6-cluster solution). Second, more importantly, among the algorithms for
the minimization version is the popular Pivot [5], which provides the best tradeoff
between theoretical guarantees (it achieves constant-factor expected approxima-
tion guarantee), efficiency (it takes linear time), and ease of implementation.

Correlation-clustering with local weight bounds. The seminal work by
Bansal et al. [8] limits the input graph to be complete, with binary weights,
and with exactly one nonzero weight for each weight pair (i.e., (w},,w,,) €
{(0,1),(1,0)}, for all u,v € V). Even for this particular input, min-disagreement
correlation clustering is APX-hard [11], although it admits constant-factor ap-
proximation algorithms [5,8,11,12,27]. Since then, less restrictive inputs have
been considered. With no constraints on the input weights, the best known ap-
proximation factor is O(log|V]) [11, 16], and is unlikely to be meliorable [11, 16].
Motivated by this and the above arguments in favor of the minimization
version, the research community has focused on weight bounds that go beyond
Bansal et al.’s ones, but are still restrictive enough to allow constant-factor guar-
antee. In this regard, the probability constraint (i.e., w}, +w,, =1, YVu,v € V)
has received significant attention. Under this constraint, Pivot is recognized as a
(randomized expected) 5-approximation algorithm [5]. Coupling the probability
constraint with triangle inequality (i.e., w,, < w,, +w,,, Yu,v,z € V) makes
Pivot’s approximation factor become 2. Further algorithms achieve a factor-4
guarantee under the probability constraint [11], and (5 — %)-approximation for
a generalization of the probability constraint (i.e., Vu,v € V, w}, <1, w,, <h
for some h € [1,+00), and w, + w,, > 1) [23]. Those two algorithms however
are based on rounding the solution to a (large) linear program, thus they do not
possess Pivot’s nice peculiarities of efficiency and ease of implementation.

This work: correlation clustering with global weight bounds. Regardless
of the type, the weight bounds that have been so far studied are local bounds,
i.e., constraints that are required to hold for every object pair in isolation.

In this work, we are the first to consider global weight bounds in min-dis-
agreement correlation clustering. We derive bounds on edge weights’ aggregate
functions that are sufficient to lead to proved quality guarantees. Specifically,
let avg™ and avg™ be the average of the positive-type weights and negative-
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type weights over all the input vertex pairs, respectively. Let also A,,4. be the
maximum absolute difference between the positive-type weight and the negative-
type weight of a vertex pair. Our result is: if the condition avg™ +avg™ > Aae
holds for a graph G, then it is possible to construct a graph G’ (in linear time
and space) such that (¢) the probability constraint holds on G’, and (ii) an a-
approximate clustering on G’ (i.e., a clustering whose objective-function value is
no more than « times G’’s optimum) is an a-approximate clustering on G too.

A noteworthy consequence of this result is that, if a graph G satisfies our
condition, then the Pivot algorithm can be used to get (in linear time and space)
a clustering achieving a 5-approximation guarantee on G.3 This corresponds to
extending the range of validity of Pivot’s guarantee beyond the probability con-
straint: our global-weight-bounds condition now suffices for the 5-approximation
to hold. A key advantage of this finding is that our condition is milder than the
probability constraint, thus more likely to be satisfied. For instance, it may hap-
pen that a bunch of edges are missing from the input graph (meaning violation
of the probability constraint for at least those unlinked vertex pairs), but, if our
condition holds, still one can get a 5-approximate clustering with Pivot.

We point out that our result is general and holds for any min-disagreement
correlation-clustering algorithm achieving approximation guarantees under the
probability constraint. However, the contextualization to the Pivot algorithm is
relevant and worth to be emphasized, because, as said above, Pivot achieves the
best tradeoff between quality guarantees, efficiency, and ease of implementation.

Benefits of our result. We believe that the findings of this work can be tremen-
dously useful, from several perspectives.

Practical benefits. Our result can be exploited to quickly yet easily recog-
nize whether employing probability-constraint-aware approximation algorithms
is a worth choice even if the probability constraint is not met. As an exam-
ple, consider a graph that violates the probability constraint. So far, that graph
would have likely been handled with linear-programming (LP) algorithms [11,
16], as they achieve (factor-O(log|V])) approximation guarantees on general
graphs/weights (whereas algorithms like Pivot are just heuristics if the probabil-
ity constraint does not hold). Instead, our condition can be used as an indicator
of whether Pivot can still achieve guarantees even if the probability constraint is
violated, thus being preferred over the LP algorithms. This has important prac-
tical implications, as Pivot is much faster and easier-to-implement than the LP
counterparts. In our evaluation we experimentally confirm this theoretical find-
ing, by showing that a better fulfilment of our condition corresponds to better
performance of Pivot with respect to the LP algorithms, and vice versa.

