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Abstract. The study of fairness-related aspects in data analysis is an
active field of research, which can be leveraged to understand and con-
trol specific types of bias in decision-making systems. A major problem in
this context is fair clustering, i.e., grouping data objects that are similar
according to a common feature space, while avoiding biasing the clusters
against or towards particular types of classes or sensitive features. In
this work, we focus on a correlation-clustering method we recently intro-
duced, and experimentally assess its performance in a fairness-aware con-
text. We compare it to state-of-the-art fair-clustering approaches, both
in terms of classic clustering quality measures and fairness-related as-
pects. Experimental evidence on public real datasets has shown that
our method yields solutions of higher quality than the competing meth-
ods according to classic clustering-validation criteria, without neglecting
fairness aspects.

1 Introduction

We live in an era where machine learning is increasingly pervasive in our society.
Every day we interact with machine learning systems, even without knowing it,
and these acquire more and more decision-making power in our lives. For in-
stance, such systems support, or even replace, decision makers in financial [22],
medical [21], or legal [17] domains. Given their delicate role, machine learning
systems should guarantee correct functioning and not discriminate those who
entrust their decisions. In this context, however, a critical aspect emerges: the
data used by such systems are often (intrinsically) biased, resulting from incor-
rect data collection processes. Thus, it is desirable to avoid machine learning
algorithms being affected by, or even amplifying, this bias. For instance, in [16],
this refers to removing disparate impact, according to which no group of individ-
uals should (even indirectly) be discriminated by a decision-making system.

In this respect, and by focusing on an unsupervised machine learning set-
ting, in this work we tackle the problem of fair clustering. This corresponds to
clustering a set of data objects such that: (i) analogously to the classic cluster-
ing scenario, similar objects are assigned to the same cluster, whereas dissimilar



objects are assigned to different clusters, and (ii) the clusters are not dominated
by a specific type of sensitive data class (e.g., people having the same sex).

Our key assumption is that the above problem can be addressed under a
correlation clustering framework [7]. Correlation clustering is a well-established
tool for partitioning the set of vertices of an input graph into clusters, so as to
maximize the similarity of the vertices within the same cluster and minimize
the similarity of the vertices in different clusters, according to pairwise vertex
weights expressing positive and negative types of co-association. Specifically,
following our recent work in correlation clustering [20], here we provide insights
into its application to the problem of fair clustering, and we compare it to some
state-of-the-art approaches in such a context. Furthermore, albeit we do not aim
to provide a comprehensive experimental survey on fair clustering, a by-product
of our work is that, to the best of our knowledge, it represents a valuable and
unprecedented experimental comparison between approaches of fair clustering.

Our contributions in this work are as follows:

(i) We provide a comparison between state-of-the-art methods in the context
of fair clustering, belonging to different approaches;

(ii) We show how, by optimizing aspects of fairness, some methods affect their
ability to produce clusters that are qualitatively good according to classic
clustering-validation criteria;

(iii) We shed light on the capabilities of our recently proposed algorithm [20]
to adapt to a fair clustering scenario. We show that it is able to produce
better solutions than the competing methods from a clustering perspective,
while still accounting for fairness-related aspects.

The remainder of the paper is organized as follows. Section 2 provides re-
lated work on fair clustering. Section 3 describes how the fair clustering problem
can be solved through a correlation clustering framework. Section 4 presents our
approach to fair correlation clustering. Section 5 and Section 6 present experi-
mental methodology, while Section 7 discusses our main experimental findings.
Section 8 concludes the paper, also providing pointers for future work.

2 Related Work

Although of relatively recent definition, the problem of fairness in clustering has
received considerable attention in the literature [13]. With their seminal work,
Chierichetti et al. [14] were among the first to formalize the notions around fair
clustering and the related problem, following the disparate-impact doctrine [16].
Their main contribution is a general pre-processing step, i.e., fairlets decom-
position, to enable traditional algorithms (e.g., k-center and k-median) meeting
fairness principles. Following that forerunner work, fairness has become pervasive
in the clustering landscape [8, 9, 23], leading to a fairness-aware declination of
numerous traditional clustering formulations, such as k-center [18], k-means [1,
24], k-median [6], spectral clustering [19], and hierarchical clustering [2].



