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Abstract The problem of community detection in a multilayer network can effectively

be addressed by aggregating the community structures separately generated for each

network layer, in order to infer a consensus solution for the input network. To this

purpose, clustering ensemble methods developed in the data clustering field are natu-

rally of great support. Bringing these methods into a community detection framework

would in principle represent a powerful and versatile approach to reach more stable

and reliable community structures. Surprisingly, research on consensus community de-

tection is still in its infancy. In this paper, we propose a novel modularity-driven

ensemble-based approach to multilayer community detection. A key aspect is that it

finds consensus community structures that not only capture prototypical community

memberships of nodes, but also preserve the multilayer topology information and opti-

mize the edge connectivity in the consensus via modularity analysis. Empirical evidence

obtained on seven real-world multilayer networks sheds light on the effectiveness and ef-

ficiency of our proposed modularity-driven ensemble-based approach, which has shown

to outperform state-of-the-art multilayer methods in terms of modularity, silhouette

of community memberships, and redundancy assessment criteria, and also in terms of

execution times.

1 Introduction

Multilayer networks are increasingly used as a powerful model to represent the orga-

nization and relationships of complex data in a wide range of scenarios [8,17].

A great deal of attention has recently been devoted to the problem of community

detection in a multilayer network [23,16]. Solving this problem is important in order to

unveil meaningful patterns of node groupings into communities, by taking into account

the different interaction types that involve all the entity nodes in a complex network.
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Existing approaches can broadly be classified into three main categories: flattening

methods, aggregation methods, and direct methods. Flattening methods determine a

single-layer network from the multilayer one, whereupon any conventional community

detection algorithm is applied on that network. Aggregation methods detect a commu-

nity structure separately for each network layer, after that an aggregation mechanism

is used to obtain the final community structure. Finally, direct methods aim to com-

pute a community structure directly on the input multilayer network, by optimizing

some multilayer quality-assessment criterion.

In this work, we focus on the aggregation approach to multilayer community de-

tection, however from a perspective still poorly explored in the literature, where the

aggregation of layer-specific community structures is performed by resorting to a clus-

tering ensemble approach. Clustering ensemble methods have been successfully used as

an advanced clustering tool to exploit the availability of a set, or ensemble, of multiple

clustering solutions generated on the same set of objects, by using different clustering

algorithms or settings [11,29,22,25,12]. Given an ensemble of clusterings, the goal is

to compute a consensus clustering, i.e., a single, prototypical clustering solution that

optimizes a certain objective function properly defined over information available from

the clusterings in the ensemble. Intuitively, this allows the generation of a stable and

more reliable solution out of a set of clusterings, each of which has its own bias and

might have been delivered by non-deterministic and parametric processes. In a sense,

an available ensemble is a source of knowledge from which one tries to infer a single,

meaningful solution that is representative of the initially gained knowledge.

Our motivations for this work stem from the opportunity of bringing the clustering

ensemble paradigm into the problem of multilayer community detection. This way, not

only the requirement for a unique method or setting for determining a multilayer com-

munity structure is relaxed, but also the availability of multiple community structures

can be profitably exploited to learn a consensus for the multilayer network.

We believe that adopting a consensus-clustering-based aggregation approach to

address the community detection problem in multilayer networks provides a number

of benefits compared to direct approaches. Direct methods for multilayer community

detection need to find a community structure in the multilayer network from scratch,

using information from the multiple layers while inferring the communities, which is

likely to be more difficult than inferring a community structure from a single graph. By

contrast, an aggregation approach based on consensus clustering, like the one proposed

in this work, will benefit from exploiting an available set of solutions (perhaps from the

same method) each focused on a particular relation/dimension/layer, then will infer a

final structure at a desired “degree of consensus”.

It should also be noted that the idea of using consensus clustering to solve the prob-

lem of multilayer community detection is not novel in the literature [31,19]; however,

to the best of our knowledge, the concept of consensus community structure has never

been formally defined and exploited so far, neither has been embedded in a modularity

optimization problem.

In this paper, we address the problem of community detection on multilayer net-

works by proposing a novel modularity-driven ensemble-based framework. The input

is a multilayer network and an ensemble of community structures over it. Each of the

community structures in the ensemble is a non-overlapping partition of a particular

layer graph of the network, and obtained by applying any (single-graph) community

detection algorithm. The general objective is to compute a community structure solu-

tion that, by optimizing some property (i.e., modularity) based on information from all
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of the layer-specific community structures, is inferred as a consensus community struc-

ture for the multilayer network. The proposed approach follows the clustering ensemble

paradigm as the consensus solution is computed by ignoring any prior knowledge about

the community detection method(s) that originally determined the layer-specific com-

munity structures; in other terms, the communities in the ensemble are considered as

they are. However, our problem differs from the conventional clustering ensemble one,

whereby the consensus partition is derived without accessing the original features of the

objects in the data collection, thus not preserving the relationships among the objects.

Our notion of consensus community structure, instead, is designed to preserve the mul-

tilayer network topology, thus taking into account not only the community memberships

of nodes but also the amount and types of links among nodes.

Our first contribution is the definition of two baseline methods that rely on a co-

association-based consensus clustering scheme [11,29,12],1 suitably defined over the

multiple layers of a network.

Our defined baseline methods have the property of discovering a consensus com-

munity structure whose underlying graph can be seen as a topological upper-bound and

a topological lower-bound, respectively, of the input multilayer network, for a given

co-association threshold. However, if we consider the general desiderata for commu-

nity detection tasks, i.e., high within-community connectivity and low inter-community

connectivity, the solutions of both baseline methods are in principle not optimal: in

fact, the “topological-lower-bound” solution may be poorly descriptive in terms of mul-

tilayer edges that characterize the internal connectivity of the communities, whereas

the “topological-upper-bound” solution may be redundant in terms of multilayer edges

connecting different communities.

To overcome these issues, we define a well-principled theoretical framework by

formulating the problem of modularity-optimization-driven ensemble-based multilayer

community detection. Our defined consensus objective function is optimized to discover

a consensus solution with maximum modularity, subject to the constraint of being

searched over a hypothetical space of consensus community structures that are valid

w.r.t. the input ensemble and topologically bounded by the baseline solutions.

We have developed a hill-climbing algorithm for the modularity-based multilayer

community detection problem. The algorithm starts with the consensus solution pro-

vided by the topological-lower-bounded baseline, then iteratively seeks a better solution

in terms of modularity by incrementally refining the within-community connectivity

and the inter-community connectivity, until no further improvements can be found.

We evaluated our proposed methods over seven real-world multilayer networks.

Results have shown that our modularity-driven approach to multilayer community

detection produces consensus communities that have far better multilayer modularity

and quality of community memberships w.r.t. the ensemble-based baseline methods.

Our main method also outperforms the competitors in terms of both effectiveness and

efficiency aspects.

The rest of the paper is organized as follows. Section 2 briefly overviews related

work. Section 3 introduces background concepts for the proposed approach, which is

described in Section 4. Sections 5 and 6 present experimental methodology and results.

Section 7 concludes the paper and outlines future research directions.

1 Consistently with classic literature on ensemble clustering, in this paper we will use term
co-association rather than a more intuitive co-occurrence.
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2 Related Work on Multilayer Community Detection

Flattening methods. These methods first flatten the input multilayer network

into a single-layer one, then apply any conventional community detection method.

Berlingerio et al. [3] derive a single-layer network from a multilayer one by drawing an

edge between any two vertices that are connected in at least one layer, and assigning a

proper weight to each edge. Edge weights are defined according to criteria defined over

structural multilayer properties of edges. Rocklin and Pinar [26] focus on the problem

of deriving the more appropriate function to aggregate edge weights coming from dif-

ferent layers given a predefined community structure. Tang et al. [31] define a general

framework for community detection on a multilayer network that relies on four blocks

of aggregation, so that the multilayer communities are computed by aggregating the

output of any of these blocks. The categorization of the method by Tang et al. there-

fore depends on the block at the end of which aggregation is performed. Performing

aggregation on the first block (i.e., network aggregation) gives a flattening method [31].

Aggregation methods. These methods adopt an opposite approach w.r.t. flat-

tening methods, thus avoiding to loose useful information from each of the layers: they

first detect a community structure for each layer separately, then aggregate information

from such structures. Methods falling into this category differ from each other by the

way how community-structure aggregation is performed.