A second practical exploitability of our result concerns the task of feature
selection for clustering. In the context of correlation clustering this corresponds
to selecting features that lead edge weights to express the best tradeoff between
an accurate representation of the objects’ vectors (i.e., discarding not too many

3 In fact, a probability-constraint-compliant graph G’ can be derived from G in linear time and
space (statement (i) of our result). Pivot on G’ yields a 5-approximate clustering [5]. A 5-
approximate clustering on G’ is a 5-approximate clustering on G (statement (4i) of our result).
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features), and the way how the weights facilitate the downstream correlation-
clustering algorithm performing well (e.g., by making it achieve approximation
guarantees). Our global-weight-bounds condition can be an effective yet easy-to-
use guiding principle to the achievement of this tradeoff. Being less restrictive
than local weight bounds, our condition can be fulfilled more easily (e.g., in case
of probability constraint, it is hard to find a subset of features leading to positive-
type and negative-type weights summing ezactly to one for all the object pairs).
In our experiments we showcase this capability in a task of fair clustering.
Theoretical benefits. This work extends the validity range of the approxima-
tion guarantees of algorithms for min-disagreement correlation clustering. This
extension can pave the way for more advanced theoretical results. As an ex-
ample, it is not uncommon that correlation clustering is a building block of a
more complex problem [17, 20, 21]. Thus, more general guarantees in correlation
clustering may enable better theoretical results on those complex problems too.

Benefits for the research community. To the best of our knowledge, global
weight bounds for correlation clustering have never been studied so far. We
believe this work can pioneer a brand new line of research, and stimulate the
community to go beyond our initial results.

Summary of contributions and outline. The contributions we achieve in
this work can be summarized as follows. We focus for the first time on global
weight bounds in (the minimization formulation of) correlation clustering (Sec-
tion 3). We derive a sufficient condition on input weights’ aggregate functions to
extend the validity range of the approximation guarantees of existing correlation-
clustering algorithms beyond the probability constraint (Section 4). We exper-
imentally assess that our condition is an effective indicator of the empirical
performance of existing probability-constraint-aware correlation-clustering algo-
rithms (Section 5.1). We showcase our results in a real-world scenario of fair
clustering (Section 5.2).

2 Related Work

Correlation clustering. The literature on min-disagreement correlation clus-
tering that is functional to our work has been presented in the Introduction.
As a complement, we (briefly) overview the main results on the maximization
formulation (not a focus of this work), and extensions to the basic formulations.

For original Bansal et al.’s input of unweighted and complete graphs [8], max-
agreement correlation clustering admits a PTAS [8]. On general graphs/weights,
it becomes APX-hard [11], but admits constant-factor approximation algo-
rithms, achieving factor-0.7664 [11] and factor-0.7666 [26] guarantees. Extensions
to the basic correlation-clustering formulations include constrained /relaxed for-
mulations, and adaptations to nonconventional types of graph or computational
settings. We point the interested reader to [10, 22] for more details.

In this work we shift the attention from local to global weight bounds in
min-disagreement correlation clustering. To the best of our knowledge, this is a
completely novel perspective that has never been considered so far.
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Fair clustering. Roughly speaking, the problem of fair clustering consists in
partitioning a set of objects based on both clustering quality and fairness, i.e.,
limiting as much as possible the bias against/towards particular objects’ subsets.
Chierichetti et al.’s seminal work [14] formulates fair versions of the tra-
ditional k-center and k-median problems. Since then, research has focused on
generalizing those formulations [9,24], incorporating fairness constraints into
k-center [18], scalability of fair k-median [7], different fairness measures [3,
13], and fair versions of other traditional problems, i.e., k-means [1], spectral
clustering [19], hierarchical clustering [2]. As for correlation clustering, Ahma-
dian et al. [4] study the problem where vertices of a complete and unweighted
graph are assigned a single label representing a protected class attribute (e.g.,
gender, ethnicity), and every cluster is constrained to fairly represent each label.
In this work we showcase our theoretical results in a task of fair clustering.
We pick a scenario where positive-type and negative-type edge weights express
similarities on non-sensitive and sensitive features assigned to the input vertices,
respectively. The goal is to define such weights so as to account for both an
effective representation of the semantics underlying objects’ features, and the
peculiarities that make the downstream correlation-clustering algorithm effec-
tive. Thus, our setting differs from Ahmadian et al.’s one, where the graph is
complete and unweighted, and vertices are not assigned feature vectors, but just
a class label. In any case, the focus on fair clustering in this work is just on the
application side: advancing the fair-clustering literature is beyond our scope.

3 Problem Definition

In this work we tackle the problem of min-disagreement correlation clustering:

Problem 1 (MIN-CC [5]). Given an undirected graph G = (V, E), with vertex
set V and edge set E C V x V, and nonnegative weights wl,w_ € IRS' for
all edges e € F, find a clustering (i.e., an injective function expressing cluster-
membership) C : V — N* that minimizes

> W Y Wy, (1)

(u,v)€E,C(u)=C(v) (u,v)EE,C(u)#C(v)

For the sake of presentation, we assume w} = w, = 0, for all e ¢ E, and
non-trivial MIN-CC instances, i.e., wl # w_, for some e € F.

