
1

Collaborative Clustering of XML Documents
Sergio Greco, Francesco Gullo, Giovanni Ponti, Andrea Tagarelli

Dept. of Electronics, Computer and Systems Sciences (DEIS), University of Calabria
Via P. Bucci, 41C, 87036 Arcavacata di Rende (CS), Italy

E-mail addresses: {greco, fgullo, gponti, tagarelli}@deis.unical.it

Abstract—This paper presents a distributed collaborative ap-
proach to XML document clustering. According to a previous
study [1], XML documents are mapped to a transactional domain,
based on a data representation model which exploits the notion
of XML tree tuple. This XML transactional model is well-
suited to the identification of semantically cohesive substructures
from XML documents, according to structure as well as content
information. The proposed clustering framework employs a
centroid-based partitional clustering paradigm in a distributed
environment. Each peer in the network is allowed to compute a
local clustering solution over its own data, then exchanges cluster
centroids with other peers. The exchanged centroids correspond
to recommendations offered by a peer to peers allowed to com-
pute global representatives. Exploiting these recommendations,
each peer becomes responsible for computing a global set of
centroids for a given set of clusters. The overall clustering solution
is hence computed in a collaborative way according to data
from all the peers. Our approach has been evaluated on real
XML document collections varying the number of peers. Results
have shown that collaborative clustering leads to accurate overall
clustering solutions with a relatively low load in the network.

Keywords-XML, collaborative distributed clustering, XML
structure and content information, transactional data.

I. INTRODUCTION

The increasing availability of heterogeneous XML informa-
tive sources has raised a number of issues concerning how
to represent and manage semistructured data. Indeed, XML
allows the definition of semantic markup, that is, customized
tags describing the data enclosed by them. As a consequence,
the variety of application scenarios within XML is used makes
XML information sources exhibit not only different structures
and contents but also different ways to semantically annotate
the data. However, most of the available information from
such XML sources is of syntactic kind, consequently a basic
assumption is that if certain syntactic properties are satisfied
then semantic relationships in XML data can be discovered.
Moreover, most XML documents available are often schema-
less, that is no information about the document type definition
is provided, making inferring semantics even more difficult.

In this context, a challenge is inferring semantics from
XML documents according to the available syntactic informa-
tion, namely structure and content features. This has several
interesting application domains, such as integration of data
sources and query processing, document retrieval, and Web
intelligence, which can be seamlessly generalized to any kind
of semistructured data.

The clustering problem finds in text databases a fruitful
research area. The motivation behind any clustering problem

is to discover an inherent structure of relationships in the
data, and expose this structure as a set of clusters, where the
objects within the same cluster are each other highly similar
but very dissimilar from objects in different clusters. Since
today semistructured text data has become more prevalent on
the Web, and XML is the de-facto standard for such data,
clustering XML documents has increasingly attracted great
attention. Any application domain that needs an organization
of complex document structures (e.g., hierarchical structures
with unbounded nesting, object-oriented hierarchies) as well
as data containing a few structured fields together with some
largely unstructured text components can be profitably assisted
by an XML document clustering task. Clearly, clustering XML
documents by facing both structure and content information
turns out to be more difficult than the structure-only case.
Indeed, mining XML content inherits some problems faced
in traditional knowledge discovery in text (e.g., semantic
ambiguity), while new ones arise when content is, as usual,
contextually dependent on the logical XML structure.

Another problem with managing collections of XML docu-
ments is that often the size of such data is huge and inherently
distributed, therefore classical centralized approaches may be
not efficient. On the other hand, transferring all data to a
central clustering service is prohibitive in large-scale systems.

Unfortunately, existing methods and systems for clustering
XML data are designed to work only on a centralized en-
vironment. This partly depends on an inherent difficulty in
devising suitable representation models for taking into account
both structure and content information in such data. Moreover,
most clustering strategies cannot easily be distributed, since
there is an additional level of complexity due to the design
and implementation of scalable and effective protocols for
communication which allow nodes to minimize exchanged
data.

Contribution

Our proposal is focused on the development of a distributed
framework for efficiently clustering XML documents. The
distributed environment consists of a peer-to-peer network
where each node in the network has access to a portion of
the whole document collection and communicates with all the
other nodes to perform a clustering task in a collaborative
fashion.

The proposed framework is essentially based on an approach
to modeling and clustering XML documents by structure and

content presented in our earlier works [1], [2]. Following the
lead of these works, XML documents are transformed into
transactional data based on the notion of tree tuple. XML tree
tuples enable a flat, relational-like XML representation that
is well-suited to meet the requirements for clustering XML
documents according to structure and content information.

We resort to the well-known paradigm of centroid-based
partitional clustering [3] to conceive our distributed, trans-
actional clustering algorithm. It should be emphasized that
such a clustering paradigm is particularly appealing to a
distributed environment. Indeed, the availability of a summa-
rizing description of the clustered data provided by the cluster
centroids is highly desirable especially when the input data
is spread across different peers. Cluster centroids are hence
used to describe portions of the document collection and can
conveniently be exchanged with other nodes on the network.

The key idea underlying the collaborative clustering ap-
proach in our framework is intuitively described as follows.
Each node yields a local clustering solution (i.e., a partition
of its own set of XML data). For each local cluster, the
corresponding (local) centroid is computed and sent to nodes
which are in charge of computing the “global” centroids.
More precisely, every node computes a subset of the k global
centroids; the i-th node computing the global centroid for a
set of clusters, receives from each other node the centroid for
the corresponding local cluster. Once computed, the global
centroids are finally sent back to all the nodes to update their
local clusters.