Berlingerio et al. [4] propose ABACUS, an aggregation method based on frequent

pattern mining. Each vertex is associated with a transaction as a list of pairs given by

layer identifier and identifier of the community which that vertex belongs to in that

layer. The aggregate community structure is found by applying frequent closed itemset

mining on the set of transactions.

Principal Modularity Maximization (PMM) [30] aims to find a concise representa-

tion of features from the various layers (dimensions) through two main steps: struc-

tural feature extraction and cross-dimension integration. Structural features from each

dimension are first extracted via modularity maximization, then concatenated and

subjected to PCA to select the top eigenvectors, which represent possible commu-

nity partitions. Using these eigenvectors, a low-dimensional embedding is computed

to capture the principal patterns across all the dimensions of the network, finally a

simple k-means on this embedding is carried out to find out the discrete community

assignment.

The aforementioned framework by Tang et al. [31] introduces the utility integra-

tion criterion for computing utility matrices of a community detection method for each

layer separately. Then it optimizes an objective function for the aggregated multilayer

utility matrix. Also, the framework includes a partition integration block, which con-

sists in applying a clustering ensemble based approach (cf. Sect. 3.2) over the set of

clusterings of the set of nodes identified in each layer. Analogously, Lancichinetti and

Fortunato [19] introduce a framework that combines multiple solutions of the same

clustering algorithm into a consensus matrix, then iteratively applies the clustering

algorithm over it until the matrix turns into a block diagonal one. The obtained blocks

correspond to the final community solution. Burgess et al. [5] adopt a similar approach

upon recovering missing information on networks.

The latter two methods are examples of ensemble based approaches for multilayer

community detection. However, unlike our proposed approach, they use a clustering

ensemble method as a black-box tool for the problem at hand, mainly focusing on the

community membership of nodes, and in some cases trying to refine inter-community
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connectivity based on pruning to unveil connected components for the consensus gen-

eration; furthermore, they do not generate the consensus by optimizing modularity or

any other quality criterion.

Direct methods. These are methods that work directly on the input multi-

layer network. They usually define ad-hoc community-quality assessment criteria, and

search for multilayer community structures that optimize such criteria [23,9,2,6,13,

18]. We focus the following discussion on representative methods that use modularity

optimization.

Generalized Louvain (GL) [23] extends the classic Louvain method using multislice

modularity, so that each node-layer tuple is assigned separately to a community.

MultiGA [1] and MultiMOGA [2] are both based on genetic algorithms. MultiGA

exploits a fitness function that combines the modularity values computed for each

layer. The best-fit individual is selected from the final population, and the community

structure of layer corresponding to the maximum modularity is returned. Upon this

solution, a label assignment and a local search strategy are employed to refine the

community structure in terms of modularity. MultiMOGA utilizes a multiobjective

genetic approach, depending on a predetermined ordering of the layers, which optimizes

the modularity for the current layer and the similarity with the solution found on

previously considered layers.

Locally Adaptive Random Transitions (LART) [18] is a random-walk based method.

It first runs a different random walk for each layer, then a dissimilarity measure between

nodes is obtained leveraging the per-layer transition probabilities. Finally, a hierarchical

clustering method is used to produce a hierarchy of communities which is eventually

cut at the level corresponding to the best value of multislice modularity [23].

Multiplex-Infomap [6] is an extension to multiplex networks of the classic Infomap

algorithm [27]. Infomap is a search algorithm that minimizes the flow-based map equa-

tion model, which relies on the principle that communities are detected as groups of

nodes among which the flow, based on a random walk model, persists for a long time

once entered.

In Sects. 5–6, we shall include GL, LART, Multiplex-Infomap, MultiGA and Multi-

MOGA, along with the aggregation methods PMM and ABACUS, in our experimental

evaluation.

3 Background

3.1 Modularity

Modularity quantifies the difference between the expected number of edges linking

nodes inside a community and the actual number of edges linking nodes inside a com-

munity. Given a set of nodes V, for any v ∈ V we use symbol d(v) to denote the degree

of v, and symbol d(V) to denote the total degree of nodes over the entire graph, i.e.,

d(V) =
∑

v∈V d(v). Let C denote a community structure, which corresponds to a

partition of the input graph into disjoint sets of nodes. For any community C ∈ C,
we denote with d(C) the sum of degrees of nodes within C; moreover, we use symbol

dint(C) to denote the internal degree of C, i.e., the portion of d(C) which corresponds

to the number of edges that link nodes in C to other nodes in C (i.e., twice the number

of links internal to C). Modularity is defined as follows [24,21]:

Q(C) =
1

d(V)

∑
C∈C

(
dint(C)− d(C)2

d(V)

)
(1)
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The value of Q varies from -0.5 to 1.0. In particular, it reaches the minimum of -0.5

when all edges link nodes in different communities, and the maximum of 1.0 when all

edges link nodes in the same community.

3.2 Ensemble clustering

Given a set of objects D, a clustering solution C = {C1, . . . , Ck} defined over D is a

partition of D into k disjoint groups (clusters). An ensemble of clustering solutions is a

set E = {C1, . . . , Cm}, where each Ci (with i = 1..m) is a clustering solution defined over

D. Intuitively, an ensemble can be obtained in various ways, such as applying different

clustering methods over the same set D, varying one or more model parameters of

the clustering method(s), using different subspaces of object features, or varying the

measure of distance/similarity used in the clustering method(s). Given a clustering

ensemble E , a consensus clustering derived from E is a clustering solution C∗ that

optimizes a given consensus function by exploiting information available from E .

Main approaches to clustering ensemble are divided into three main categories:

instance-based, cluster-based, and hybrid clustering [29,12]. The instance-based ap-

proach is the basic one, since the hybrid approach is a combination of the other two,

and the cluster-based approach employs instance-based schemes upon meta-clusters,

i.e., clusters of clusters that compose each clustering of the ensemble.

In this work, we follow an approach to multilayer community detection that ex-

ploits the instance-based clustering ensemble scheme, which is here briefly recalled.

An instance-based clustering ensemble method takes as input a co-occurrence (or co-

association) matrix M defined over D and E , such that the (i, j)-th entry of the matrix

stores the number of clustering solutions in E in which the i-th and j-th objects appear

in the same cluster, divided by the size of E . Following a majority voting approach, M

is pruned, such that all the objects whose corresponding entry in the matrix is above

a certain threshold θ are joined into the same cluster. This approach has been proved

to be equivalent to an agglomerative hierarchical clustering with single-linkage on M,

cutting the resulting dendrogram according to θ [11,12].

4 Ensemble-based Multilayer Community Detection

4.1 Problem statement

We are given a multilayer network graph GL = (VL, EL,V,L), with set of layers

L = {L1, . . . , L`} and set of entities V. Each layer corresponds to a given type of entity

relation, or edge-label. According to the general multilayer network model described

in [17], for each choice of entity in V and layer in L, we denote with VL ⊆ V × L
the set containing the entity-layer combinations in which an entity is present in the

corresponding layer. The set EL ⊆ VL×VL contains the undirected links between such

entity-layer tuples. For every layer Li ∈ L, let VLi
= {v ∈ V | (v, Li) ∈ VL} ⊆ V be

the set of nodes in the graph of Li, and ELi
⊆ VLi

× VLi
be the set of edges in Li.

To simplify notations, we will also refer to VLi
and ELi

as Vi and Ei, respectively.

Note that while entities (i.e., elements of V) are not required to participate in all

layers, each entity has to appear in at least one layer, i.e.,
⋃

i∈1..` VLi
= V. Moreover,

the only inter-layer edges are regarded as “couplings” of nodes representing the same

entity between different layers.
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A key concept in this work is the community structure ensemble for a given multi-

layer network.

Definition 1 (Ensemble of community structures) Given a multilayer network

GL = (VL, EL,V,L), with ` = |L| layers, an ensemble of layer-specific community

structures for GL is a set E = {C1, . . . , C`}, such that each Ch (with h = 1..`) is a

partitioning of the layer graph Gh (i.e., a community structure for Gh). ut
We assume the availability of an ensemble of community structures for any given

multilayer network. The community structures in the ensemble might be obtained by

applying any community detection algorithm to each layer graph. We do not require

dependency or correlation between the layer-specific community structures. Moreover,

we ignore any information relating to the particular community detection method or

configuration that was employed to produce the community structures. Also, according

to the above definition, we remark that each community structure in the ensemble is

regarded as a partitioning of a layer-specific graph, i.e., communities are disjoint in

terms of node membership.