MIN-CC is NP-hard [8,25] yet difficult to approximate, being it APX-
hard even for complete graphs and edge weights (w},w.) € {(0,1),(1,0)},
Ve € E [11]. For general (i.e., not necessarily complete) graphs and general (i.e.,
unconstrained) weights, the best known approximation factor is O(log [V]) [11,
16]. This factor improves if restrictions on edge weights are imposed. A constraint

that has received considerable attention is the probability constraint (PC):

Definition 1 (Probability constraint). A MIN-CC instance is said to satisfy
the probability constraint (PC) if w), +w,, = 1, for all vertex pairs u,v € V.
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Algorithm 1 Pivot [5]

Input: Graph G = (V, E); nonnegative weights wl,w_, Ve € E

Output: Clustering C of V'

1:C«0, V'V

2: while V' # () do

3:  pick a pivot vertex u € V' uniformly at random

4:  add C, = {u}u{v e V'| (u,v) € E,wl, >wy,} to C and remove C,, from V'

A MiIN-CC instance obeying the PC necessarily corresponds to a complete
graph (otherwise, any missing edge would violate the pc). Under the pc, MIN-
CC admits constant-factor guarantees. The best known approximation factor
is 4, achievable — as shown in [23] — by Charikar et al.’s algorithm [11]. That
algorithm is based on rounding the solution to a large linear program (with a
number 2(]V|?) of constraints), thus being feasible only on small graphs.

Here, we are particularly interested in the Pivot algorithm [5], due to its the-
oretical properties — it achieves a factor-5 expected guarantee for MIN-CC under
the pPC — and practical benefits — it takes O(|E|) time, and is easy-to-implement.
Pivot simply picks a random vertex u, builds a cluster as composed of u and all
the vertices v such that an edge with w;, > w,, exists, and removes that cluster.
The process is repeated until the graph has become empty (Algorithm 1).

4 Theoretical Results and Algorithms

Let MIN-PC-CC denote the version of MIN-CC operating on instances that sat-
isfy the pc. The main theoretical result of this work is a sufficient condition
— to be met globally by the input edge weights — on the existence of a strict
approximation-preserving (SAP) reduction from MIN-CC to MIN-PC-CC. In the
remainder of this section we detail our findings, presenting partial results (Sec-
tions 4.1-4.2), our overall result (Section 4.3), and algorithms (Section 4.4).

4.1 PC-reduction

As a first partial result, in this subsection we define the proposed reduction from
MiIN-CC instances to MIN-PC-CC ones, and the condition that makes it yield
valid (i.e., nonnegative) edge weights. We start by recalling some basic notions,
including the one of strict approximation-preserving (SAP) reduction.

Definition 2 (Minimization problem, optimum, performance ratio [6]).
A minimization problem IT is a triple (Z, sol,0bj), where T is the set of problem
instances; for every I € I, sol(I) is the set of feasible solutions of I; obj is the
objective function, i.e., given I € T, S € sol(I), obj(I,S) measures the quality
of solution S to instance I.

OPTy(I) denotes the objective-function value of an optimal solution to I.
Given I € Z, S € sol(I), Rp(I,S) = obj(I,S)/OPTr(I) denotes the perfor-
mance ratio of S with respect to I.
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Definition 3 (Reduction and SAP-reduction [15]). Let IT; = (Zy, soly, obj1)
and Iy = (I, sola, 0bja) be two minimization problems.

A reduction from IT; to Il5 is a pair (f,g) of polynomial-time-computable func-
tions, where f : Iy — Iy maps II’s instances to Ily’s instances, and, given
I €Ty, g: sola(f(I1)) = soly(I1) maps back II3’s solutions to IT, s solutions.

A reduction is said strict approximation-preserving (SAP) if, for any I; € Iy,
Sy € SOlg(f(I1)), it holds that RHl (11,9(11,52)) < RH2 (f([l),Sg)

The proposed reduction is as follows. To map MIN-CC instances to MIN-PC-
CC ones, we adopt a function f that simply redefines edge weights, while leaving
the underlying graph unchanged. Function g is set to the identity function. That
is, a MIN-PC-CC solution is interpreted as a solution to the original MIN-CC
instance as is. Function f makes use of two constants M,~ > 0 (which will be
better discussed later), and o, quantities, Ve € E, which are defined as:

oe =7 (wS +w;)— M. 2)
We term our reduction PC-reduction and define it formally as follows.

Definition 4 (PC-reduction). The pcC-reduction is a reduction (f,g) from
MIN-CC to MIN-PC-CC, where g is the identity function, while f maps a
MIN-CC instance (G = (V, E), {w},w_ }ecr) to a MIN-PC-CC instance (G’ =
(V' EN AT, 70 Yeerr), such that V! =V, E' =V xV, and

=3 (vl -%), v =350w —%), VecFE. (3)

Note that the proposed PC-reduction is always guaranteed to yield 77,7,
weights satisfying the Pc (i.e., 7.7 + 7, = 1), for any M and 7. As a particular
case, recalling the assumption w} = w_, = 0 for e ¢ F, the pc-reduction yields
weights 7.7 = 77 = 0.5 for any e ¢ E. However, not every choice of M and ~
leads to nonnegative 7.7, 7, weights, as stated next.

Lemma 1. The PC-reduction yields nonnegative 7.7, 7, weights if and only if

’ e
M — v Apar >0, where Apyar = maxeep [ wl —w; |
Proof. By simple math on the formula of 77,7, in Definition 4, it follows that
75,77 > 0 holds if and only if the conditions w} —w, > —M/y and wf —w_ <
M /~ are simultaneously satisfied. This in turn corresponds to have |w —w_ | <
M/~ satisfied. As the latter must hold for all e € F, then the lemma. O

Constraining M and v as in Lemma 1 is a key ingredient of our ultimate
global-weight-bounds condition. We will come back to it in Section 4.3.