The phenomenon of fairness in clustering has also been extended to alterna-
tive approaches, such as correlation clustering. In this regard, Ahmadian et al. [3]
is the first work to leverage the correlation clustering model for the fair cluster-
ing task. More specifically, it takes a complete and undirected graph as input,
where vertices are assigned a (single) label representing a given protected class
attribute (e.g., sex or ethnicity), and the goal is to provide a fair representation
of each considered label in the resulting clusters. Recently, Mandaglio et al. [20]
proposed to model the fair clustering problem of a relational dataset as a cor-
relation clustering instance. Given a set of objects, defined over a set of fea-
tures, Mandaglio et al. build an associated correlation clustering instance by
considering the similarity between the tuples. Although Ahmadian et al.’s and
Mandaglio et al.’s approaches aim to cluster different types of data (graphs and
tuples, respectively), both approaches reduce the original problem to a correla-
tion clustering instance. However, Mandaglio et al.’s formulation is more general
than Ahmadian et al.’s one, since the former deals with an arbitrary number of
labels (or sensitive attributes), while the latter is limited to a single-label setting.

3 Fairness Constraints in Correlation Clustering

3.1 Background on Correlation Clustering

The correlation clustering problem, originally introduced by Bansal et al. [7],
consists of clustering the set of vertices of a graph whose edges are assigned two
nonnegative weights, named positive-type and negative-type weights, respec-
tively. Such weights express the advantage of putting any two connected vertices
into the same cluster (positive-type weight) or into separate clusters (negative-
type weight). The objective is to partition the vertices so as to either minimize
the sum of the negative-type weights between vertices within the same cluster
plus the sum of the positive-type weights between vertices in separate clusters
(Min-CC), or maximize the sum of the positive-type weights between vertices
within the same cluster plus the sum of the negative-type weights between ver-
tices in separate clusters (Max-CC). Both the formulations are NP-hard [7, 25]
and they are equivalent in terms of optimality. However, the available algorithms
for Max-CC [10, 26] are inefficient and poorly usable in practice since they are
not able to output more than a fixed number of clusters (i.e., six). Conversely,
Min-CC admits approximation algorithms [4, 11] that do not suffer from the
limitations of the maximization counterpart. For these reasons, in this work we
focus on the minimization formulation of correlation clustering:

Problem 1 (Min-CC [5]). Given an undirected graph G = (V,E), with vertex
set V and edge set E ⊆ V × V , and weights w+

uv, w
−
uv ∈ R+

0 for all edges
(u, v) ∈ E, find a clustering C : V −→ N+ that minimizes:∑

(u,v)∈E, C(u)=C(v)

w−uv +
∑

(u,v)∈E, C(u)6=C(v)

w+
uv. (1)



Min-CC is APX-hard [11], but admits approximation algorithms [5, 7, 11,
12, 27] with guarantees depending on the type of input graph. On general graphs
and weights, the best known approximation factor is O(log |V |) [11, 15], provided
by a linear programming approach. Conversely, constant-factor approximation
algorithms are possible if the graph is complete and edge weights satisfy the
probability constraint, i.e., w+

uv +w−uv = 1 for all u, v ∈ V . Among these, the one
which provides the best trade-off between efficiency and theoretical guarantees
is the Pivot algorithm [5], which simply picks a random vertex u, builds a cluster
as composed of u and all the vertices v such that an edge with w+

uv > w−uv exists,
and removes that cluster from the graph. The process is repeated until the graph
has become empty. This algorithm has O(|E|) time complexity and it achieves
a factor-5 expected guarantee for Min-CC under the probability constraint or if
a global weight bound holds on the overall edge weights [20].

Next we discuss how a clustering problem with fairness constraint can be
profitably solved through a Min-CC approach.

3.2 Problem Statement

Let X = {X1, · · · , Xn} be a set A of n objects defined over a set of attributes.
The latter is assumed to be divided into two sets, AF and A¬F . The AF set
contains fairness-aware, or sensitive, attributes such as those identifying sex,
race, religion, relationship status in a citizen database and any other attribute
over which fairness is to be ensured. A¬F denotes the attributes that are relevant
to the task of interest, and thus can be regarded as non-sensitive. In both cases,
we assume that part of the attributes might be numerical, and the others as
categorical (binary or multi-value). We use subscripts N and C to distinguish
the two types, therefore AF = AF

N ∪ AF
C and A¬F = A¬FN ∪ A¬FC .

We consider a clustering task whose goal is to partition the input objects with
a twofold objective: (i) minimize the inter-cluster similarity according to the non-
sensitive attributes A¬F ; (ii) minimize the intra-cluster similarity according to
the sensitive attributes AF . The former objective corresponds to the typical
clustering objective, since dissimilar objects should belong to different clusters.
Pursuing the second objective, instead, would help distribute objects that are
similar in terms of sensitive attributes across different clusters, thus fostering
the formation of clusters that are equally represented in terms of the sensitive
attributes. This is beneficial to ensure that the distribution of groups defined on
sensitive attributes within each cluster approximates the distribution across the
dataset. Formally, the problem we tackle in this work is:

Problem 2 (Fair-CC). Given a set of objects X , two subsets of attributes AF

and A¬F , and an object similarity function simS(·) defined over the subspace S
of the attribute set, find a clustering C∗ to minimize:∑

u,v∈X , C(u)=C(v)

simAF (u, v) +
∑

u,v∈X , C(u)6=C(v)

simA¬F (u, v) (2)



The objective in Eq. (2) corresponds to solving a complete Min-CC instance
where the set of vertices corresponds to the objects in X and, for each pair of
vertices u and v, the positive-type (resp. negative-type) correlation-clustering
weight corresponds to the similarity score between the two vertices according to
the non-sensitive (resp. sensitive) attributes.