Given an ensemble of community structures for a multilayer network, our general

objective is to compute a consensus community structure as a set of communities that

are representative of how nodes were grouped and topologically-linked together over

the layer community structures in the ensemble.

Definition 2 (Consensus community structure (meta-definition)) Given a mul-

tilayer network GL = (VL, EL,V,L) and an ensemble of community structures E =

{C1, . . . , C`} (with ` = |L|) defined over GL, a consensus community structure for E is

a partitioning of a graph with nodes in V and edges in EL, which is representative of

the community structures in E . ut
Definition 3 (Ensemble-based Multilayer Community Detection (EMCD)

(meta-problem)) Given a multilayer network and an ensemble of layer-specific com-

munity structures for it, determine a consensus community structure from the ensem-

ble. ut
Note that the above meta-definition captures only the intuition that the consensus

should agree with the community structures in the ensemble, but no hint is provided

about the quality the consensus should have. In fact, according to the general desiderata

in community detection, each community in the consensus should have high internal

connectivity and low external connectivity. Moreover, given the multiplexity of the

input graph, we seek to identify communities whose nodes are internally connected by

many edges possibly of different types, and are externally connected by few edges of

different types.

Nevertheless, we first need to define how to determine the community membership

of nodes in the consensus structure. For this purpose, our general approach is to start

from a co-association-based scheme defined over the layers, which resembles a major

strategy in research on ensemble clustering (cf. Sect. 3.2) to infer a clustering solution

(i.e., the consensus) that agrees most with the input clusterings. In the following

Sect. 4.2, we describe two baseline approaches that rely on the co-association of nodes

over the layer-specific community structures.; these baselines are called cluster-induced

EMCD since they use co-association to derive a consensus clustering of nodes which

is eventually used to compute a consensus community structure. Subsequently, in

Sect. 4.3, we provide our main formulation of the EMCD problem, whereby we refine

the definition of consensus community structure by integrating the requirement of

quality of consensus via modularity optimization.
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Table 1 Main symbols.

symbol description

V Set of entities
L; L; ` Layer; set of layers; number of layers
GL Multilayer graph

VL, EL Set of nodes and set of edges in GL
C; C Community; community structure
E Ensemble of community structures

M; θ Co-association matrix; co-association threshold
C∗ Consensus community structure
Q Modularity function

d(VL) Total degree of GL
dL(C), dint

L (C) Degree of C and internal degree of C in graph of layer L
dext
L,L′ (C) External degree of C (i.e., twice the sum of inter-layer edges) between graphs of layers L and L′

γL Resolution factor (specific for layer L)
β Bit to enable inter-layer coupling factor

Vi, Ei Set of nodes and set of edges of the i-th layer graph (Gi)
Ci Community structure of the i-th layer graph (Gi)
E(C) Set of edges from the multilayer graph underlying consensus C
Ei(C) Set of edges of the subgraph of layer Li induced from the set of nodes in community C
Ei,C(C) Set of edges of layer Li from the multilayer graph underlying consensus C that are internal to C

Ei(Cj , Ch) Set of edges of the subgraph of layer Li induced from the set of nodes in communities Cj , Ch

that link Cj to Ch

Ei,C(Cj , Ch) Set of edges of layer Li from the multilayer graph underlying consensus C that link Cj to Ch

Q+ne
i,j (C) Update-modularity function for adding ne edges of layer Li within community Cj ∈ C

Q+ne
i,jh (C) Update-modularity function for adding ne edges of layer Li to link communities Cj and Ch

Q−ne
i,jh (C) Update-modularity function for removing ne edges of layer Li that link communities Cj and Ch

4.2 Baseline approaches

4.2.1 Direct Cluster-induced EMCD

Given a multilayer network GL and an ensemble E for it, we define the co-association

matrix M, with size |V|×|V|, such that the (i, j)-th entry stores the number of commu-

nities shared by vi, vj ∈ V, subject to the condition that the two nodes are linked to each

other, divided by the number of layers (i.e., the size of the ensemble): M(i, j) =
|mij |

` ,

where mij = {h | Lh ∈ L ∧ ∃C ∈ Ch, Ch ∈ E , s.t. vi, vj in C ∧ (vi, vj) ∈ Eh}. Note

that, since each node in a layer is assigned to only one community, the number of

communities shared by any two nodes corresponds to the number of layers in which

the two nodes are assigned the same community.

Moreover, in the definition of M, we have introduced a constraint of linkage be-

tween nodes sharing a community in order to ensure that consensus communities will

not contain disconnected components in the multilayer graph. It should be noted

the linkage constraint is consistent with the requirement of having as high density as

possible within any (consensus) community.

Our first proposed baseline, called direct cluster-induced EMCD (C-EMCD), re-

quires matrix M to infer a clustering of V, denoted as S. More specifically, we wish

to retain only meaningful co-association values, by dropping the lowest ones which re-

flect unlikely consensus memberships, and hence are due to noise. Therefore, M is sub-

jected to a filtering step based on a user-specified parameter of minimum co-association

θ ∈ [0, 1]. It should also be noted that, without this pruning, M would be a very dense

matrix, which would make any clustering process computationally expensive.

By “cutting” M according to θ, the row (or column) projections corresponding to

the entries greater than or equal to θ, identify a clustering of V, where each cluster

contains nodes that are ensured to be (directly or indirectly) linked together in GL.

Finally, a consensus community structure, C∗, is obtained where each community cor-
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Fig. 1 Example multilayer network (with layer-specific community structures marked by
green dashed curves) and corresponding co-association matrix and consensus community struc-
ture without (on the left) and with (on the right) the constraint of node linkage.

responds to the multilayer subgraph of GL induced from each of the clusters in S.

Note that any consensus community will correspond to a connected subgraph, but not

necessarily to a maximal complete subgraph of the multilayer network.

Example 1 Figure 1 shows how the co-association matrix M would vary if the constraint

of linkage between nodes was not considered. We set θ ≥ 2/3 to derive the consensus

communities. If the constraint of linkage is discarded, then nodes 1 and 2 are included

in the same consensus community C1, because they belong to the same community in

two out of three layers. On the contrary, when the constraint is considered, nodes 1

and 2 are assigned to different consensus communities C1 and C2, because they are

disconnected in the graph. This occurs since, in their communities shared in the first

and in third layer, nodes 1 and 2 were connected to nodes (i.e., 3 in the first layer, and

4 in the third layer) that will be assigned to different consensus communities as well.

By contrast, nodes 5 and 6 belong to the same consensus community also in the case of

linkage constraint enabled, even though they were never connected in the layer graphs.

�

4.2.2 Constrained Cluster-induced EMCD

Each of the consensus communities produced by C-EMCD corresponds to the subgraph

of GL induced from the set of nodes belonging to that community. This method,

however, discards the actual contribution of the different layers in determining the node

co-associations, as specified in mij , for every vi, vj ∈ V . This limitation is overcome

by the following alternative method, we call cluster-induced EMCD method with co-

association constraints, for short constrained cluster-induced EMCD, and hereinafter

denoted as CC-EMCD.