4.2 Preserving the approximation factor across PC-reduction

Let I be a MIN-CC instance and I’ be the MIN-PC-CC instance derived from
I via pcC-reduction. Here, we present a further partial result, i.e., a sufficient
condition according to which an approximation factor holding on I’ is preserved
on I. We state this result in Lemma 3. Before that, we provide the following
auxiliary lemma, which shows the relationship between the objective-function
values of a clustering C on I and on I’
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Lemma 2. Let I = (G = (V,E),{w},w, }cer) be a MIN-CC instance, and
I'=(G'=(V,E' =V x V), {7,7. }ecr) be the MIN-PC-CC instance derived
from I wvia PC-reduction. Let also C be a clustering of V. The following rela-
tionship holds between the objective-function value obj(I,C) of C on I and the
objective-function value obj(I',C) of C on I':

0bj(1,€) = 2L 0bj(I',C) + £ 0 vy Tunr (4)
Proof.
Obj(I/,C) = Z(u,v)EE', ﬁ ("}/’LUIU - 012“)) + Z(u,v)EE', ﬁ (f}“w;i) - 012“)) =
C(u)=C(v) C(w)=C(v)
:%(Z (u,v)EE, w:{v + Z (u,w)EE, w;v) _ﬁ(z (u,v)€E’, Tuv + Z (u,v)EE’, qu) =
C(u)=C(v) C(u)#C(v) C(u)=C(v) C(u)#C(v)
=47 0bj(I,C) — ﬁzu,vev Cuv- O

Lemma 3. Let I and I’ be the two instances of Lemma 2. Let also C be an a-
approzimate solution to I', i.e., a clustering achieving objective-function value no
more than o times I'’s optimum, for any o > 1. It holds that: zf% Y ecrTe >0,
then C is an a-approximate solution to I too.

Proof. Let OPT and OPT' be the optima of I and I, respectively. It holds that:
obj(I',C) < a OPT’

= L obj(I',C) + 2= ey 0w < (L OPT' + £ 50, ey o)
< 0bj(1,C) < aOPT,

where the second step holds because % Y ecp e > 0 and a > 1 by hypothesis,
while the last step holds because of Lemma 2. a
4.3 Ultimate global weight bounds

With the above partial results in place, we can now present our ultimate result,

i.e., a sufficient condition to guarantee that the PC-reduction is a SAP-reduction.
To show our result, for a MIN-CC instance (G = (V, E), {wl,w_ }ccg) we define:

+_ (v + —_ (v -
avg " = ( 2 ) decpWd, avgT = ( 2 ) > ecr We - (5)
Theorem 1. If avgt+avg™ > Az, then the PC-reduction is a SAP-reduction.

Proof. Lemma 3 provides a (sufficient) condition to have an approximation factor
on a MIN-PC-CC instance carried over to the original MIN-CC instance. Thus,
that condition suffices to make the PC-reduction a SAP-reduction according to
Definition 3. The condition in Lemma 3 has to be coupled with the one in
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Algorithm 2 GlobalCC
Input: Graph G = (V, E); nonnegative weights w}, w; , Ve € E, satisfying Theorem 1;
algorithm A achieving a-approximation guarantee for MIN-PC-CC
Output: Clustering C of V'
1: choose M,y s.t. 2 € [Amaz, avg® + avg™] {Theorem 1}
2: compute T, Ty, Yu,v € V, as in Equation (3) (using M,y defined in Step 1)
3: C « run A on MIN-PC-CC instance (G’ = (V,V x V), {7, 7. }eevxv)

Lemma 1, which guarantees nonnegativity of the edge weights of the yielded
MIN-pPc-CC instance. To summarize, we thus require the following:

1
2y

% > Amaz, {Lemma 1}
D uwey Ouw =20 & % < avgt +avg~, {Lemma 3}

which corresponds to % € [Amaz, avgt+ avg™], i.e., to avg™ avg”T > Apae. O

4.4 Algorithms

According to Theorem 1, if avg™ +avg™ > A4 for a MIN-CC instance, then any
a-approximation algorithm for MIN-PC-CC can be employed — as a black box —
to get an a-approximate solution to that MIN-CC instance. The algorithm for
doing so is simple: get a MIN-PC-CC instance via PC-reduction, and run the
black-box algorithm on it (Algorithm 2). Being the PC-reduction SAP, the guar-
antee of this algorithm straightforwardly follows as a corollary of Theorem 1.

Corollary 1. Let I be a MIN-CC instance, and A be an a-approzimation algo-
rithm for MiN-PC-CC. Algorithm 2 on input (I, A) achieves factor-a guarantee on I.

Let T(A) be the running time of the black-box algorithm A. The time com-
plexity of Algorithm 2 is O(max{|E|,T(A)}), assuming that there is no need to
materialize edge weights 7.7, 7.~ for missing edges e ¢ F. This is an assumption
valid in most cases: we recall that e ¢ E = 7,7 = 77 = 0.5, thus it is likely that
their definition can safely be kept implicit. For instance, this assumption holds
if Pivot [5] is used as a black-box algorithm (although with Pivot the picture
is much simpler, see below). Instead, the assumption is not true for the LP al-
gorithms in [11,16]. In that case, however, the time complexity of Algorithm 2
would correspond to the running time of those LP algorithms nevertheless, as
they take (at least) 2(|V|?) time to build their linear programs.