We conducted experiments on two large, real-world collec-
tions of XML documents, which are particularly suitable to
assess the ability of the proposed framework in performing
collaborative clustering of XML documents by structure and
content. The number of nodes collaborating in the distributed
environment for the computation of clusters was varied and
the communication among nodes was kept minimized. Results
have shown that, although the final clustering accuracy is
typically reduced w.r.t. the centralized case, the parallelism
due to a relatively small number of collaborating nodes in the
network leads to a drastic reduction of the overall runtime
needed for the clustering task.

Related work

A major issue in XML document clustering is the definition
of a representation model which is well-suited to handle
both structure and content information in XML data. Repre-
senting semistructured data has been traditionally addressed
by labeled rooted trees. Consequently, handling with such
data has leveraged results from research on tree matching,
including a number of algorithms for computing tree edit
distances (e.g., [4]). Since the complexity issues relating to
edit distances, summarization models have been also proposed
to concisely represent XML data while preserving some struc-
tural relationships between XML elements (e.g., [5], [6], [7]).

Recently attention has been drawn toward using simple
Vector-space models to represent XML data, which substan-
tially differ in the definition of feature space (e.g., [8], [9],
[10]). In [9], an XML document is projected into a vectorial

space whose features take into account the frequency of
structure within the documents. Each feature is characterized
by a number of properties relating to subpaths, such as the
path length, the root node label, and the number of path nodes.
In [10], XML documents are transformed into sets of attribute-
values by focusing on different tree relationships among the
nodes within the document trees (e.g., parent-child and next-
sibling relations, set of distinct paths). In [8], the k-Means
algorithm is used and two feature sets are generated from the
XML element texts and labels, respectively.

In our earlier works [1], [2], we originally introduced an
XML representation model that allows for mapping XML doc-
ument trees into transactional data. In a generic application
domain, a transaction data set is a multi-set of variable-length
sequences of objects with categorical attributes; in the XML
domain, we devise a transaction as a set of items, each of
which embeds a distinct combination of structure and content
features from the original XML data. Within this view, XML
documents are not directly transformed to transactional data,
rather they are initially decomposed on the basis of the notion
of tree tuple. Intuitively, given any XML document, a tree tuple
is a tree representation of a complete set of distinct concepts
that are correlated according to the structure semantics of
the original document tree. Tree tuples extracted from the
same tree maintain similar or identical structure while reflect
different ways of associating content with structure as they
can be naturally inferred from the original tree.

Traditional clustering techniques assume data is memory-
resident. However, this assumption does not hold in many large
scale systems. In this respect, the development of clustering
methods in parallel and distributed environment is becoming
important. Indeed, distributed computing plays a key role since
clustering and, in general, data mining tasks often require
huge amounts of resources in storage space and computation
time. Moreover, data is often inherently distributed into several
databases, making a centralized analysis of such data ineffi-
cient and prone to security risks.

One of the earliest studies on distributed data mining
is proposed in [11], where an agent-based architecture is
defined in such a way that each agent has a local model
of the world and agents cooperate to improve solutions. The
problem of document clustering in a distributed peer-to-peer
network has been addressed recently. For instance, in [12],
the significance of centroid-based partitional clustering like
k-Means is leveraged as an efficient approach to distributed
clustering of documents. In [13], a collaborative approach
to distributed clustering of document clustering is presented.
In this collaborative approach, the individual local clustering
solutions are improved exploiting the distributed environment
on the basis of recommendations exchanged by the various
peers. Since the data domain is textual, the document cluster
summaries are modeled in form of keyphrases.

The collaborative approach to distributed clustering pro-
posed in [13] is very close to ours. However, to the best of
our knowledge, the method presented in this work addresses
for the first time the problem of clustering XML documents
by structure and content in a distributed network.

II. XML TRANSACTIONAL REPRESENTATION

A. Preliminaries on XML trees and paths

A tree T is a tuple T = 〈rT , NT , ET , λT 〉, where NT ⊆ N
denotes the set of nodes, rT ∈ NT is the distinguished root
of T , ET ⊆ NT ×NT denotes the (acyclic) set of edges, and
λT : NT 7→ Σ is a function associating a node with a label
in the alphabet Σ. Let Tag, Att, and Str be alphabets of
tag names, attribute names, and strings respectively. An XML
tree XT is a pair XT = 〈T, δ〉, such that: i) T is a tree
defined on the alphabet Σ = Tag ∪Att∪ {S}, where symbol
S /∈ Tag∪Att is used to denote the #PCDATA content model;
ii) given n ∈ NT , λT (n) ∈ Att ∪ {S} ⇔ n ∈ Leaves(T);
iii) δ : Leaves(T) 7→ Str is a function associating a string to
a leaf node of T .

An XML path p is a sequence p=s1.s2. . . .sm of symbols
in Tag ∪ Att ∪ {S}. Symbol s1 denotes the tag name of the
document root element. An XML path can be categorized into
two types: tag path, if sm ∈ Tag, or complete path, if sm ∈
Att ∪ {S}. We denote as PXT the set of complete paths in
XT . The length of the longest path in PXT determines the
depth of XT , denoted as depth(XT).