In CC-EMCD, the computation of consensus communities is refined in such a way

that the structure of a consensus community accounts only for those specific layers

that allow any two nodes to be linked in the shared community. Specifically, for each

cluster S ∈ S, we derive a community as the subgraph C = 〈V,E〉 of GL with a set of

nodes V = S and a set of edges E = {(vi, vj , h) ∈ EL | vi, vj ∈ V ∧ h ∈ mij}.
CC-EMCD also differs from C-EMCD in the definition of the inter-community link

structure of the consensus solution. Analogously to the approach used in the within-
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community link structure formation, the idea is to link any two consensus communities

by using only the fraction of the multilayer graph that actually involves the connection

of nodes from one community to another. In this case, however, we account for the layer

contribution in an inverse way w.r.t. the within-community link structure. Specifically,

we select only edges that correspond to those layers in which any two nodes do not

appear in the co-association matrix, i.e., given two communities C(1), C(2) ∈ C∗, with

node sets V (1), V (2), we compute the set of edges connecting them as E(C(1), C(2)) =

{(vi, vj , h) ∈ EL | vi ∈ V (1), vj ∈ V (2) ∧ h /∈ mij}.
Example 2 Consider a network with ten layers, and two nodes vi, vj linked to each

other through six edges in GL. Also, the two nodes co-occur in four layer communities,

thus M(i, j) = 4/10. Suppose θ = 0.5, then the two nodes will be assigned to different

communities in the consensus structure; moreover, vi will be linked to vj through 6-

4=2 inter-community edges in the consensus structure. By contrast, in the case the two

nodes are not directly connected in GL, then regardless of θ, they will be assigned to

different clusters and will not be linked to each other. �

4.3 Modularity-driven EMCD

In this section we formulate our main proposal to solve the EMCD problem. This stems

from the observation that the previously discussed baselines C-EMCD and CC-EMCD

produce a consensus community structure whose underlying graph can be seen as a

topological upper-bound and a topological lower-bound of GL, respectively, for a given

co-association threshold θ. Intuitively, while being a topological upper-bound, the

solution provided by C-EMCD is not necessarily optimal in the sense that it might be

redundant in terms of multilayer edges connecting different communities; by contrast,

the solution provided by CC-EMCD is topologically minimal for GL, but it may loose

important layer information, i.e., the CC-EMCD consensus communities may be poorly

descriptive in terms of multilayer edges that characterize their internal connectivity.

In the respect of the general desiderata for community detection tasks, i.e., high

within-community connectivity and low inter-community connectivity, our key idea is

to formulate the EMCD problem as an optimization problem in which the consensus

solution is optimal in terms of modularity, and is to be discovered within a hypothetical

space of consensus community structures topologically bounded by CC-EMCD and C-

EMCD solutions.

Definition 4 (Modularity-driven Ensemble Multilayer Community Detec-

tion problem) Given a multilayer network GL = (VL, EL,V,L), an ensemble of

community structures E = {C1, . . . , C`} for GL, and a co-association threshold θ, the

modularity-driven ensemble multilayer community detection problem (M-EMCD) is to

find a consensus community structure C∗ for GL by solving the following:

C∗ = argmax
Ĉ

Q(Ĉ)

subject to C⊥ v Ĉ v C>

with C⊥ := CC-EMCD(GL, E , θ)

C> := C-EMCD(GL, E , θ)

(2)

where, for any community structures C′, C′′ of GL, C′ v C′′ holds iff E(C′) ⊆ E(C′′),
and Q(·) is the modularity function for multilayer networks. ut



11

In the above definition, the relation of community structure “containment” (de-

noted by symbol v) hints at searching for a consensus community structure over a mul-

tilayer graph whose topology might be refined to ensure better modularity of the com-

munity structure, paying particular attention to the enrichment of within-community

structures and possibly to the simplification of the inter-community structures. As

stated in the problem, the structure refinement is to be accomplished to preserve the

topology of the input multilayer graph, according to the lower-bound and upper-bound

consensus solutions.

It is worth emphasizing that the solution of the M-EMCD problem satisfies the

two expected requirements. In fact, (i) the consensus C∗ complies with the community

structures in the input ensemble, because it is discovered from a space of candidates

delimited by two community structures that are designed to be representative of the

ensemble, and (ii) the consensus C∗ is optimal w.r.t. a quality criterion that holds

independently of the particular ensemble in input.

4.3.1 Multilayer modularity

Here we formally specify the modularity function, Q, required in our previously defined

M-EMCD problem.

We propose an extension of modularity to multilayer networks by accounting for

the layer-specific contributions of edges in the internal and external connectivity of

the communities. Two key ingredients in multilayer modularity are the resolution and

inter-layer coupling factors. The former models a notion of layer-specific relevance, thus

helps mitigating the effect on the size distribution of community due to the resolution

limit known in modularity [10]. The inter-layer coupling factor quantifies the strength

of linkage between layers. In order to deal with scenarios in which a particular ordering

among layers is required, we generalize the inter-layer coupling factor by admitting a

partial order relation ≺L over the layers.

Definition 5 (Modularity of Multilayer Network) Let GL = (VL, EL,V,L) be

a multilayer network graph and, optionally, let ≺L be a partial order relation over

the set of layers L. Given a community structure C for GL, we define the multilayer

modularity of C as follows:

Q(C) =
∑
C∈C

Q(C) =
1

d(VL)

∑
C∈C

∑
L∈L

dintL (C)− γL
(dL(C))2

d(VL)
+ β

∑
L′∈P(L)

dextL,L′(C)


(3)

where, for any community C ∈ C, dL(C) and dintL (C) are respectively the degree of C

and the internal degree of C, by considering only the edges of layer L, d(VL) is the

total degree of the entire graph, i.e., d(VL) =
∑

L∈L
∑

v∈VL
d(v), γL is a resolution

parameter for edges of layer L, dextL,L′(C) is the external degree of C, i.e., twice the sum

of inter-layer edges involving nodes that belong to C, β ∈ {0, 1}, and P(L) is the set

of valid pairings with L defined as:

P(L) =

{
{L′ ∈ L | L ≺L L′}, if ≺L is defined

L \ {L}, otherwise

ut
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Fig. 2 Overview of the modularity-based EMCD framework

Throughout the rest of this work we set the value of γL (for each L ∈ L) to the

default one. Note this is a reasonable choice, which avoids introducing any bias in the

evaluation of how far the actual amount of interactions deviates from the expected

random connections, over each layer. In particular, setting each γL to a value differ-

ent from one will affect not only the modularity value but, more importantly in our

context, also the rate of refinement of the within-community and inter-community con-

nectivity, which will be discussed next. Concerning the dext(C) term, we expect that

accounting for inter-layer edges would lead to complex forms of consensus communities,

which deserve attention that cannot be ensured in this paper due to space limitations;

therefore, we shall omit the inter-layer edges contribution by setting β = 0. We will

leave the study of both types of parameters as future work (cf. Sect. 7).

4.3.2 An approximation algorithm for the M-EMCD problem

Overview of the algorithm. Figure 2 sketches an overview of the proposed M-

EMCD method.2 Given an input multilayer graph GL and an ensemble E for it, and

a co-association threshold θ, the CC-EMCD method is first employed to produce the

“lower-bound” consensus community structure. In the core execution of the M-EMCD

method, this consensus is iteratively refined through two main steps, respectively

within-community and across-community, until modularity is optimized to return the

final consensus community structure. Note that the refinement is performed to preserve

the topology of GL, according to the “upper-bound” consensus.

Modularity update functions. As above anticipated, the M-EMCD method

requires a stage of refinement over an initial structure of consensus communities (which

corresponds to the θ-based lower-bound consensus over the input GL and E). In oper-

ational terms, this refinement is accomplished by insertion/removal of edges, possibly

from different layers, inside a community and/or between communities. Each step of

refinement requires evaluation of the update occurring in our multilayer modularity.

In this regard, we manipulate Eq. 3 in order to formulate modularity update functions

that reflect the change to the community structure due to some structural modifica-

tions in a particular community (or pairs of communities) and for a particular layer.

Let us first rewrite Eq. 3 as follows:

2 We will make the source code available upon decision on this article.
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d2(VL)Q(C) =
∑
C∈C

∑
L∈L

d(VL)dintL (C)− (dL(C))2 =

= d(VL)
∑
C∈C

∑
L∈L

dintL (C)︸ ︷︷ ︸
Dint

L,C

−
∑
C∈C

∑
L∈L

(dL(C))2︸ ︷︷ ︸
D2

L,C

⇒

⇒ Q(C) =
1

d(VL)
Dint

L,C −
1

d2(VL)
D2

L,C (4)

Insertion of edges within a community. Suppose ne edges of type corresponding

to layer Li are added between nodes (i.e., 2ne nodes) belonging to community Cj .

The resulting modularity, denoted as Q+ne
i,j (C), is expressed by the following update

function:

Q+ne
i,j (C) =

Dint
L,C + 2ne

d(VL) + 2ne
−
D2

L,C + 4ne × (ne + dLi
(Cj))

(d(VL) + 2ne)2
(5)

It follows that, to calculate modularity of a community structure C subject to an update

involving the structure of any Cj according to edges of Li, it is enough to store the

quantities dLi
(Cj) (∀Li ∈ L, Cj ∈ C), and the cumulated counts Dint

L,C and d(VL).