We remark that the Fair-CC problem, as stated above, is introduced here
for the first time, while in our previous study in [20] we tackled a different prob-
lem: given a set of objects defined over sensitive and not-sensitive attributes, find
two attribute subsets that lead to pairwise similarity scores satisfying a certain
global condition on the correlation-clustering edge weights. The focus in [20] was
to show that the global condition can guide the selection of subsets of features
that lead to edge weights expressing the best trade-off between an accurate rep-
resentation of objects’ vectors (i.e., discarding not too many features), and the
way how the weights facilitate the downstream correlation-clustering algorithm
performing well, i.e., by making it achieve approximation guarantees [20]. In-
stead, in this work, the set of attributes, over which the similarity scores are
computed, are given as input in the Fair-CC problem, and hence they are not
needed to be discovered. This is also a more realistic scenario for fair cluster-
ing, where the set of sensitive attributes is provided by the specific application
scenario.

4 Algorithm

The Fair-CC problem requires a function to measure the similarity between two
objects with respect to a set of attributes. Following [20], we quantify the degree
of similarity between two objects u and v, according to the set of sensitive and
non-sensitive attributes, by means of the following simA¬F (u, v) and simAF (u, v)
measures, respectively:

simA¬F (u, v) := ψ+
(
α¬FN · simA¬F

N
(u, v) + (1− α¬FN ) · simA¬F

C
(u, v)

)
, (3)

simAF (u, v) := ψ−
(
αF
N · simAF

N
(u, v) + (1− αF

N ) · simAF
C

(u, v)
)
, (4)

where αF
N = |AF

N |/(|AF
N |+ |AF

C |) and α¬FN = |A¬FN |/(|A¬FN |+ |A¬FC |) are coeffi-
cients to weight similarities proportionally to the number of involved attributes,
and ψ+ = exp(|AF |/(|AF |+|A¬F |)−1) and ψ− = exp(|A¬F |/(|AF |+|A¬F |)−1)
are smoothing factors to penalize correlation-clustering weights that are com-
puted on a small number of attributes. The latter is reasonable as, in a fair clus-
tering task, we usually have fewer sensitive attributes, and it should be avoided
that negative-like weights can dominate the positive-like ones. The exponential
function enables a mild smoothing, which is desirable.

As Fair-CC is an instance of Min-CC, it can be solved by Min-CC al-
gorithms. Specifically, although it was originally devised for a slightly different
problem (as previously explained in Section 3), here we borrow the algorithm



Algorithm 1 CCBounds [20]

Input: Set of objects X , sensitive attributes AF , non-sensitive attributes A¬F ,
Min-CC algorithm A

Output: Clustering C of X
1: compute simA¬F (u, v), simAF (u, v), ∀u, v ∈ X , as in Eqs. (3)–(4)
2: build the instance I = 〈G = (X ,X × X ), {simA¬F (u, v), simAF (u, v)}u,v∈X×X 〉
3: C ← run A on I

proposed in [20] and adapt it to solve the Fair-CC problem. This algorithm,
dubbed CCBounds 3 and presented in Algorithm 1, consists of building a Min-
CC instance with vertices as the input data objects and edge weights as the
similarity scores, and then running a Min-CC algorithm A on such a Min-CC
instance.

Theoretical remarks. Let TA(X ) be the running time of the algorithm A on
the set of data objects X . CCBounds runs in O(|X |2|A|+TA(X )) time complexity
since it needs to compute a similarity score, over A attributes, for each pair of
objects in X , and then solve the resulting Min-CC instance through algorithm
A. Also, the space complexity of CCBounds is O(|X |2) for storing the similarity
scores in memory. The specific Min-CC algorithm A used in CCBounds is the
one proposed in [4], since it provides (under the probability constraint or the
global weight bound stated in [20]) constant-factor approximation guarantee in
expectation. Also, taking linear time in the size of the input graph, to the best
of our knowledge, it is the most efficient algorithm in the Min-CC literature. As
a result of this choice, the time complexity of CCBounds becomes O(|X |2|A|).