Let XT = 〈T, δ〉 be an XML tree, and p = s1.s2. . . .sm

be an XML path. The application of p to XT identifies a
set of nodes p(XT) = {n1, . . . , nh} such that, for each i ∈
[1..h], there exists a sequence of nodes, or node path, npp

i =
[ni1 , . . . , nim

] with the following properties:
• ni1 = rT and nim

= ni;
• nij+1

is a child of nij
, for each j ∈ [1..m-1];

• λ(nij
) = sj , for each j ∈ [1..m].

Moreover, we say that the application of a path to an XML
tree yields an answer. Given an XML tree XT and a path p,
the answer of p on XT is defined as either AXT (p) ≡ p(XT)
(i.e., the set of node identifiers p(XT)) if p is a tag path, or
AXT (p) = {δT (n) | n ∈ p(XT)} (i.e. the set of string values
associated to the leaf nodes identified by p) if p is a complete
path.

B. XML tree tuples

Tree tuple resembles the notion of tuple in relational
databases and has been proposed to extend functional depen-
dencies to the XML setting [14], [15]. In a relational database,
a tuple is a function assigning each attribute with a value from
the corresponding domain.

Definition 1 ([1], [2]): Given an XML tree XT , an XML
tree tuple τ derived from XT is a maximal subtree of XT such
that, for each (tag or complete) path p in XT , the size of the
answer of p on τ is not greater than 1, i.e., |Aτ (p)| ≤ 1. �

We denote with T XT and T the set of tree tuples that can be
derived from any given tree XT and from the collection XT ,
respectively. Also, we use Pτ to denote the set of complete
paths in a tree tuple τ .

C. A transactional model for XML tree tuples

Given a set I = {e1, . . . , em} of distinct categorical values,
or items, a transactional database is a multi-set of transactions

tr ⊆ I. In our setting, the item domain is built over all the leaf
elements in a given collection of XML tree tuples, that is the
set of distinct answers of complete paths applied to the tree
tuples. A transaction is then modeled with the set of items
associated to the leaf elements of a specific tree tuple. The
intuition behind such a model lies mainly on the definition of
XML tree tuple itself: each path applied to a tree tuple yields
a unique answer, thus each item in a transaction indicates
information on a concept that is distinct from that of other
items in the same transaction.

Definition 2 ([1], [2]): Given an XML tree tuple τ and a
path p ∈ Pτ , an XML tree tuple item in τ is a pair 〈p,Aτ (p)〉.
The XML transaction corresponding to τ is the set of XML
tree tuple items of τ , which is Iτ = {〈p,Aτ (p)〉 | p ∈ Pτ}.
Given a collection XT of XML trees, the XML transaction set
S for XT is defined as S =

⋃

XT∈XT SXT , where SXT =
{Iτ | τ ∈ T XT }. �

III. XML TRANSACTIONAL CLUSTERING

In this section, we describe how XML tree tuples modeled
as transactions can be compared each other and clustered
by applying a centroid-based partitional algorithm suitably
designed for a collaborative environment.

A. XML tree tuple item similarity

As discussed in the previous section, XML features are
represented by tree tuple items. To compare XML data in
our transactional domain, we define a measure of similarity
between tree tuple items according to their structure and
content features.

Definition 3 ([1], [2]): Let ei and ej be two tree tuple
items. The tree tuple item similarity function is defined as

sim(ei, ej) = f × simS(ei, ej) + (1 − f) × simC(ei, ej),

where simS (resp. simC) denotes the structural (resp. content)
similarity between the items, and f ∈ [0..1] is a factor
that tunes the influence of the structural part to the overall
similarity. �

Since the combination of structure and content information
characterizes an XML tree tuple item, it is advisable to take
tolerance on computing similarity between XML tree tuple
items. For this purpose, we introduce a similarity threshold
that represents the minimum similarity value for considering
two XML tree tuple items as similar.

Definition 4 ([1], [2]): Given a real value γ ∈ [0..1], two
XML tree tuple items ei and ej are said to be γ-matched if
sim(ei, ej) ≥ γ. �

Similarity by Structure: Structural similarity between two
tree tuple items ei and ej is evaluated by comparing their
respective tag paths.

Computing the similarity between any two paths is essen-
tially accomplished by referring to it as a simple case of
string matching of their respective element names, and finally
averaging the (weighted) matchings. Given any two tags t and
t′, the Dirichlet function (δ) is applied in such a way that

δ(t, t′) is equal to one if the tags match, otherwise δ(t, t′) is
equal to zero.

Definition 5: Let ei and ej be XML tree tuple items, pi =
ti1 .ti2tin

and pj = tj1 .tj2tjm
be their respective

tag paths. The structural similarity between ei and ej is defined
as

simS(ei, ej) =
1

n + m

(

∑

t∈pi

sim(t, pj) +
∑

t∈pj

sim(t, pi)

)

such that, for each tih
∈ pi

sim(tih
, pj) = avg tjk

∈pj

{

1

1 + |h − k|
× δ(tih

, tjk
)

}

�

It should be noted that the tag matchings are corrected by a
factor which is inversely proportional to the absolute difference
of location of the tags in their respective paths: this avoids
that two paths having the same but differently located tags are
identified as highly similar to each other.

Similarity by Content: Content features are generated from
the texts associated to XML tree tuple items. We refer to
a textual content unit (for short, TCU) as the preprocessed
text of a tree tuple item, i.e., a #PCDATA element content
or an attribute value. Text preprocessing is accomplished by
means of language-specific operations such as lexical analysis,
removal of stopwords and word stemming [16].