Note that we do not consider removal of within-community edges: this is explained

since, as it will be clarified later in this section, M-EMCD exploits the consensus solution

generated by CC-EMCD, which represents the topological lower-bound for a given θ,

and as such it does not require further pruning of within-community edges.

Insertion of edges between communities. Suppose Ne = ne1 + . . .+neK edges of a

selected type Li ∈ L are added to link a selected community Cj to any of its neighbors

in the set N(Cj) = {Cj1 , . . . , CjK}, i.e., nek edges are inserted between nodes in Cj

and nodes in any of Cjk . The resulting modularity, denoted as Q+Ne
i,j (C), is expressed

by the following update function:

Q+Ne
i,j (C) =

Dint
L,C

d(VL) + 2Ne
−
D2

L,C +N2
e +

∑
k n

2
ek + 2NedLi

(Cj) + 2
∑

k nekdLi
(Cjk )

(d(VL) + 2Ne)2

(6)

In case of insertion of ne edges to link community Cj with only one of its neighbors,

say Ch, the above equation is rewritten as:

Q+ne

i,jh (C) =
Dint

L,C

d(VL) + 2ne
−
D2

L,C + 2n2e + 2ne(dLi
(Cj) + dLi

(Ch))

(d(VL) + 2ne)2
(7)

Removal of edges between communities. Analogously, in case of removal of Ne

edges from a selected community Cj and any of its neighbors in the set N(Cj) =

{Cj1 , . . . , CjK}, the resulting modularity, denoted as Q−Ne
i,j (C), is expressed by the

following update function:

Q−Ne
i,j (C) =

Dint
L,C

d(VL)− 2Ne
−
D2

L,C +N2
e +

∑
k n

2
ek − 2NedLi

(Cj)− 2
∑

k nekdLi
(Cjk )

(d(VL)− 2Ne)2

(8)
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In case of removal of ne edges linking community Cj and only one of its neighbors,

say Ch, the above equation is rewritten as:

Q−ne

i,jh (C) =
Dint

L,C

d(VL)− 2ne
−
D2

L,C + 2n2e − 2ne(dLi
(Cj) + dLi

(Ch))

(d(VL)− 2ne)2
(9)

The M-EMCD algorithm. Algorithm 1 shows our proposed algorithmic solution

for the M-EMCD problem. According to the previously presented overview, Algorithm 1

is a a hill-climbing algorithm for the modularity-based multilayer community detection

problem. The algorithm starts with the consensus solution provided by the topological-

lower-bounded baseline, then iteratively seeks a better solution in terms of modularity

by incrementally refining the within-community connectivity and the inter-community

connectivity, until no further improvements can be found.

The algorithm starts by invoking the CC-EMCD method to obtain an initial consen-

sus community structure (lines 1-2), then the optimization is performed in two main

stages, by examining one layer at a time:

– In the first stage (lines 6-12), the algorithm seeks the community Cj in the current

consensus whose refinement C′j corresponds to the maximum modularity in the

consensus if this would contain C′j in place of Cj ; moreover, if this leads to an

increment in the current value of modularity, the consensus is actually updated

with C′j (lines 10-12).

– In the second stage (lines 13-20), the algorithm attempts to refine the connectivity

between C′j and any its neighbor communities, updating the consensus at each step

of modularity improvement.

The two stages are repeated iteratively until a maximum of modularity is reached (lines

3-22) and a final consensus community structure is produced.

The within-community refinement is carried out by function update community (line

7). For any layer Li and community Cj , selected from the current consensus C, it adds

to Cj as many edges from the graph of Li as possible, i.e., the set obtained from the

difference between the set of edges of the subgraph of layer Li induced from the set

of nodes in community C (denoted as Ei(Cj) in line 25) and the set of edges of layer

Li from the multilayer graph underlying C that are internal to C (i.e., Ei,C(Cj) in line

25). The modified Cj and its modularity are returned.

The inter-community refinement is carried out by function update community structure

(line 14). For any layer Li and adjacent communities Cj , Ch, selected from the cur-

rent consensus C, it performs the following operations and evaluates the corresponding

modularity: (i) it removes all edges of layer Li from the multilayer graph underlying

consensus C that link Cj to Ch (denoted as Ei,C(Cj , Ch) in line 30); (ii) it adds all

edges between nodes in Cj and nodes in Ch from Gi that are not contained in the set

previously removed (line 32); (iii) it performs the previous operations jointly. The

best modularity over the three contingencies and the corresponding modified inter-

connectivity between Cj , Ch are returned.

4.4 Example of execution of EMCD methods

Figures 3–4 illustrate an example of multilayer community detection with the outcomes

of our proposed EMCD methods. Given the network with 10 nodes, 31 total edges and 3

layers shown in Fig. 3(left), suppose the layer-specific community structures shown in
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Algorithm 1 Modularity-based Ensemble Multilayer Community Detection

Input: Multilayer graph GL = (VL, EL,V,L), ensemble of community structures E =
{C1, . . . , C`} (with ` = |L|), co-association threshold θ ∈ [0, 1].

Output: Consensus community structure C∗ for GL.
1: Clb ← CC-EMCD(GL, E, θ)
2: C∗ ← Clb
3: repeat
4: for Li ∈ L do
5: Q← Q(C∗)

{Refine intra-community connectivity of Cj}
6: for Cj ∈ C∗ do
7: 〈C′j , Q′j〉 ← update community(C∗, Cj , Li)

8: end for
9: j∗ ← argmaxQ′j

10: if Q′j∗ > Q then

11: C∗ ← C∗ \ Cj ∪ C′j∗
12: end if

{Refine inter-community connectivity between Cj∗ and each of its neighbors}
13: for Ch ∈ N(Cj∗ ) do
14: 〈C′h, Q

′
h〉 ← update community structure(C∗, Cj∗ , Ch, Li)

15: end for
16: h∗ ← argmaxQ′h
17: if Qh∗ > Q then
18: C∗ ← C′h∗
19: Q← Qh∗

20: end if
21: end for
22: until Q(C∗) cannot be further maximized
23: return C∗

24: function update community(C, Cj , Li)
25: E ← Ei(Cj) \ Ei,C(Cj)
26: C′j ← addEdges(E,Cj)

27: Q′j ← Q
+|E|
i,j (C) {Update modularity through Eq. (5)}

28: return 〈C′j , Q′j〉

29: function update community structure(C, Cj , Ch, Li)
30: E ← Ei,C(Cj , Ch)

31: Q− ← Q
−|E|
i,jh (C) {Update modularity through Eq. (9)}

32: E′ ← Ei(Cj , Ch) \ E
33: Q+ ← Q

+|E′|
i,jh (C) {Update modularity through Eq. (7)}

34: C+ ← addEdges(E′, C)
35: C− ← delEdges(E, C)
36: Q± ← Q

−|E|
i,jh (C+) {Update modularity through Eq. (9)}

37: C± ← delEdges(E, C+)
38: 〈C, Q〉 ← argmax{Q+, Q−, Q±}
39: return 〈C, Q〉

Fig. 3(right) have been separately provided by some community detection scheme. Start-

ing from this ensemble of community structures, Fig. 4 shows the consensus community

structures computed by C-EMCD, CC-EMCD and M-EMCD methods on the example net-

work for three settings of parameter θ — note that these correspond to regimes within

which the assignment of nodes to communities do not change. While the lower range

of θ is not meaningful (since all three methods generate a single community), it is in-
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Fig. 3 Example multilayer network (on the left) and community structures identified on each
layer graph (on the right). Communities are marked by red dashed polygons.

(a) (b) (c)

Fig. 4 Consensus community structures obtained by EMCD methods (from top: C-EMCD,
CC-EMCD, M-EMCD) for three settings of θ: (a) θ ∈ [0, 1

3
], (b) θ = 0.5, and (c) θ ∈ [ 2

3
, 1].