Another appealing aspect of the fact that Fair-CC is an instance of Min-CC
is that Fair-CC inherits the following theoretical result:

Theorem 1 ([20]). If the condition
(|X |

2

)−1(
simA¬F (u, v) + simAF (u, v)

)
≥

maxu,v∈X |simA¬F (u, v) − simAF (u, v)| holds on the similarity scores and the
oracle A is an α-approximation algorithm for Min-CC, CCBounds is an α-
approximation algorithm for Fair-CC.

The above theorem provides approximation guarantee on the Fair-CC objec-
tive (cf. Eq. (2)), which combines the cluster quality measure (first summation)
and the fairness-related objective (second summation). It is not known how this
quality guarantee translates into the single objective, e.g., the fair objective.
This is a challenging open question which we defer to future studies.

5 Fairness Evaluation

In this section, we summarize the most-commonly adopted metrics for the evalu-
ation of fairness aspects in clustering. We focus on algorithm-independent mea-
sures, i.e., able to generalize across multiple methods, following a group-level
approach under the disparate impact doctrine [16].

3 https://github.com/Ralyhu/globalCC



Balance. It is one of the most adopted evaluation metrics for fairness in cluster-
ing, initially proposed by Chierichetti et al. [14] in a context with one sensitive
attribute with two protected groups. It has been successively generalized to m
protected groups by Bera et al. [8]. According to the latter, the balance of a
clustering solution can formally be defined as follows [13]:

balance(C) = min
C∈C,b∈[m]

min
{
RC,b,

1

RC,b

}
∈ [0, 1], (5)

where RC,b is the ratio between the proportion of the objects belonging to a
given protected group b in the considered dataset and in a given cluster C ∈ C.

In such a formulation, the lower and upper bounds of a cluster indicate the
fully unbalanced and perfectly balanced scenarios, respectively, where the former
indicates the case where all the objects in such a cluster pertain to the same pro-
tected group, whereas the latter denotes an equal number of objects from each of
the protected groups. Therefore, the higher the balance, the better the obtained
solution, in terms of equality. Additionally, the considered generalization allows
us to obtain a comprehensive evaluation of the balance of our clustering solu-
tions, as it looks at the dataset context, i.e., it will return high scores provided
that the balances of the clustering and the input dataset are comparable.

Average Euclidean Fairness. This metric was introduced by Abraham et al. [1]
to estimate the unfairness by assessing the deviation between the representation
of groups obtained focusing on the sensitive attributes in the whole dataset and
the given clustering solution. It expresses the cluster-size weighted average of
cluster-level deviations (i.e., Euclidean distances) between two frequency (sen-
sitive) attribute vectors, namely XA, which is computed over the entire set of
objects, and CA, which is computed for each cluster C ∈ C, focusing on a sensi-
tive attribute A ∈ AF . Formally, it is defined as:

AEA(C) =

∑
C∈C |C| × ED(CA,XA)∑

C∈C |C|
, (6)

where ED represents the Euclidean distance between the frequency attribute
vectors. Since A can be multi-valued, such a formulation is suited to scenarios
where there are multiple protected groups. Also, as this measure is a deviation,
smaller values correspond to better solutions.

6 Experimental Methodology

6.1 Competing Methods

In the following, we briefly overview the competing methods we included in our
experiments. For each of those methods, we used publicly available code, which
we adopted “as-is”, i.e., without making any changes or optimizations.

Fair Clustering Through Fairlets [14]. This method, here dubbed Fair-
lets, is one of the pillars of fair clustering. It is based on the notion of fairlets



decomposition, that is a grouping of the input objects into fairlets, i.e., mini-
mal subsets of objects that satisfy a given fairness definition, while preserving
the clustering objective. Given a good fairlets decomposition, this approach re-
quires traditional clustering algorithms (i.e., k-center or k-median) applied on
the centers of the obtained fairlets, to yield the “fair” solutions. Fairlets sup-
ports two types of fairlets decomposition: an accurate one based on min cost flow
(MCF), and a more efficient one. We hereinafter refer to those decompositions as
MCF decomposition and vanilla decomposition, respectively. A major limitation
of Fairlets is that it can handle a single sensitive binary attribute only. We
will discuss the impact of such limitations in more detail in Section 7.

We involve Fairlets in our experimental evaluation by resorting to the
unofficial implementation available online.4

HST-based Fair Clustering [6]. This approach, here dubbed HST-FC, fo-
cuses on the k-median formulation, and employs a quad-tree decomposition to
embed the objects in a a tree metric, called HST. By leveraging such a tree,
HST-FC computes an approximate fairlets decomposition. A fair clustering is
ultimately obtained by running k-median algorithms on the produced fairlets.
Like Fairlets, HST-FC suffers from the limitation that it deals with one binary
sensitive attribute only.