Two statistical criteria are typically considered for measur-
ing syntactic relevance of terms, namely term density in a
given text and term rarity in the text collection. The popular
tf .idf (term frequency - inverse document frequency) weight-
ing function [16] takes both criteria into account. However, our
XML transactional domain requires a more refined and struc-
tured modeling of term relevance, which is able to consider
the term occurrences with respect to a context that includes
TCUs, tree tuples and original document trees suitably.

Definition 6 ([1], [2]): Given a collection of XML trees
XT , let wj be an index term in a TCU ui, which belongs to a
tree tuple τ ∈ T extracted from a tree XT ∈ XT . The ttf .itf
(Tree tuple Term Frequency - Inverse Tree tuple Frequency)
weight of wj in ui with respect to τ is defined as

ttf .itf (wj , ui|τ) = tf (wj , ui)×exp

(

nj,τ

Nτ

)

×
nj,XT

NXT
×ln

(

NT

nj,T

)

where:
• tf (wj , ui) is the number of occurrences of wj in ui,
• nj,τ is the number of TCUs in τ that contain wj ,
• Nτ is the number of TCUs in τ ,
• nj,XT is the number of TCUs in XT that contain wj ,
• NXT is the number of TCUs in XT ,
• nj,T is the number of TCUs in T that contain wj ,
• NT is the number of TCUs in T . �

Using the ttf .itf weighting function, the relevance of a term
increases with the term frequency within the local TCU, with
the term popularity across the TCUs of the local tree tuple
(transaction) and the TCUs of the local document tree, and
with the term rarity across the whole collection of TCUs.

Content similarity between any two tree tuple items is mea-
sured by comparing their respective TCUs. Given a collection
of XML tree tuples T , any TCU ui is modeled with a vector
~ui whose j-th component corresponds to an index term wj and
contains the ttf .itf relevance weight. The size of each TCU
vector is equal to the size of the collection vocabulary, i.e., the
set of index terms extracted from all TCUs in T . The well-
known cosine similarity [17] is used to measure the similarity
between TCU vectors.

Definition 7: Let ei and ej be tree tuple items, and ~ui

and ~uj their respective TCU vectors. The content similarity
between ei and ej is defined as

simC(ei, ej) =
~ui · ~uj

‖~ui‖ × ‖~uj‖ �

B. The CXK-means clustering algorithm

XML tree tuples modeled as transactions can be efficiently
clustered by applying a partitional algorithm devised for the
XML transactional domain.

Generally, given a set of data objects and a positive number
k, a partitional clustering algorithm identifies k non-empty,
disjoint groups each containing a homogeneous subset of
objects. An important class of partitional approaches is based
on the notion of centroid, or representative, of cluster: each
object is assigned to a cluster C according to its distance from
a data point c, which is the centroid of C.

In [1], [2], we developed a centroid-based partitional cluster-
ing algorithm, which is essentially a variant of the K-means
algorithm for the XML transactional domain. From cluster-
ing strategy viewpoint, this algorithm works as a traditional
centroid-based method to compute k+1 clusters: starts choos-
ing k objects as the initial cluster centroids, then iteratively
reassigns each remaining object to the closest cluster until all
cluster centroids do not change. The (k + 1)-th cluster, called
trash cluster, is created to contain unclustered objects, i.e.
objects having an empty intersection with each cluster centroid
and so are not assigned to any of the first k clusters.

Two major aspects in the XML transactional clustering
algorithm are (i) the notion of proximity used to compare XML
transactions and (ii) the notion of cluster centroid.

In generic transactional domains, a widely used proximity
measure is the Jaccard coefficient, which determines the
degree of matching between any two transactions as directly
proportional to their intersection (i.e., number of common
items) and inversely proportional to their union. However,
computing exact intersection between XML transactions is not
effective, since XML tree tuple items may share structural
or content information to a certain degree even though they
are not identical. For this purpose, the notion of standard
intersection between sets of items is enhanced with one able to
capture even minimal similarities from content and structure
features of XML elements.

Definition 8 ([1], [2]): Let tr 1 and tr2 be two transactions,
and γ ∈ [0..1] be a similarity threshold. The set of γ-shared
items between tr1 and tr2 is defined as

matchγ(tr1, tr2) = matchγ(tr1 → tr2) ∪ matchγ(tr2 → tr1),

Global Input:
A set S of XML transactions distributed over m nodes;
The desired number k of clusters; A similarity threshold γ.

Global Output:
A partition C of S in k clusters distributed over m nodes;

Process N0

Method:
define a partition of {1..k} into m subsets Z1, . . . , Zm ;
for i = 1 to m do

send ({Z1, . . . , Zm}, k, γ) to Ni;

Process Ni

Input:
A set Si = {tri

1, . . . , tri
ni

} of XML transactions;
Output:

A partition Ci = {Ci
1, . . . , Ci

k} of Si into k clusters.
Method:

receive ({Z1, . . . , Zm}, k, γ) from N0;
let Zi = {i1, . . . , iqi

}, with 0 ≤ qi ≤ k;
/* selects qi initial global clusters */
select {ci1

, . . . , ciqi
} transactions coming from distinct original trees;

Ci
j = {}, ∀j ∈ [1..k];

repeat
send (broadcast) {ci1

, . . . , ciqi
} to N1, ..., Nm;

receive cj from Nh with h ∈ [1..m] and j ∈ Zh ;
repeat /* computes local clusters */