Numbers on the edges correspond to the layers on which two nodes are linked together.

teresting to note that edges from some layer are discarded in CC-EMCD, whereas they

are partially recovered by M-EMCD for improving the modularity of the solution. In

the case of θ = 0.5, M-EMCD and C-EMCD produce three communities, whereas in

the CC-EMCD solution the singleton community composed by node 10 is added. Note

that nodes 1, 2, 3 are assigned to the same community, which is expected since they

were originally located in the same community in the ensemble community structure

of two layers out of three; the same happens for nodes 4, 5, 6 and for 7, 8, 9. Again,

the same assignment of nodes is provided by CC-EMCD and M-EMCD, however the

former solution is composed of a lower number of edges; part of them are recovered in

the solution by M-EMCD, while other edges disappear, which result in an increase in

modularity. Finally, for the highest range of θ ∈ [2/3, 1], as expected the methods tend

to produce more and smaller consensus communities. This is particularly evident in the

M-EMCD solution, in which a quite severe pruning in the edge structure is performed in

order to reach a consensus that reflects the tough constraint of co-association imposed

by θ. Comparing the consensus community structure found by M-EMCD and C-EMCD,

we observe that M-EMCD performs a pruning of the inter-community edges, while it

mostly preserves the within-community edges, eventually increasing the modularity of

the consensus structure; this is particularly evident in the comparison of M-EMCD and

C-EMCD solutions corresponding to θ = 0.5 and θ ∈ [0, 1/3]. �
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4.5 Computational complexity aspects

We discuss here the computational complexity of our proposed EMCD methods.

Let us first consider the C-EMCD and CC-EMCD methods. The computational cost

of C-EMCD is mainly due to the construction of the co-association matrix M. This

can be incrementally performed, by requiring a single scan of the adjacency list of the

multilayer graph. More in detail, we maintain a consensus structure index to store the

consensus community membership of each entity in V, and, for one layer at a time,

the corresponding adjacency list and community structure. For every entity, we iterate

over its neighbors on each layer graph to check if the two nodes belong to the same

community in that layer, and to update the count of communities shared by the two

nodes. The cost of update of this count is constant as it requires direct accesses to the

consensus index. Therefore, the time complexity of C-EMCD is O(|EL|).
The CC-EMCD method has the same time and spatial complexity as C-EMCD, with

one difference. This corresponds to a hash index on a data structure that stores, for

every pair of entities, the set of layers on which the two entity-nodes are adjacent and

assigned to the same community and the set of layers the two entity-nodes are adjacent

but not assigned to the same community. Since accessing this hash table has cost O(1),

the time complexity of CC-EMCD is O(|EL|).
Let us now discuss the complexity of the main method, M-EMCD. This has at

least the same complexity as CC-EMCD, because the latter is performed in the initial

step of Algorithm 1 (line 1). The cost of the execution of the main loop depends on

the number I of iterations needed to converge at a local optimum. In every iteration,

M-EMCD searches for the best community to refine internally and externally (with its

neighbors), through the routines update community and update community structure,

respectively; recall that both routines exploit appropriate modularity-update rules,

which are performed efficiently with spatial cost O(`×|C∗|), since they require to store

the quantities dLi
(Cj), plus few more global counts (e.g., d(VL), Dint

L,C). The cost of a

single evaluation of update community is comprised of the cost of two manipulations in

the community structure (line 25 and line 26), both bounded by the number of edges

within a particular community and of a particular layer, plus the O(1) cost of mod-

ularity update (line 27). Therefore, performing update community over all layers and

communities (lines 4–8) is O(|EL|+`×|C∗|). Selecting the best-modularity community

takes O(` × |C∗|), over all layers and communities (lines 9–11). The inter-community

refinement stage (lines 13–21) also costs O(|EL|+ `× |C∗|). In fact, a single evaluation

of update community structure requires operations whose cost is either bounded by the

number of layer-specific internal edges (lines 30, 32, 34, 35, 37) or constant (lines 31,

33, 36, 38). Overall, the time complexity of M-EMCD is O(I × (|EL|+ `× |C∗|)).

5 Experimental Evaluation

5.1 Datasets

Our experimental evaluation was mainly conducted on seven real-world multilayer net-

work datasets. This selection is motivated by (i) diversification in terms of data domain

(i.e., transportation networks, mixed online/offline relations, single-platform and multi-

platform relations in social media, co-authorships, classroom relations), and (ii) public

availability, which enables reproducibility.

AUCS [16] describes relationships among university employees: work together,

lunch together, off-line friendship, friendship on Facebook, and coauthorship. DBLP [16]
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Table 2 Main characteristics of our evaluation network datasets. Mean and standard deviation
over the layers are reported for degree, average path length, and clustering coefficient statistics.

#entities #edges #layers node set edge set degree avg. path clust.
(|V|) coverage coverage length coeff.

AUCS 61 620 5 0.73 0.20 10.43 ± 4.91 2.43 ± 0.73 0.43 ± 0.097
DBLP 1 314 050 7 647 677 44 0.06 0.02 7.46 ± 3.06 8.59 ± 1.39 0.69 ± 0.13
EU-Air 417 3588 37 0.13 0.03 6.26 ± 2.90 2.25 ± 0.34 0.07 ± 0.08
FF-TW-YT 6407 74836 3 0.58 0.33 9.97 ± 7.27 4.18 ± 1.27 0.13 ± 0.09
Higgs-Twitter 456 631 16 070 185 4 0.67 0.25 18.28 ± 31.20 9.94 ± 9.30 0.003 ± 0.004
London 369 441 3 0.36 0.33 2.12 ± 0.16 11.89 ± 3.18 0.036 ± 0.032
VC-Graders 29 518 3 1.00 0.33 17.01 ± 6.85 1.66 ± 0.22 0.61 ± 0.89

represents co-authorships over different time slices, which correspond to the publication

years in the period 1971-2014. EU-Air transport network [16] (EU-Air, for short) repre-

sents European airport connections considering different airlines. FF-TW-YT (stands

for FriendFeed, Twitter, and YouTube) [8] was built by exploiting the feature of Friend-

Feed as social media aggregator to align registered users who were also members of

Twitter and YouTube. Higgs-Twitter [16] represents friendship, reply, mention, and

retweet relations among Twitter users. London transport network [33] (London, for

short) models three types of connections of train stations in London: underground

lines, overground, and DLR. 7thGraders [33] (VC-Graders, for short) represents stu-

dents involved in three relationships: friendship, work together, and affinity in the

class.

Table 2 reports for each dataset, the size of set V, the number of edges in all layers,

the average coverage of node set (i.e., 1/|L|
∑

Li∈L(|Vi|/|V|)), and the average coverage

of edge set (i.e., 1/|L|
∑

Li∈L(|Ei|/
∑

Li
|Ei|)). The table also shows basic, monoplex

structural statistics, such as degree, average path length, and clustering coefficient, for

the layer networks of each dataset.

We also resorted to a synthetic multilayer network generator, mLFR Benchmark,3

mainly for our evaluation of efficiency of the M-EMCD method (cf. Section 6.1.5).

mLFR extends the tool proposed in [20] for multilayer networks. We used mLFR to

create a multilayer network with 1 million of nodes, setting other available parameters

as follows: 10 layers, average degree 30, maximum degree 100, mixing at 20% , layer

mixing 2. We hereinafter refer to this synthetic network as mLFR-1M.

5.2 Competing methods

We resorted to state-of-the-art methods for community detection, which cover all of

the main categories of existing approaches, namely flattening, aggregation and direct

methods (cf. Sect. 2).

As representative of the category of flattening methods, we define a baseline method

that applies a community detection method on the flattened graph of the input mul-

tilayer network, that is, a weighted multigraph having V as set of nodes, the set of

edges {(u, v) | ∃u, v ∈ V ∧ L ∈ L ∧ ((u, L), (v, L)) ∈ EL}, and edge weights that

express the number of layers on which two nodes are connected. In this work, we

chose to use the serial version of the Nerstrand algorithm, recently developed by La

Salle and Karypis [21]. Our choice is motivated since Nerstrand has shown to be both

an extremely efficient and effective method to discover non-overlapping communities

in (single-layer) weighted graphs via modularity optimization based on the multilevel

paradigm coarsening-initial clustering-uncoarsening.