In our experiments, we adopt the official implementation made available by
the authors of HST-FC.5

Fair Correlation Clustering [3]. This method, here dubbed Signed, intro-
duces a fairlet-based reduction for the graph clustering scenario with respect
to the problem of correlation clustering, leading to the concept of correlation
clustering with fairness constraints. Specifically, given a signed graph, i.e., an
undirected graph with edges labeled as positive or negative, the algorithm per-
forms a fairlet decomposition (under different fair settings) over the set of ver-
tices. The produced decomposition is used, together with the original graph,
to build a reduced (complete and unweighted) correlation clustering instance,
where the vertices correspond to the produced fairlets and the sign of the edges
between any two fairlets are built according to the majority sign of the edges
between vertices within those two fairlets. A clustering on this reduced correla-
tion clustering instance is computed through local-search optimization starting
from all singleton clusters, and then expanded into a solution of the original
problem. As a fair setting for the fairlets decomposition, we consider the most
common case of fair decomposition where clusters are required not to have a
sensitive data class. As the Signed method requires a signed graph as input,
we perform the following preprocessing step to make the relational data com-
patible with this format. We derive a complete graph whose vertices are the
original data objects and an edge (u, v) is labeled as positive with probability
p+uv = max{0, simA¬F (u, v)−simAF (u, v)} and as a negative edge with probabil-
ity 1−p+uv, where the similarity functions are the ones defined in Eqs. (3)–(4). We
point out that, although we can adapt the same weighting strategy as CCBounds

4 https://github.com/guptakhil/fair-clustering-fairlets
5 https://github.com/talwagner/fair_clustering



Table 1: Overview of the datasets involved in our experiments.

#objs.
sensitive non-sensitive
attribute attributes

Adult 48 842 sex
age, fnlgwt, education num,

capital gain, hours per week

Bank 40 004 marital age, balance, duration

CreditCard 10 127 sex
customer age, dependent count,

avg utilization ratio, total relationship count

Diabetes 101 763 sex age, time in hospital

Student 649 sex age, study time, absences

to obtain the edge attributes, we discarded this choice as our experiments showed
that it favors the emergence of a degenerated clustering solution (i.e., a single
output cluster), due to the strong predominance of positive weights on the edges.

In our evaluation, we use the official implementation made available by the
authors of Signed.6

6.2 Data

We considered five real-world relational datasets, which have been commonly
used in the fair clustering literature. The main characteristics of these datasets
are summarized in Table 1. As reported in the table, in our evaluation we focused
on a smaller subset of the original attributes; note that this is a common practice,
which is adopted, among others, by the competing methods outlined above.

Adult.7 This dataset reports information about the 1994 US Census. For each tu-
ple representing an individual, we considered age, fnlwgt, education-num, capital-
gain and hours-per-week as non-sensitive attributes, and sex (i.e., male or fe-
male) as a sensitive attribute.

Bank.7 This provides details on phone calls involving direct marketing campaigns
of a Portuguese banking institution to assess whether the bank term deposit will
be subscribed or not. We considered attributes age, balance and duration as
non-sensitive, and marital status (i.e., married or not) as sensitive.

CreditCard.8 This dataset concerns customer credit card services to estimate
customer attrition. We considered attributes customer age, dependent count,
avg utilization ratio and total relation ship count as non-sensitive, and sex as
sensitive.

Diabetes.7 It reports diabetic patient records, for which we considered age and
time in hospital as non-sensitive attributes, and sex as a sensitive attribute.

6 https://github.com/google-research/google-research/tree/master/

correlation_clustering
7 https://archive.ics.uci.edu/ml/datasets/
8 https://www.kaggle.com/sakshigoyal7/credit-card-customers



Student.7 This dataset contains student performances for Mathematics and Por-
tuguese language in secondary education of two Portuguese schools. We consid-
ered age, study time and absences as non-sensitive, and sex as sensitive.

6.3 Evaluation Goals

Our evaluation objectives concern both fairness and quality aspects of clustering.
In the first case, we use the fairness metrics defined in Section 5, which allow
us to have a group-wide overview of how a method behaves in terms of fair
principles. In the second case, we assess the quality of clustering by means of
intra- and inter-clustering similarity, considering both the sensitive and non-
sensitive attributes, as described below. Finally, we evaluate running times.