Ci
j := {tr | tr ∈ Si ∧ simγ

J (tr, ci
j) > simγ

J (tr, ci
l), l ∈ [1..k]},

∀j ∈ [1..k];
Ci

k+1 := {tr | simγ

J
(tr, ci

j) = 0}, ∀j ∈ [1..k];
ci

j := computeLocalRepresentative(Ci
j), ∀j ∈ [1..k];

until Q(Ci) is maximized;
if ci

j does not change, ∀j ∈ [1..k] then
send (broadcast) ([], done);

else
send ({〈ci

j , |Ci
j |〉|j ∈ Zh}, continue) to Nh, ∀h ∈ [1..m];

receive ({ch
j |j ∈ Zh}, Vh) from Nh, ∀h ∈ [1..m]

if (∃h ∈ [1..m] s.t. Vh = continue) then
for j ∈ Zi do cj = ComputeGlobalRepresentative({c1

j , . . . , cm
j });

until V1 = · · · = Vm = done;

Function ComputeLocalRepresentative(C) : rep;
IC = {e | e ∈ tr ∧ tr ∈ C};
let PC = {p/h | ∃h items (p, u) ∈ IC};
let ~µC = avgei∈IC

{~ui};
for each e ∈ IC do

let rankS(e) = sum{h | ∃e′ =(p′, u′) ∈ IC ∧ p′/h ∈ PC∧
simS(e, e′) ≥ γ}/|PC |;

let rankC(e) = (~u · ~µC)/(‖~u‖ × ‖ ~µC‖),
where ~u is the e’s TCU vector;

rank(e) = f × rankS(e) + (1 − f) × rankC(e);
let RC be the list containing the element in IC ordered by rank values;
return GenerateTreeTuple(RC);

Function ComputeGlobalRepresentative(C) : rep;
IC = {e | e ∈ tr ∧ tr ∈ C};
let PC = {p/h | ∃h items (p, u) ∈ IC};
let ~µC = avgei∈IC

{~ui};
for each e ∈ IC do

let g rankS(e) = sum{h | ∃e′ =(p′, u′) ∈ IC ∧ p′/h ∈ PC∧
simS(e, e′) ≥ γ}/|PC |;

let g rankC(e) = (~u · ~µC)/(‖~u‖ × ‖ ~µC‖),
where ~u is the e’s TCU vector;

g rank(e) = f × g rankS(e) + (1 − f) × g rankC (e);
let IC be the list containing the element in IC ordered by g rank values;
return GenerateTreeTuple(I C);

Function GenerateTreeTuple(IC) : rep;
let I∗

C ⊆ IC be the set of items in IC with the highest rank;
rep := conflateItems(I∗

C);
s0 :=

∑

tr∈C simγ(tr , rep); /* refines representative */
IC := IC − I∗

C ;
let |trmax| be the maximum length of transaction within C;
while (IC 6= ∅ ∧ |rep| ≤ |trmax|) do

let I∗

C ⊆ IC be the set of items in IC with the highest rank;
rep′ := conflateItems(rep ∪ I∗

C);
s′ :=

∑

tr∈C simγ(tr, rep′);
if (s′ ≥ s0) then

IC := IC − I∗

C ; s0 := s′ ; rep := rep′ ;
else return rep;

return rep;

Fig. 1. The CXK-means algorithm

where

matchγ(tr i → tr j) = {e∈ tr i | ∃eh∈ tr j , sim(e, eh) ≥ γ,

@e′∈ tr i, sim(e′, eh) > sim(e, eh)}.

�

The set of γ-shared items resembles the intersection be-
tween transactions at a degree greater than or equal to a
similarity threshold γ. This notion of (enhanced) intersection
is also at the basis of the following similarity function.

Definition 9 ([1], [2]): Let tr 1 and tr2 be two transactions,
and γ ∈ [0..1] be a similarity threshold. The XML transaction
similarity function between tr1 and tr2 is defined as

simγ
J (tr1, tr2) =

|matchγ(tr1, tr2)|

|tr1 ∪ tr2|
.

�

We adapted the XML transactional clustering algorithm to
a collaborative distributed environment. Figure 1 sketches the
main phases of the CXK-means algorithm, which has the
following characteristics.

• Data are distributed over m nodes and each node commu-
nicates with all the other ones sending “local” represen-
tatives and receiving “global” representatives. An initial
process corresponding to a node N0 defines a partition
of the k clusters into m subsets Zj , j ∈ [1..m]. Each
partition Zj contains the identifiers of the clusters for
which the node Nj has the responsibility of computing
the global representatives.

• Each node Ni is in charge of computing local clusters
Ci

1, . . . , C
i
k and local representatives ci

1, . . . , c
i
k, but also

a subset of the global representatives ci1 , . . . , ciqi
(using

the local representatives computed by all nodes).
• The local representative of a cluster C is computed by

starting from the set of γ-shared items among all the
transactions within C. More precisely, for each trans-
action in C, the union of the γ-shared item sets with
respect to all the other transactions in C is obtained; this
guarantees no dependence of the order of examination of
the transactions. Then, a raw representative is computed
by selecting the items from these union sets with the
highest frequency: the raw representative, however, may
not have the form of a tree tuple, as some items therein
may refer to the same path but with different answers.
Function conflateItems is applied to a set of items
and, for each subset I = {ei1, . . . , eik} of items sharing
the same path p, yields one item that has p as path and
the concatenation of the contents of items in I as its
content. Finally, a greedy heuristic refines the current
representative by iteratively adding the remaining most
frequent items until the sum of pair-wise similarities
between transactions and representative cannot be further
maximized. Again, any refinement must guarantee that
the resulting representative satisfies Def. 1.