3 http://www.ii.pwr.edu.pl/brodka/mlfr.php
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We also comparatively evaluate our approach with the following multilayer com-

munity detection methods, previously discussed in Section 2: ABACUS [4], Principal

Modularity Maximization (PMM) [30],4 Generalized Louvain (GL) [23],5 Multiplex-

Infomap [6],6 MultiGA [1], MultiMOGA [2], and Locally Adaptive Random Transitions

(LART) [18]. Recall that PMM and ABACUS are representative methods of the cate-

gory of aggregation approaches (the same to which our EMCD methods belong), while

the latter five are direct methods. Apart from ABACUS, all methods were selected

because, while having different characteristics, they all use modularity either as opti-

mization criterion or as evaluation criterion (LART) to produce the final community

structure.

5.3 Assessment criteria

We use both internal and external validation criteria to assess the consensus community

structure solution provided by EMCD methods.

Internal criteria include, besides evaluation of the multilayer modularity, the redun-

dancy measure and our defined multilayer silhouette. The redundancy measure is based

on the assumption that a high quality community should have many “redundant” con-

nections, i.e., pairs of nodes connected through edges of different layers [3]. For each

community, it is defined as the actual number of redundant connections divided by

the theoretical maximum (i.e., total number of layers times total number of node pairs

in the community); a global redundancy is finally obtained averaging the redundancy

values over all communities. Note that, while ranging between 0 and 1, redundancy is

not defined for singleton communities.

While the redundancy accounts for the coverage of layers within each commu-

nity, we also consider the quality of cluster assignment, i.e., how well each node fits

its assigned community. In this respect, silhouette measure [28] is a suitable crite-

rion, however it is originally designed for single-layer graphs. We introduce a twofold

modification in the definition, in that (i) the distance computation terms are linearly

combined over all layers, and (ii) the distance between two nodes is computed as one

minus the Jaccard coefficient defined over the layer-specific sets of neighbors. Silhouette

may range from -1 to 1 (the higher, the better).

As for the external criteria, we use the normalized mutual information (NMI), in

its two versions by Strehl and Ghosh [29] and by Dhillon et al. [7]. NMI determines

the alignment in terms of community memberships of nodes between a community

structure and another one used as reference, so that the higher the NMI value the

better the alignment — NMI ranges between 0 and 1. In our setting, for any given

multilayer network, the reference will correspond to the solution obtained by Nerstrand

on the flattened multilayer graph (cf. Sect. 5.2), or alternatively to the layer-specific

community structure solutions obtained by Nerstrand on each of the layer graphs.

5.4 Experimental settings

The main parameter of EMCD methods, θ, was varied in its full range of admissible

values, at a fine-grain step (0.001). We shall present results corresponding to values

of θ that determined meaningful variations in terms of multilayer modularity (Eq. 3),

4 http://leitang.net/heterogeneous_network.html
5 http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
6 http://muxviz.net/

http://leitang.net/heterogeneous_network.html
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Fig. 5 Consensus solutions obtained by EMCD methods, for varying θ: modularity values.
(Best viewed in color)

specifically the values in the set {0.01, 0.03, 0.05, 0.07} and from 0.1 to 0.9 with step of

0.1. Moreover, to generate the ensemble from each of the evaluation network datasets,

we applied Nerstrand on the individual layer-specific graphs — note that, by default,

it does not require an input number of communities.

As far as the competing methods, GL determines a community structure for each

layer of a network, therefore a final solution was derived by assigning each node to

the community which lays on most of the layers. PMM requires an input number

of communities. We devised two configurations for this method: the one in which we

conducted an exhaustive search for the number of communities corresponding to the

best performance in terms of modularity, on every dataset; and the other one in which

the input parameter was set to the number of communities determined by our method;

we will use notation PMMk∗ to refer to the latter configuration of PMM. Moreover,

we set to 50 the number of runs of the k-means clustering method, whose application

is required by PMM to obtain the consensus solution. As concerns ABACUS, this

method utilizes the eclat frequent-pattern mining method to generate the transactional

representation of the ensemble. As by default configuration, the main model parameter

in ABACUS (i.e., the minimum support threshold) was kept quite low on each dataset,

typically in the range from three to ten. For the genetic approaches (i.e., MultiGA and

MultiMOGA), LART, and Multiplex-Infomap, we referred to the default parameters

as specified in their respective works.

6 Results

6.1 Evaluation of EMCD methods

6.1.1 Modularity

Figures 5 and 6 show the modularity and the size of the consensus community structure,

respectively, obtained by each of the EMCD methods, by varying θ. The methods

generate consensus solutions of the same size, for any particular dataset and θ, therefore

the number of consensus communities is plotted once; also, the number of nodes for
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Fig. 6 Consensus solutions obtained by EMCD methods, for varying θ: number of communi-
ties. (Best viewed in color)

Table 3 Best-modularity consensus solutions obtained by M-EMCD: modularity value with
corresponding θ regime and number of communities (with percentage of singletons), and gains
in modularity w.r.t. the other EMCD methods.

network θ range modularity #communities gain w.r.t. gain w.r.t.
(% singletons) CC-EMCD C-EMCD

AUCS [0.2, 0.4) 0.863 14 (21.4%) +0.15 +0.33
DBLP [0.01, 0.03) 0.952 64 779 (4.0%) +0.46 +0.46
EU-Air [0.027, 0.07) 0.910 274 (76.6%) +0.17 +0.38
FF-TW-YT (0, 0.34) 0.620 86 (3.5%) +0.14 +0.18
Higgs-Twitter (0, 0.01) 0.625 86 (0%) +0.39 +0.37
London (0, 0.34) 0.895 45 (0%) +0.01 +0.10
VC-Graders [0.67, 1) 0.340 11 (0%) +0.12 +0.18

each network graph is reported as a constant, blue dashed line, which corresponds to

the upper bound of the community number.

First, the modularity value, for all methods, tends to follow a non-increasing trend

as the threshold value increases. On the contrary, the number of communities tends to

increase as the threshold value becomes higher (until it eventually reaches the number

of nodes in the graph); this is expected, since it is clear that a high θ value will penalize

the assignment of two nodes to the same community.

Among the three methods, M-EMCD turns out to be the absolute winner, reaching

the highest modularity over all datasets. Moreover, the M-EMCD solution has as good

as or better modularity than that obtained by the other two methods for the same θ.

Table 3 summarizes the M-EMCD consensus configurations corresponding to the

best modularity performances for each dataset, focusing on non-trivial solutions (i.e.,

consensus structures with at least two communities but less than the total number

of nodes). It highlights the evident superiority of M-EMCD against the other EMCD

methods. Note also that, with the exception of Higgs-Twitter and DBLP, CC-EMCD

tends to prevail against C-EMCD in terms of modularity.

The table also provides indications about the fraction of singleton communities in

the consensus, i.e., disconnected components comprised of a single node of the graph.
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Table 4 Silhouette and global redundancy corresponding to the best consensus solutions
obtained by M-EMCD, and gains w.r.t. the other EMCD methods.

network silhouette redundancy
M-EMCD gain w.r.t. gain w.r.t. M-EMCD gain w.r.t. gain w.r.t.

CC-EMCD C-EMCD CC-EMCD C-EMCD

AUCS 0.366 +0.13 +0.81 0.910 ± 0.097 +0.04 0.0
DBLP 0.084 +0.20 +0.10 0.512 ± 0.290 0.0 -0.001
EU-Air 0.093 +0.44 +0.44 0.620 ± 0.103 +0.02 0.0
FF-TW-YT 0.041 +1.03 +0.04 0.615 ± 0.282 +0.03 0.0
Higgs-Tw. 0.052 +0.33 +0.36 0.658 ± 0.247 +0.40 0.0
London 0.179 +0.03 +0.03 0.533 ± 0.328 +0.03 0.0
VC-Graders 0.288 +0.05 +0.18 0.945 ± 0.064 +0.03 0.0

0.01  0.05  0.1  0.3  0.5  0.7  0.9  
0

0.1

0.2

0.3

0.4

S
il
h

o
u
e

tt
e

θ threshold

 

 

M−EMCD CC−EMCD C−EMCD

0.01  0.05  0.1  0.3  0.5  0.7  0.9  
0

0.02

0.04

0.06

0.08

S
il
h
o
u

e
tt
e

θ threshold

 

 

M−EMCD CC−EMCD C−EMCD

Fig. 7 Silhouette by EMCD methods for varying θ, on AUCS (left) and FF-TW-YT (right).