Using Pivot in Algorithm 2. It is easy to see that w} >w_ < 7F >7., Ve € E.
As Pivot makes its choices based on the condition w} > w_ solely, the output of
Algorithm 2 equipped with Pivot corresponds to the output of Pivot run directly
on the input MIN-CC instance. Thus, to get the 5-approximation guaranteed by
Pivot, it suffices to run Pivot on the original input, without explicitly performing
the pc-reduction. This finding holds in general for any algorithm whose output
is determined by the condition w} > w. only. It does not hold for the LP
algorithms: in that case, the general Algorithm 2 is still needed.
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Table 1: Main characteristics of real-world graph datasets (left) and relational
datasets (right) used in our evaluation stages.

‘ H #objs. ‘ Fattrs. ‘ fairness-aware (sensitive) attributes ‘

race, sex, country, education, occupation,

H V| ‘ |E| ‘den.‘a,deg‘a,pl‘diam‘ cc ‘
Karate 34| 78 |0.14| 4.59 |241| 5 |0.26
Dolphins || 62 |159(0.08 | 5.13 |3.36| 8 |0.31| | Bank 41188 | 18/3 job, marital-status, education
Adjnoun || 1121425 |0.07 | 7.59 |2.54| 5 |0.16| |Credit || 10127 | 17/3 | gender, marital-status, education-level
Football ||115|613{0.09 | 10.66 | 2.51| 4

Adult 32561 | 7/8

marital-status, workelass, relationship

0.41 sex, male_edu, female_edu,

Student || 649 28/5

male_job, female_job

Role of M and . According to Theorem 1, 7.5, 7, weights can be defined
by picking any values of M and ~ such that % € [Amaz, avg™ + avg™]. The
condition avgt+ avg™ > A,q, ensures that the [A,,q., avg™ + avg™] range is
nonempty, while the assumption made in Section 3 that our input MIN-CC’s
instances are nontrivial (thus, A, > 0) guarantees M,y > 0.

From a theoretical point of view, all valid values of M and y are the same. The
choice of M and 7 may instead have practical implications. Specifically, M and
~ determine the difference between the resulting positive-type and negative-type
edge weights. This may influence the empirical performance of those algorithms
(e.g., the LP algorithms) for which the weight values matter. However, we remark
that, in the case of Pivot — which just depends on whether the positive-type
weight is more than the negative-type one — M and + do not play any role, not
even empirically. Being Pivot the main object of our practical focus, we defer a
deeper investigation on M and ~ to future work (see Section 6).

5 Experiments
5.1 Analysis of the global-weight-bounds condition

Settings. We selected four real-world graphs,* whose summary is reported in
Table 1-(left). Note that the small size of such graphs is not an issue because
this evaluation stage involves, among others, linear-programming correlation-
clustering algorithms, whose time complexity (£2(|V|)?) makes them unafford-
able for graphs larger than that. We augmented these graphs with artificially-
generated edge weights, to test different levels of fulfilment of our global-weight-
bounds condition stated in Theorem 1. We controlled the degree of compliance of
the condition by a target ratio parameter, defined as t = A2/ (avg™ + avg™).
The condition is satisfied if and only if ¢ € [0, 1], and smaller target-ratio values
correspond to better fulfilment of the condition, and vice versa.

Given a desired target ratio, edge weights are generated as follows. First, all
weights are drawn uniformly at random from a desired [lb, ub] range. Then, the
weights are adjusted in a two-step iterative fashion, until the desired target ratio
is achieved: (i) keeping the maximum gap A, fixed, the weights are changed
for pairs that do not contribute to A, so as to reflect a change in avg™, avg™;
(1) keeping avg™,avg™ fixed, A4 is updated by randomly modifying pairs

4 Publicly available at http://konect.cc/networks/
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Fig. 1: MIN-CC objective by varying the target ratio.

that contribute to A,,q.. Once properly adjusted to meet the desired target
ratio, weight pairs are randomly assigned to the edges of the input graph.

We compared the performance of Pivot (Algorithm 1 [5]) to one of the state-
of-the-art algorithms achieving factor-O(log|V|) guarantee on general graphs/
weights [11]. We dub the latter LP+R, alluding to the fact that it rounds the so-
lution of a linear program. We evaluated correlation-clustering objective, number
of output clusters, and runtimes of these algorithms.

Results. Figure 1 shows the quality (i.e., MIN-CC objective) of the clusterings
produced by the selected algorithms, with the bottom-left insets reporting the
ratio between the performance of Pivot and LP+4R. Results refer to target ratios
t varied from [0, 3], with stepsize 0.1, and weights generated with b = 0, ub = 1.
For each target ratio, all reported measurements correspond to averages over 10
weight-generation runs, and each of such runs in turn corresponds to averages
over 50 runs of the tested algorithms (being them both randomized).