• The global representative of a cluster C is computed by
considering the m local representatives c1, . . . , cm. The
only difference with respect to the computation of the
local cluster is that in the computation of the structural
rank (here called g rank) associated with an item e we

consider the rank associated with each item (instead of
the number of items) having a γ-matching.

IV. EXPERIMENTAL EVALUATION

A. Experimental setting

We assessed the proposed framework in performing clus-
tering according to structure, content, or both information.
We hereinafter refer to these kinds of solutions as structure-
driven, content-driven, and structure/content-driven clustering,
respectively. The first two types of clustering concern the de-
tection of groups of XML data which are homogeneous by ei-
ther structure or content. The third type (i.e., structure/content-
driven clustering) includes a variety of scenarios, ranging
from detecting common structures across different topics, or
conversely, to identifying classes of tree tuples that both cover
common topics and belong to the same structural category.

The three types of clustering correspond to different settings
of the parameters f and γ, which control the XML transaction
similarity function. According to [1], [2], we varied f within
[0..1] with step 0.1, and γ within [0.5..1) with step 0.05—
we chose γ = 0.5 as the maximum tolerance threshold in
computing similarities. Also, since the setting of f depends
on the clustering goal, we decided to partition the (discrete)
interval [0..1] as follows: [0..0.3] for content-driven clustering,
[0.4..0.6] for structure/content-driven clustering, and [0.7..1]
for structure-driven clustering.

Network topology is characterized by the number of nodes.
We performed experiments by varying this parameter from a
minimum number of 1 up to 19 nodes, in order to assess the
impact of the network size on the clustering task in terms of
both effectiveness and efficiency. Clearly, a number of nodes
equal to 1 refers to centralized clustering, which represents
the baseline case. In the distributed case, data was equally
partitioned over the nodes.

B. Data description

We used two real word document collections for the eval-
uation which are particularly suited to be used in each of the
three types of clustering.

The IEEE data set refers to the IEEE collection version 2.2,
which has been used as a benchmark in the INEX document
mining track 2008.1 IEEE consists of 4,874 articles originally
published in 23 different IEEE journals from 2002 to 2004.
Such articles follow a complex schema which includes front
matter, back matter, section headings, text formatting tags and
mathematical formulas. We kept most of the logical structure
elements and removed the stylistic markups, as shown in the
DTD of Figure 2. In our XML transactional domain, the IEEE
collection has 211,909 transactions and 135,869 items. Also,
the number of leaf nodes is 228,869, the maximum fan out is
43, and the average depth is about 5.

In IEEE, the article journals determine the categories that
were used to partition the collection, which strictly follow the
original INEX categorization. Precisely, two structural cate-
gories correspond to “Transactions” and “non-Transactions”

1http://www.inex.otago.ac.nz/data/documentcollection.asp

<!ELEMENT IEEE (article+)>
<!ELEMENT article (front_matter, body, back_matter?)>
<!ELEMENT front_matter (#PCDATA | abstract | author |

bibliography | editor | editorial | figure |
headers | keywords)*>

<!ELEMENT body (#PCDATA | ack | author |
bibliography | figure | index | section |
table | vita)*>

<!ELEMENT back_matter (#PCDATA | ack | author |
bibliography | figure | footnote |
section | table | vita)*>

<!ELEMENT section (#PCDATA | author | ack |
bibliography | figure | index |
sub_subsection | subsection | table |
title | vita)*>

<!ELEMENT subsection (#PCDATA | author | ack |
bibliography | figure | sub_subsection |
table | title | vita)*>

<!ELEMENT sub_subsection (#PCDATA | bibliography |
figure | table | title | vita)*>

<!ELEMENT ack (#PCDATA | figure | title)*>
<!ELEMENT author (#PCDATA | affiliation | email |

first_name | surname)*>
<!ELEMENT editor (#PCDATA | affiliation | email |

first_name | surname)*>
<!ELEMENT bibliography (#PCDATA | reference)*>
<!ELEMENT headers (header+)>
<!ELEMENT header (#PCDATA | title)*>
<!ELEMENT index (title, entries)>
<!ELEMENT figure (caption?)>
<!ELEMENT table (title, feet?)>
<!ELEMENT abstract (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
...

<!ELEMENT vita (#PCDATA)>

Fig. 2. DTDs of the IEEE dataset

<!ELEMENT dblp (article | inproceedings | book |
incollection)+>

<!ENTITY %field "author | editor | publisher |
title | booktitle | journal | series">

<!ELEMENT article (%field;)*>
<!ELEMENT inproceedings (%field;)*>
<!ELEMENT proceedings (%field;)*>
<!ELEMENT book (%field;)*>
<!ELEMENT incollection (%field;)*>
<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
...
<!ELEMENT series (#PCDATA)>

Fig. 3. DTD of the DBLP dataset

articles, respectively, whereas the classification by content
organizes the articles by the following 8 topic-classes: “Com-
puter”, “Graphics”, “Hardware”, “Artificial Intelligence”, “In-
ternet”, “Mobile”, “Parallel”, and “Security”. Moreover, 14
hybrid classes are identified according to these structural and
content classes.

The second evaluation data set is a subset of the DBLP
archive,2 a digital bibliography on computer science which
contains citations on journal articles, conference papers, books,
book chapters, and theses. DBLP is comprised of 3,000
documents which correspond to 5,884 transactions and 8,231
items.