Intra/Inter-cluster similarity. As stated in Section 3, we take into account
the intra-cluster, resp. inter-cluster, similarity among objects to properly dis-
tribute them into clusters, either focusing on their sensitive and non-sensitive
attributes (cf. Eqs. (3) and (4)). We define the following aggregated scores to
have an overall measure of goodness of the clusters:

inter(A¬F ) =
1

|Θ|
∑
u,v∈Θ

simA¬F (u, v), inter(AF ) =
1

|Θ|
∑
u,v∈Θ

simAF (u, v), (7)

intra(A¬F ) =
1

|Ω|
∑
u,v∈Ω

simA¬F (u, v), intra(AF ) =
1

|Ω|
∑
u,v∈Ω

simAF (u, v), (8)

where Ω = {u, v ∈ X | C(u) = C(v)}, and Θ = {u, v ∈ X | C(u) 6= C(v)}.
In particular, to obtain fair clusters, we need to maximize (resp. minimize)
the inter(AF ), resp. intra(AF ), scores, so that objects having the same set
of sensitive attributes will not be clustered together, rather they will be well-
distributed across clusters. Conversely, we require to maximize, resp. minimize,
the inter(A¬F ), resp. intra(A¬F ), scores, to ensure that objects with the same
set of non-sensitive attributes will be clustered close with each other and not
scattered across different clusters.

Running times. We measure the running times of CCBounds and the competing
methods while executing them on the Cresco6 cluster.9

6.4 Hyper-parameters and Configurations

Data sampling and attributes selection. To test the selected competing
methods under different conditions, and run even the most computationally ex-
pensive approaches, we adopt the sampling strategy proposed in [14]. Specifically,
by sampling (without replacement) we extracted 1k or 10k tuples from the orig-
inal full set of tuples, by preserving some desired ratio between the protected

9 https://www.eneagrid.enea.it



Table 2: Configurations and hyper-parameters used in our evaluations w.r.t. different
experimental setups. kavg is the avg. number of clusters that were obtained over ten
runs of CCBounds, and k corresponds to the parameter value provided to Fairlets

and HST-FC.

p, q split ratio kavg k

Adult-1k 1,2 650/350 3.12 3
Bank-1k 1,2 650/350 3.48 3
Credit-Card-1k 1,6 800/200 5.6 6
Diabetes-1k 1,2 540/460 5.2 5
Student-1k 1,2 266/383 3.88 4

Adult-10k 1,2 6 500/3 500 2.96 3
Bank-10k 1,2 6 500/3 500 3.28 3
Credit-Card-10k 1,6 4 769/5 358 6.32 6
Diabetes-10k 1,2 5 400/4 600 6.44 6

Adult-Full 2,5 32 650/16 192 3.64 4
Bank-Full 2,5 12 790/27 214 3.64 4
Diabetes-Full 1,2 47 055/54 708 OOM 6

classes. The details of the sampling strategy used in our experiments are reported
in Table 2, where the selected fair attributes and split ratio (i.e., the fraction of
tuples pertaining to different sensitive attribute values) are, whenever possible,
the same as [14]. Also, both Fairlets and HST-FC require two integers p and q
as input, whose ratio p/q corresponds to the minimum balance required by each
clusters, yielded by these algorithms. The configuration of the aforementioned
parameters, inspired by [14, 8], is reported in Table 2.

We highlight that, as described so far, we focus on a single and binary sensi-
tive attribute to match the minimum requirements that embrace all competing
methods. Nonetheless, some approaches (including our CCBounds) can deal with
multiple values assigned to a single sensitive attribute.

Number of clusters. While Fairlets and HST-FC require a hyper-parameter
k in input, denoting the desired number of output clusters, the same does not
apply with the correlation clustering-based approaches. Thus, to create a reason-
able comparative environment, we use the (rounded) average number of clusters
returned by CCBounds in ten iterations as the k parameter for Fairlets and
HST-FC. Moreover, we inherit the value k from the nearest subset when the
correlation clustering-based approaches run out of memory.

7 Results

Table 3 summarizes the results achieved by CCBounds and the competing meth-
ods. With the exception of very high running times and out of memory errors
(indicated with NA and OOM, respectively), all reported measurements corre-
spond to averages over 10 runs of the tested algorithms. The similarity values
(Eqs. (7)–(8)) were obtained by using Euclidean and Jaccard similarities for
numerical and categorical attributes, respectively. Moreover, as for the Fair-



Table 3: Summary of results according to the following criteria (columns from left to
right): number of clusters, balance score, avg. Euclidean fairness, avg. intra-cluster

and inter-cluster similarities according to either the set of selected sensitive attributes
or the set of non-sensitive attributes (cf. Table 1), and running time. For each

criterion, bold values correspond to the best-performing methods (possibly up to the
second decimal point).