The main goal here is to have experimental evidence that a better fulfilment
of our global condition leads to Pivot’s performance closer to LP+R’s one, and
vice versa. This would attest that our condition is a reliable proxy to the wor-
thiness of employing Pivot. Figure 1 confirms this claim: in all datasets, Pivot
performs more closely to LP4+R as the target ratio gets smaller. In general, Pivot
performs similarly to LP+R for ¢ € [0, 1], while being outperformed for ¢ > 1.
This conforms with the theory: on these small graphs, factor-5 Pivot’s approx-
imation is close to factor-O(log |[V|) LP+R’s approximation. Pivot achieves the
best performance on Football, where it outperforms LP+R even if the condition is
not met. This is motivated by Football’s higher clustering coefficient and average
degree, which help Pivot sample vertices (and, thus, build clusters) in dense re-
gions of the graph. This is confirmed by the number of clusters (Table 2-(right)):
Pivot yields more clusters than LP+R on all datasets but Football.

As far as runtimes (Table 2-(left)),? Pivot is extremely faster than LP+R, as
expected. The inefficiency of LP+R further emphasizes the importance of our
result in extending the applicability of faster algorithms like Pivot.

We complement this stage of evaluation by testing different graph densities.
We synthetically added edges with uniform probability, ranging from 0 (no in-
sertions) to 1 (complete graph). Figure 2 shows the results on Dolphins (similar

5 Experiments were carried out on the Cresco6 cluster https://www.eneagrid.enea.it
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Table 2: Running times (left) and avg. clustering-sizes for various target ratios (right).

Pivot | LP+R \ 0.1 [ 0.5 [ 1 [ 2 [ 3 |
(secs.) | (secs.) | Pivot [LP+R | Pivot [LP4R | Pivot [ LP+R| Pivot [ LP+R | Pivot | LP+R |
Karate <1 1.9 Karate 21.75| 17.18 |29.61 | 27.93 | 27.22 | 24.66 | 25.55 | 23.82 | 28.17| 26.81
Dolphins || <1 | 36.58 Dolphins || 49.25 | 50.59 | 45.3 | 38.67 | 49.57 | 44.45 | 47.91 | 48.05 | 48.89 | 43.66
Adjnoun || <1 | 7754 Adjnoun || 70.35 | 65.93 | 80.97 | 75.86 | 90.76 | 84.93 | 85.83 | 70.41 |91.27| 79.78
Football <1 | 819.8 Football ||64.43 | 84.91 |77.14| 96.43 | 68.35 | 78.72 | 78.65 | 85.31 | 90.87 | 100.31
—— Pivot 60
800 LP+R 30
g 0 2
& 600 / g4 8 201 — Pivot
Q / 2 k) LP+R
S 400 1.00 N+ * £ 404
4 098 21— pivet L
2004 o5 ) LP+R N
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k) ® 2301
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225 005 1 200 o4
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(a) MIN-CC objective (b) Number of clusters (¢) Running time

Fig. 2: Varying graph density: target ratio 1 (top) and 20 (bottom), on Dolphins.

results are found in all the other datasets, here omitted for the sake of brevity),
and for target ratios t = 1 (borderline satisfaction of our condition) and ¢ = 20
(far fulfilment of the condition). Again, the results meet the expectations: in
terms of clustering quality, Pivot performs closely to or better than LP+R for
t = 1, while the opposite happens for ¢ = 20. Denser graphs correspond to better
Pivot performance. This is again motivated by the above argument that higher
densities favor better Pivot’s random choices. Runtimes are not affected by the
differences in graph density. This is expected as well, as LP+R runtimes are
dominated by the time spent in building and solving the linear program, which
depends on the number of vertices only, whereas variations in the runtimes of
Pivot cannot be observed due to the small size of the datasets at hand.

5.2 Application to fair clustering

Let X be a set of objects defined over a set of attributes A. The latter is assumed
to be divided into two sets, Af and A™F, where A¥ contains fairness-aware, or
sensitive attributes (e.g., gender, race, religion), and A~ denotes the remaining,
non-sensitive attributes. In both cases, we assume that part of the attributes
might be numerical, and the others as categorical; we will use superscripts N and
C' to distinguish the two types, therefore A" = AL UAL and A™F = AZFUAGE.
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We consider a twofold fair-clustering objective: cluster the objects such that
(¢) the intra-cluster similarity and the inter-cluster similarity are maximized and
minimized, respectively, according to the non-sensitive attributes; (i7) the intra-
cluster similarity and the inter-cluster similarity are minimized and maximized,
respectively, according to the sensitive attributes. Pursuing this second objective
would help distribute similar objects (in terms of sensitive attributes) across
different clusters, thus helping the formation of diverse clusters. This is beneficial
to ensure that the distribution of groups defined on sensitive attributes within
each cluster approximates the distribution across the dataset.

The task of fair clustering can be mapped to a MIN-CC instance where the
positive-type and negative-type weights, respectively, can be defined as follows:

wh =yt (aFVF - sim g-r (u,v) + (1 — ant) - sim - (u, v)) (6)

W, =~ (aﬁ - sim e (u,v) + (1 — k) - sim 4 (u, v)) (7)

where afy = [AG|/(AN| + [AZ]) and i = [AF[/(JAR"| + [AS"]) are co-
efficients to weight similarities proportionally to the size of the involved set of
attributes, ¥ = exp(JAF|/(|AF| + |A™F]) — 1) and ¢~ = exp(|A~F|/(|AT] +
|A™F|) — 1) are smoothing factors to penalize correlation-clustering weights that
are computed on a small number of attributes (which is usually the case for
sensitive attributes, and hence negative-type weights), and simg(-) denotes any
object similarity function defined over the subspace S of the attribute set.