DBLP is characterized by a small average depth (3),
whereas the number of leaf nodes is 13,209 and the max-
imum fan out is 20. According to its element type def-
inition (Figure 3), DBLP exhibits short text descriptions
(e.g., author names, paper titles, conference names), and a
moderate structural variety which corresponds to 4 main
structural categories, namely ‘journal articles’ (article), ‘con-
ference papers’ (inproceedings), ‘books’ (book), and ‘book
chapters’ (incollection). Also, 6 topical classes are identified
in DBLP, which are ‘multimedia’, ‘logic programming’, ‘web

2http://dblp.uni-trier.de/xml/

dataset # of clusters # of nodes F-measure
(avg)

1 0.593
3 0.523

IEEE 8 5 0.485
7 0.421
9 0.376
1 0.764
3 0.702

DBLP 6 5 0.662
7 0.612
9 0.547

TABLE I
CLUSTERING RESULTS WITH f ∈ [0..0.3]

(CONTENT-DRIVEN SIMILARITY)

dataset # of clusters # of nodes F-measure
(avg)

1 0.564
3 0.497

IEEE 14 5 0.451
7 0.404
9 0.356
1 0.772
3 0.721

DBLP 16 5 0.676
7 0.614
9 0.558

TABLE II
CLUSTERING RESULTS WITH f ∈ [0.4..0.6]

(STRUCTURE/CONTENT-DRIVEN SIMILARITY)

dataset # of clusters # of nodes F-measure
(avg)

1 0.618
3 0.542

IEEE 2 5 0.497
7 0.433
9 0.386
1 0.988
3 0.934

DBLP 4 5 0.882
7 0.819
9 0.716

TABLE III
CLUSTERING RESULTS WITH f ∈ [0.7..1]

(STRUCTURE-DRIVEN SIMILARITY)

and adaptive systems’, ‘knowledge based systems’, ‘software
engineering’, and ‘formal languages’. If both content and
structure information are taken into account, 16 classes are
identified.

Note that the DTDs shown in Figure 2 and Figure 3 are
given only for purposes of description of the data structures,
whereas they were not used during the evaluation since our
approach does not require the availability of XML schemas.

C. Cluster validity measures

To assess the quality of clustering solutions for the datasets,
we exploited the availability of reference classifications for
XML documents. The objective was to evaluate how well a
clustering fits a predefined scheme of known classes (natural
clusters). For this purpose, we resorted to the well-known
F-measure [18], which is defined as the harmonic mean of
values that express two notions from Information Retrieval,
namely Precision and Recall. F-measure ranges within [0, 1],
where higher values refer to better quality results. Since we
perform tree tuple decomposition of XML documents and
then transactional modeling, the evaluation process take into
account the set S of XML transactions.

Given a set S = {tr1, . . . , trm} of XML transactions,
let Γ = {Γ1, . . . , ΓH} be the reference classification of the
objects in S , and C = {C1, . . . , CK} be the output partition
yielded by a clustering algorithm. Precision of cluster Cj with
respect to class Γi is the fraction of the objects in Cj that has
been correctly classified, whereas Recall of cluster Cj with
respect to class Γi is the fraction of the objects in Γi that has
been correctly classified. Formally,

Pij =
|Cj ∩ Γi|

|Cj |
, Rij =

|Cj ∩ Γi|

|Γi|
, Fij =

2PijRij

(Pij + Rij)

In order to score the quality of C with respect to Γ by means
of a single value, the overall F-measure F (C, Γ) is computed
using the weighted sum of the maximum Fij score for each
class Γi.

F (C, Γ) =
1

|S|

H
∑

i=1

|Γi| max
j∈[1..K]

Fij

D. Results

Tables I–III show the average clustering performance ob-
tained on the various data sets by CXK-means varying the
number of nodes and the type of clustering setting (i.e.,

structure-, content-, and structure/content-driven clustering).
For each dataset and clustering setting, results refer to multiple
(10) runs of the algorithm and were measured by averaging
the F-measure scores over the range of f values specific of
the clustering setting. As far as parameter γ, the best setting
was found to be close to high values (typically above 0.85),
for each dataset and type of clustering [2].

As it is reasonable to expect, the centralized case (i.e., one
node) corresponds to an upper bound in terms of clustering
quality for the collaborative distributed clustering. While our
focus is not on the evaluation of the centralized case—the
interested reader can find details in [2], [1]—it can be noted
how the clustering accuracy decreases as the number of nodes
increases, regardless of the dataset and the type of clustering.
This is explained since, the higher the number of nodes, the
lower the distribution ratio of the transactions over the nodes;
as a consequence, each node produces, at each step of the
distributed algorithm, a local clustering solution over a too
small portion of data, which cannot really represent the final
overall solution. However, such a performance degradation
remains relatively acceptable for a distributed environment,
which is partly due to our model of cluster centroid in
achieving good quality summaries for the clusters.

Figure 4 shows time performances on the two evaluation
datasets by increasing the number of nodes and varying the
dataset size. Both plots in the figure refer to structure/content-
driven clustering experiments (i.e., f ∈ [0.4..0.6]). Here a
noteworthy remark is that the performance of CXK-means
takes major advantages w.r.t. a centralized setting in terms
of runtime behavior. In fact, a higher number of nodes in the
network leads to more parallelism, which results in a drastic
reduction of the overall time needed for the clustering task,
in spite of a relatively moderate decrease of the clustering
quality.