#clust. balance ↑ AE ↓ intra(A¬F ) ↑ intra(AF ) ↓ inter(A¬F ) ↓ inter(AF ) ↑ time (s) ↓

Adult-1k

CCBounds 3.12 0.565 0.007 0.685 0.524 0.415 0.334 < 1
Fairlets 3 0.805 0.004 0.585 0.319 0.596 0.335 < 1
HST-FC 3 0.971 0.01 0.616 0.335 0.599 0.336 < 1
Signed 41 0.66 0.03 0.59 0.32 0.60 0.33 240

Adult-10k

CCBounds 2.96 0.52 0.03 0.65 0.43 0.43 0.33 3.86
Fairlets 3 0.82 0.003 0.60 0.32 0.615 0.33 < 1
HST-FC 3 0.98 0.006 0.626 0.336 0.618 0.336 3.03
Signed NA NA NA NA NA NA NA > 48h

Adult-Full

CCBounds 3.64 0.56 0.003 0.69 0.47 0.42 0.24 75.5
Fairlets 4 0.66 0.02 0.59 0.32 0.62 0.34 6.5
HST-FC 4 0.96 0.008 0.63 0.34 0.62 0.34 72.86
Signed NA NA NA NA NA NA NA > 48h

Bank-1k

CCBounds 3.48 0.565 0.006 0.727 0.587 0.441 0.369 < 1
Fairlets 3 0.828 0.002 0.606 0.354 0.613 0.364 < 1
HST-FC 3 0.968 0.007 0.621 0.365 0.617 0.365 < 1
Signed 41 0.7 0.03 0.61 0.35 0.63 0.36 224

Bank-10k

CCBounds 3.28 0.52 0.0007 0.78 0.63 0.45 0.36 4.74
Fairlets 3 0.7 0.001 0.59 0.32 0.63 0.36 < 1
HST-FC 3 0.969 0.004 0.656 0.365 0.656 0.365 3.07
Signed NA NA NA NA NA NA NA > 48h

Bank-Full

CCBounds 3.64 0.55 0.0004 0.72 0.55 0.45 0.37 51.1
Fairlets 4 0.68 0.001 0.62 0.34 0.65 0.36 5.3
HST-FC 4 0.94 0.008 0.66 0.37 0.66 0.37 28
Signed NA NA NA NA NA NA NA > 48h

CreditCard-1k

CCBounds 5.6 0.613 0.127 0.6 0.497 0.46 0.362 < 1
Fairlets 6 0.4 0.042 0.485 0.355 0.486 0.375 < 1
HST-FC 6 0.756 0.026 0.513 0.373 0.481 0.377 < 1
Signed 171 0.56 0.1 0.56 0.41 0.49 0.38 173

CreditCard-10k

CCBounds 6.32 0.496 0.17 0.6 0.46 0.46 0.32 4.1
Fairlets 6 0.94 0.01 0.497 0.34 0.49 0.337 < 1
HST-FC 6 0.955 0.013 0.52 0.337 0.491 0.337 2.52
Signed NA NA NA NA NA NA NA > 48h

Diabetes-1k

CCBounds 5.2 0.45 0.33 0.622 0.519 0.512 0.352 < 1
Fairlets 5 0.92 0.015 0.537 0.381 0.532 0.385 < 1
HST-FC 5 0.872 0.05 0.585 0.386 0.529 0.386 < 1
Signed 106 0.85 0.04 0.58 0.36 0.54 0.38 257

Diabetes-10k

CCBounds 6.44 0.48 0.22 0.65 0.54 0.5 0.36 4.72
Fairlets 6 0.92 0.01 0.53 0.38 0.53 0.39 < 1
HST-FC 6 0.799 0.065 0.59 0.388 0.53 0.386 2.84
Signed NA NA NA NA NA NA NA > 48h

Diabetes-Full

CCBounds OOM OOM OOM OOM OOM OOM OOM OOM
Fairlets 6 0.93 0.01 OOM OOM OOM OOM 22.2
HST-FC 6 0.81 0.06 OOM OOM OOM OOM 761.2
Signed OOM OOM OOM OOM OOM OOM OOM OOM

Student-1k

CCBounds 3.88 0.51 0.10 0.625 0.463 0.471 0.224 < 1
Fairlets 4 0.82 0.013 0.528 0.339 0.543 0.357 < 1
HST-FC 4 0.93 0.024 0.563 0.357 0.541 0.358 < 1
Signed 55 0.82 0.04 0.57 0.34 0.55 0.36 71

lets method, as previously discussed in Section 6.1, we report results only for
the vanilla fairlets decomposition, since the min-cost-flow (MCF) counterpart
has very high running times (more than 7 minutes on the smallest dataset, i.e.,
Student-1k) and produces solutions that are very similar to the vanilla one (re-
sults not shown for the sake of brevity).