Problem 2 (Attribute Selection for Fair Clustering). Given a set of objects X
defined over the attribute sets A, A™F, find maximal subsets S C A and
S C A™F with |ST| > 1,|S7F| > 1, s.t. the correlation-clustering weights in
Equations (6)—(7) satisfy the global-weight-bounds condition in Theorem 1.

Heuristics. Our first proposal to solve Problem 2 is a greedy heuristic, dubbed
Greedy, which iteratively removes the attribute that leads to the correlation-
clustering weights with the lowest target ratio until our global condition is sat-
isfied. This algorithm runs in O(]X|?|.4|?) time since, at each iteration, for each
candidate attribute to be removed O(|X|?) similarities are computed to quan-
tify the decrease of the target ratio. We also devised other heuristics which, like
Greedy, remove one attribute at time, but exploit some easy-to-compute proxy
measures to select the attribute that avoid the pairwise similarity computation
for each candidate attribute. The Hlv (resp. Hmv) heuristic removes the least
(resp. most) variable attribute where the variability is measured through nor-
malized entropy for categorical attributes and with variation coefficient (capped
to 1 if above 1) for numerical features. Hiv_-B and Hmv_B, like the previous two
heuristics, remove the least and most variable attribute, respectively, but the se-
lection is constrained to the biggest set of features among A* and A~ in order
to try to balance their size. Finally, Hlv_-BW removes the least variable attribute
from the set (AF or A™F) which induces the highest average similarity value
using the current weights, whereas Hmv_SW removes the most variable attribute
from the set which induces the lowest average similarity value using the current
weights. Note that all these heuristics (but Greedy) run in O(|X|?|A]) time.
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Table 3: Fair clustering results.

#it [target | %(w™ | orig.-weights [avg. Eucl.| avg. [intra-clust|intra-clust [inter-clust [ inter-clust time
‘ ‘ ratio | >w™)| Min-CC obj. fairness | #clusts. AT AP AT AP (seconds)
Adult
[initial [ — J1.086[90.34 [ 1.1915E+08 [ 0.082 | 77 [ 0699 [ 0672 [ 0378 [ 0181 [ - |
Hiv 12 10.986 [ 93.19 | 1.122659E+08 | 0.031 9 0.465 0.326 0.347 0.194 | 545.249
HvB ] 12[0.765 [ 78.09 [ 1.119757E+08 | 0.039 69 0.608 0.547 0.375 0.184 [ 529.674
Hmy 5 0974 | 90.83 [ 1.21187E408 | 0.094 79 0.689 0.687 0.373 0.203 | 220.056
HmvB | 4 [0.936 ] 87.39 | 1.25516E+08 | 0.109 905 0.963 0.96 0.377 0.199 [ 178.813
HvBW | 5 [0.963 | 83.17 | 1.343503E+08 | 0.152 1479 | 0.969 0.964 0.384 0.199 | 217.333
Hmv SW| 9 [ 0.926 | 91.41 | 1.159874E+08 | 0.037 5 0.451 0.308 0.329 0.195 | 380.875
Greedy | 2 | 0.967 | 92.36 [1.094787E408] 0.036 32 0.668 0.654 0.361 0.195 [ 595.610
Bank
[initial [ - [1.612]98.84 | 7.738171E+07 [ 0.019 | 9 [ 0.593 0.466 0.413 0.083
Hiv 19 [ 0.95 [ 99.88 | 7.063441E+07 | 0.001 3 0.52 0.209 0.368 0.082 [ 1289.785
HivB |16 | 0.906 | 97.19 | 8.489668E+07 | 0.038 752 0.859 0.818 0.456 0.077 [ 1223.205
Hmv 17 [0.972 [ 100.0 | 7.032421E+07| 0.0 2 0.497 0.136 0.151 0.03 | 1254.341
HmvB |16 [ 0.981 [ 97.19 | 8.250374E+07 | 0.032 35 0.775 0.665 0.451 0.079 [1143.517
Hiv BW | 17 [ 0.984 [ 92.87 | 1.163447E+08 | 0.095 1048 | 0.997 0.996 0.444 0.076_ | 1212.091
Hmv SW| 17 [ 0.972 [ 100.0 | 7.032421E+07| 0.0 2 0.497 0.136 0.151 0.03 | 1336.888
Greedy | 13 | 0.981 | 99.57 | 7.240143E+07 | 0.006 3 0.508 0.371 0.381 0.076 | 11978.472
CreditCardCustomers
[initial [ — [1.415]96.97 | 7.556837E+06 | 0.050 [ 13 [ 0.586 0.53 0.397 0.133 -
Hiv 1810.935 [ 75.51 | 1.234939E+07 | 0.121 4 0.452 0.176 0.402 0.114 75.252
Hiv B | 17 [0.981 | 85.64 | 1.013557E+07 | 0.153 1210 | 0.996 0.994 0.414 0.113 78471
Hmv 15 | 0.985 | 99.41 | 6.674586E+06| 0.002 3 0.461 0.225 0.343 0.132 72.112
Hmv B | 13 [0.977 [ 97.37 | 7.498595E+06 | 0.045 12 0.601 0.559 0.402 0.134 | 58.486
Hiv.BW | 16 | 0.926 | 85.81 | 9.636214E+06 | 0.125 571 0.986 0.982 0.409 0.123 75.484
Hmv_SW | 15 | 0.985 | 99.41 | 6.674586E+06 | 0.002 3 0.461 0.225 0.343 0.132 72.109
Greedy |14 [ 0.941 | 95.5 [ 7.584107E+06 | 0.049 20 0.612 0.57 0.406 0.115 714.02
Student
[initial [ - [1.04296.79 | 4.307303E+04 | 0.034 [ 4 [ 0.568 0.479 0.315 017 [ - ]
Hiv 30 [ 0.968 | 84.18 [ 5.236701E+04 [ 0.064 2 0.407 0.213 0.392 0.189 14.838
HivB |22 09677009 | 5828042E+04 | 0.143 11 0.581 0.459 0.392 0.190 10.551
Hmv 8 [ 0.994 | 96.28 | 4.303145E+04 | 0.031 5 0.577 0.484 0.379 0.189 3.91
HmvB | 8 [0.974 | 96.94 | 4.260863E+04 | 0.030 5 0.588 0.507 0.364 0.184 3.809
Hiv BW | 22 [0.967 [ 70.09 | 5.828042E+04 | 0.143 i1 0.581 0.459 0.392 0.190 10.923
Hmv SW| 3 [0.938 [ 94.97 | 4.382731E+04 | 0.035 4 0.561 0.446 0.350 0.188 1.543
Greedy | 2 | 0.975 | 94.8 | 4.595454E+04 | 0.059 5 0.535 0.434 0.376 0.193 9.980