However, when the number of nodes grows up, the col-
laborative clustering algorithm also needs a higher number
of iterations to converge. This fact affects negatively the
network traffic (i.e., the centroid exchange) which might be
not negligible anymore. Indeed, as we can see in Figure 4
for both datasets, after a drastic reduction of the runtime due
to the use of just a few nodes, the runtime remains roughly
constant for a certain range, then it starts to slightly increase
when the number of nodes becomes significantly higher. In
particular, time performances on IEEE tend to stabilize for
six and four nodes, respectively in the case of full and halved
dataset; on DBLP, time performances tend to stabilize for a

(a) (b)
Fig. 4. Clustering time performances varying the number of nodes and the dataset size: (a) IEEE, (b) DBLP

smaller number of nodes (four and two, respectively) which
is due to a smaller size of DBLP w.r.t. IEEE, in terms of both
transactions and vocabulary of terms.

Another important remark is that, as the dataset size is
halved, the minimum number of nodes to bring down the
clustering times tends to decrease. This suggests that the
advantage of the collaborative distributed approach w.r.t. the
centralized one tends to become less significant as the dataset
size is reduced.

V. CONCLUSION AND FUTURE WORK

We presented a collaborative distributed framework for clus-
tering XML documents; to the best of our knowledge, this is
the first collaborative approach to clustering XML documents
by structure and content. XML documents are modeled in
a transactional domain which is well-suited to extract XML
structure as well as content features. We implemented our
approach in a distributed, centroid-based partitional clustering
algorithm, where cluster centroids are used to describe portions
of the document collection and can conveniently be exchanged
with other nodes on the network. Each node yields a local clus-
tering solution over its own set of XML data, and exchanges
the cluster centroids with other nodes. These recommendations
in form of centroids are used to compute global centroids, thus
the overall clustering solution is computed in a collaborative
way.

We plan to extend our collaborative framework to deal with
semantic information of both structural and content type from
XML data [2], [1]. Also, more experiments are needed to make
the evaluation robust from both effectiveness and scalability
viewpoints. In particular, it would be interesting to know on
various application domains, how the collaborative clustering
behavior varies in function of different data distributions.

REFERENCES

[1] A. Tagarelli and S. Greco, “Toward Semantic XML Clustering,” in Proc.
SIAM Int. Conf. on Data Mining (SDM), 2006, pp. 188–199.

[2] ——, “Semantic Clustering of XML Documents,” ACM Transactions on
Information Systems, 2009. To appear.

[3] A. Jain and R. Dubes, Algorithms for Clustering Data, ser. Prentice-Hall
advanced reference series. Prentice-Hall, 1988.

[4] A. Nierman and H. Jagadish, “Evaluating Structural Similarity in XML
Documents,” in Proc. ACM SIGMOD Int. Workshop on the Web and
Databases (WebDB), 2002, pp. 61–66.

[5] W. Lian, D. Cheung, N. Mamoulis, and S. Yiu, “An Efficient and
Scalable Algorithm for Clustering XML Documents by Structure,” IEEE
Trans. Knowledge Data Eng., vol. 16, no. 1, pp. 82–96, 2004.

[6] G. Costa, G. Manco, R. Ortale, and A. Tagarelli, “A Tree-based Ap-
proach to Clustering XML Documents by Structure,” in Proc. European
Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD), 2004, pp. 137–148.

[7] N. Polyzotis and M. Garofalakis, “Structure and Value Synopses for
XML Data Graphs,” in Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), 2002, pp. 466–477.

[8] A. Doucet and M. Lehtonen, “Unsupervised Classification of Text-
Centric XML Document Collections,” in INEX Workshop, 2006.

[9] A. M. Vercoustre, M. Fegas, S. Gul, and Y. Lechevallier, “A Flexible
Structured-based Representation for XML Document Mining,” in INEX
Workshop, 2005, pp. 443–457.

[10] L. Candillier, I. Tellier, and F. Torre, “Transforming XML Trees for
Efficient Classification and Clustering,” in INEX Workshop, 2005, pp.
469–480.

[11] R. Kargupta and I. H. andB. Stafford, “Distributed data mining using
an agent based architecture,” in Proc. European Conf. on Principles
and Practice of Knowledge Discovery in Databases (PKDD), 1997, pp.
211–214.

[12] M. Eisenhardt, W. Muller, and A. Henrich, “Documents by Distributed
P2P Clustering,” in GI Jahrestagung (2), 2003, pp. 286–291.

[13] K. Hammouda and M. Kamel, “Collaborative document clustering,” in
Proc. SIAM Int. Conf. on Data Mining (SDM), 2006, pp. 211–214.

[14] M. Arenas and L. Libkin, “A Normal Form for XML Documents,” ACM
Trans. Database Systems, vol. 29, no. 1, pp. 195–232, 2004.

[15] S. Flesca, F. Furfaro, S. Greco, and E. Zumpano, “Repairs and Consistent
Answers for XML Data with Functional Dependencies,” in Proc. Int.
XML Database Symposium (XSym), 2003, pp. 238–253.

[16] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, ser.
ACM Press Books. Addison Wesley, 1999.

[17] A. Strehl, J. Ghosh, and R. Mooney, “Impact of Similarity Measures on
Web-page Clustering,” in Proc. AAAI Workshop on AI for Web Search,
2000, pp. 58–64.

[18] B. Larsen and C. Aone, “Fast and effective text mining using linear-time
document clustering,” in Proc. ACM Int. Conf. on Knowledge Discovery
and Data Mining (KDD), 1999, pp. 16–22.