As for the balance, we notice that, although CCBounds does not match the
high scores obtained by “fairness-native” methods (i.e., Fairlets and HST-
FC), it is still able to score comparably with its direct competing method,
i.e., Signed. Exceptions arise in the case of Student-1k and Diabetes-1k, where
CCBounds sets up to lower scores, and for some large datasets, where Signed
does not terminate in reasonable time, while our CCBounds still obtains good
results in reasonable time. The paradigm shifts when we consider small yet heav-
ily unbalanced datasets (i.e., CreditCard-1k, with an 80:20 ratio); here, although
several competing methods struggle to obtain high scores, CCBounds achieves
the second-best balance score. Overall, as the balance obtained by CCBounds in
all evaluation scenarios ranges from 0.45 to 0.613, we can conclude that it is able
of guaranteeing satisfactory balance scores.

In the case of avg. Euclidean fairness, CCBounds obtains very good scores
under different scenarios: it is among the best-performer approaches for the
Adult-1k, Adult-Full and Bank-1k datasets, and outperforms all the other meth-
ods by an order of magnitude on Bank-10k and Bank-Full. Conversely, CCBounds
is unable to match the best scores obtained by some of the competing methods
when focusing on the remaining datasets.

Considering the similarity computed on the sensitive attributes, CCBounds
does not achieve the best intra-cluster similarity, meaning that it tends to group
a few more objects with the same sensitive attribute value than the other meth-
ods. Nevertheless, the inter-cluster similarities are comparable with the other
methods, thus indicating that CCBounds is still able to properly separate the
objects into clusters, when accounting for the sensitive attribute. Instead, when
we focus on the similarity computed on the non-sensitive attributes, CCBounds
achieves the best performance in all the considered evaluation scenarios, yielding
very high-quality clusters.

Finally, we also investigated on running times, spotting Fairlets as the
best performer, followed by HST-FC and CCBounds, which both guarantee rea-
sonable running times. Although CCBounds has quadratic time complexity due
to pairwise similarity calculations (cf. Section 4), we managed to perform in
parallel such time-consuming steps. On the contrary, Signed requires exces-
sively long execution times, often resulting infeasible in practice, along with an
abnormal number of clusters produced, which is particularly large even when
considering the smallest 1k datasets. Overall, it should be noted that, albeit the
observed running times should be taken with grain of salt due to the (lack of)
code optimizations, major remarks are consistent with the time complexities of
the corresponding methods.

Discussion. A number of remarks arise from our experimental evaluation. First,
although native fairness-aware approaches are able to produce clustering solu-
tions that optimize fairness notions, we found out that such a capability comes
with a cost, as the produced clusters are often far from being qualitatively good.
On the other hand, CCBounds demonstrated itself to be effective and versatile: it
was recognized as the best-in-case approach among the tested ones when it comes



to find good-quality clusters, while also being able not to excessively penalize
aspects related to fairness.

Second, although we unveiled the weakness in quality shown by the native
fair-clustering approaches, we nonetheless shed light on how the approaches
based on correlation clustering might suffer from computational issues, by being
slower than the other methods, and requiring more memory. This is particularly
evident with Signed, as it is unable to terminate in all datasets having more than
10k tuples, while it is kept under control in CCBounds, which goes down only
in the case of Diabetes-Full (containing more than 100k tuples, cf. Section 6.2),
thanks to the numerous optimization adopted under the hood. However, such a
dataset makes it difficult to calculate similarities even for traditional and more
efficient approaches, despite the computing capabilities at our disposal.

Finally, by wearing the lens of our proposed approach, we can state that
it is able to provide performance in terms of fairness-aware metrics that are
comparable to its direct competitor (i.e., Signed), but, at the same time, it
manages to overcome all the state-of-the-art competing methods considered in
our assessment, when it comes to generating qualitatively good clusters, anyway
preserving aspects of fairness as much as possible.

8 Conclusions

In this paper, we analyzed how a correlation clustering method, called CCBounds,
can profitably be used for the problem of fair clustering. Experimental evidence
on real data has shown the meaningfulness of the clustering solutions produced
by CCBounds, also revealing its ability of yielding clusters of higher quality than
the considered competing methods, according to classic clustering-validation cri-
teria, without discarding aspects of fairness.

In the future, we plan to further evaluate the performance of CCBounds un-
der other conditions, e.g., multiple protected values. Also, we aim to investigate
on alternative definitions of the similarity functions and push forward the ca-
pabilities of CCBounds towards more challenging scenarios, such as embracing
multiple sensitive attributes with many values, allowing us to align with more
realistic use cases, and strengthen the versatility of the correlation clustering
under fairness constraints.
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