Data and results. We considered 4 real-world relational datasets: Adult,’
Bank, CreditCardCustomers,” and Student.% For each of them, we report in
Table 1-(right) the number of objects, a pair of values corresponding to the
count of non-sensitive and sensitive attributes, and a description of the latter.
Table 3 summarizes results achieved by each of the above heuristics, on the
various datasets, according to the following criteria (columns from left to right):
number of iterations at convergence, target ratio, percentage of pairs u,v hav-
ing w, > wy,; also, computed w.r.t. the full attribute space are: value of the
objective function, average Euclidean fairness® (the lower, the better), average
number of clusters, intra-cluster and inter-cluster similarities according to either
the subset of sensitive attributes or the subset of non-sensitive attributes, and
running time.® Euclidean and Jaccard similarity functions are used for numerical
and categorical attributes, resp., and the overall similarity is obtained by linear

6 https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/sakshigoyal7/credit-card-customers

The average weighted by cluster-size of the per-attribute averages of the Euclidean distances
between the frequency attribute vector computed over the set of objects of a cluster and the
frequency attribute vector over the whole set of objects [1].
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combination analogously to Eqs. (6)—(7). Note that higher values correspond to
better performance for A -based intra-cluster and A~F-based inter-cluster simi-
larities, while the opposite holds for the other two measures. The first row in each
table refers to the initial, full-attribute-space status of the relational network, as
a baseline, whereby the global-weight-bounds condition is not satisfied.

Hlv_BW and Hlv_B tend to produce solutions that correspond to the highest
(i.e., worst) value of the objective function and by far the highest clustering size;
this should be ascribed to the fact that both heuristics favor the removal of the
least variable attributes. By contrast, Hmv_SW and Hmv are the best performing
in terms of objective function and, on average, also in terms of Euclidean fairness;
moreover, they tend to produce very few clusters. Remarkably, while a higher
number of clusters is found to be coupled with a worsening of the objective
function, the opposite does not hold in general. Also, contrarily to the intuition
that a higher percentage of pairs having w* > w™ should favor the grouping into
fewer clusters, we observed that an ordering of the clustering size is not aligned
with the percentage ordering. As far as efficiency, Greedy tends to converge in
less iterations, i.e., it removes fewer attributes than the other methods. In some
cases (e.g., Student, Adult), this allows Greedy for compensating its expected
higher cost per iteration. Hmv_B mostly provides the best time performance.

Notably, each method lowers the initial target ratio below 1 so as to satisfy
the global condition, and the per-dataset best-performing method improves all
intra-/inter-cluster similarities and Euclidean fairness w.r.t. the baseline.

6 Conclusions

We have studied for the first time global weight bounds in correlation cluster-
ing. We have derived a sufficient condition to extend the range of validity of
approximation guarantees beyond local weight bounds, such as the probability
constraint. Extensive experiments have attested the usefulness of our condition.

We believe this work offers a new perspective on correlation clustering which
opens stimulating yet challenging opportunities for further research, such as
investigating the role of M and ~ constants, extending our results to other con-
straints (e.g., triangle inequality), and studying the by-product problem of fea-
ture selection guided by our condition.

For reproducibility purposes, we make source code and data available at:
https://github.com/Ralyhu/globalCC and http://people.dimes.unical.
it/andreatagarelli/globalCC/.
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