Since these communities correspond to nodes that did not satisfy the θ-based co-

association constraint, this can be seen as related to the ability of M-EMCD to detect

outliers in the consensus solution. We observe that, with the exception of EU-Air,

the best-modularity consensus includes zero or a small fraction of singletons, which

indicates that results are not biased by the presence of a large number of singleton

communities.

6.1.2 Community membership

We evaluated the quality of EMCD consensus solutions also from the viewpoint of com-

munity membership of nodes. In this regard, we took two perspectives, corresponding

to an internal criterion approach, based on silhouette, and to an external criterion

approach, based on NMI, respectively.

Silhouette evaluation. The M-EMCD method behaves substantially better

than the other EMCD methods also in terms of silhouette. As shown in Table 4, M-

EMCD gains 0.32 (up to 1.03 on FF-TW-YT) w.r.t. CC-EMCD and 0.28 (up to 0.81

on AUCS) w.r.t. C-EMCD— recall that silhouette may range from -1 to 1. Figure 7

provides details on the silhouette of the consensus community structure obtained by

EMCD methods, for varying θ. We observe that the silhouette of M-EMCD is higher

(i.e., better) than CC-EMCD and C-EMCD over the various θ values, and in most cases

M-EMCD outperforms the other methods. Interestingly, the latter occurs consistently

with the best-modularity performance, i.e., the largest gain in silhouette is obtained

by M-EMCD over the same θ range that leads to the best modularity.

NMI evaluation. Figure 8 shows the NMI performances obtained by comparing

the EMCD consensus solutions with the corresponding ones by Nerstrand on the flat-

tened graph, by varying θ, for some selected datasets. Note that since EMCD methods
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Fig. 8 NMI03 [29] and NMI04 [7] performances by EMCD methods w.r.t. Nerstrand on the
flattened graphs, for varying θ. The vertical colored line on each plot refers to the θ value
corresponding to the best-modularity consensus by M-EMCD. (Best viewed in color)

Table 5 Mean and standard deviation of NMI results for each dataset, between the best-
modularity consensus solution by M-EMCD and the community structure by Nerstrand on
each layer graph, averaged over the various layers.

AUCS DBLP EU-Air FF-TW-YT Higgs-Twitter London VC-Graders

NMI03 [29] 0.752 ± 0.063 0.510 ± 0.003 0.853 ± 0.019 0.418 ± 0.040 0.305 ± 0.133 0.779 ± 0.013 0.707 ± 0.011
NMI04 [7] 0.741 ± 0.059 0.481 ± 0.003 0.847 ± 0.019 0.358 ± 0.050 0.259 ± 0.123 0.766 ± 0.024 0.667 ± 0.014

obtained very similar values of NMI, a single series, which corresponds to M-EMCD,

is reported for each of the NMI measures. We first observe that the two NMI mea-

sures behave similarly, possibly by a scaling factor, on most θ regimes. One general

remark relevant for the comparison between M-EMCD and the baseline is that the

highest NMI values do not necessarily correspond to the θ value by which the best-

modularity consensus was obtained (indicated with a colored vertical line in each of

the plots): in fact, while on AUCS and London the maximum NMI (about 0.8 and

0.75, respectively) is reached for their respective best-modularity θ, on Higgs-Twitter

and FF-TW-YT (along with the remaining datasets, not shown), the best-performing

θ does not match the θ corresponding to the best NMI for the particular dataset. In

general, this result indicates that the community membership in the solution by Ner-

strand on the flattened graph can be quite different from that in the modularity-based

optimal structure of consensus obtained by M-EMCD. Note also that the average NMI

values over θ are usually in mid-low ranges, which means that the similarity between

M-EMCD and Nerstrand-flattened community structures is moderately low. Overall,

taking into account the joint contribution of the layers for the modularity optimization

in the consensus solution differentiates from a community structure solution on the

flattened graph where the relative contribution of each of the layers is discarded.

The above remarks on the community membership alignment between the solutions

of the two methods complement with results shown in Table 5. This reports on NMI

values between the best-modularity consensus by M-EMCD and the community struc-

ture that Nerstrand obtained on each layer graph; finally, the NMI values were averaged

over the various layers. In the table, we observe indeed that NMI (mean) values range

from about 0.3 on Higgs-Twitter to 0.85 on EU-Air, with averages over all datasets of

0.62 NMI03 and 0.59 NMI04. This indicates that the community membership of nodes

in the consensus keeps a moderate similarity with the community memberships over

each layer on average.

6.1.3 Layer coverage

Table 4 summarizes the global redundancy associated with the best consensus solu-

tion obtained by M-EMCD. Two main remarks stand out here. First, M-EMCD is able
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Fig. 9 Per-layer distribution of edges over the consensus communities obtained by EMCD
methods. Each EMCD solution is taken at the θ value for which M-EMCD reaches the maximum
modularity. The bottom x-axis indicates, for each layer, the number of communities which
contain only edges from that layer. (Best viewed in color)

to produce consensus communities whose internal connectivity is, on average, charac-

terized by most of the layers. Second, M-EMCD has also the same ability in terms of

redundancy as C-EMCD, whose solution indeed represents the topological upper bound,

for a given θ, of the communities being identified.

To deepen our understanding on the impact of the different layers on the struc-

ture of the consensus communities, we also analyzed the per-layer distributions of

the fraction of edges specific of any particular layer, over the consensus communities,

as shown in Fig. 9. In the Nerstrand case, for each dataset the algorithm is applied

on the flattened graph, then information on the community membership is projected

over the multilayer network, finally the redundancy distribution is computed over the

multilayer-projected communities. The figure also shows, for each layer in a network,

the number of communities that only contain edges from that layer. At a first glance,
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we observe that the per-layer boxplots for M-EMCD are quite similar to those for

C-EMCD. This result is indeed consistent with what we observed in the redundancy

evaluation. Furthermore, coupling redundancy results from Table 4 and results shown

in this figure, it should be noted that the highest values of redundancy of M-EMCD,

observed in AUCS (0.91) and VC-Graders (0.95), correspond to situations in which

the distribution of layer-characteristic communities is more uniform. However, unlike

redundancy, evaluating the per-layer edge distribution allows us to know more about

the role taken by each layer in the composition of the consensus communities. For

instance, on Higgs-Twitter (results not shown), there is one layer predominant on the

others; Conversely, on DBLP (results not shown), all layers participated almost equally

in the edge distribution of the consensus communities. Yet, on London, the mid value

of redundancy (0.533) should be reconsidered as actually all three layers participate

well in the composition of the communities (the first and third layers are highly char-

acteristic for all communities, and the second one corresponds to a distribution with

median of 0.6; cf. Fig. 9-j).

6.1.4 Robustness against ensemble perturbations

Our methods are parametric to a single parameter, θ, for any input multilayer network

and ensemble for it. Here we investigate how robust the M-EMCD method is against

perturbations in the ensemble used as input.

To this purpose, while maintaining Nerstrand as core method to generate the com-

munities in the ensemble, we configured it by specifying the number of desired commu-

nities as input parameter, rather than leaving Nerstrand free to automatically deter-

mine the number of communities. For a given dataset network, we generated multiple

(e.g., 50) ensembles, by varying each time the setting of the number of communities to

obtain on each layer of the network. More in detail, if we indicate with k1, . . . , k` the

number of communities Nerstrand would automatically detect, we selected the number

of communities to obtain at the i-th layer graph (i = 1..`) by picking it in the interval

[ki − ε, ki + ε] uniformly at random, where ε is an offset selected empirically.

For this analysis, here we report results on EU-Air. We selected this dataset to ap-

preciate at best the effect of ensemble perturbations in the performance of M-EMCD—

this choice is justified since it has much more layers than the other datasets but DBLP,

however unlike the latter, there is no excessive proliferation in the number of consensus

communities (cf. Table 3). We carried out 50 runs and the analyzed the distribution of

performance scores corresponding to the 50 ensembles. We perturbed the size of each

layer in the ensemble at 5% of the size of the consensus solution obtained by M-EMCD

(with the default configuration of Nerstrand), i.e., we set ε = 0.05× |C∗| ≈ 15.

Results revealed a good robustness of M-EMCD to variations in the size of the

ensemble clusterings available for a given dataset network. The resulting boxplots of the

distributions of modularity, silhouette, redundancy and average per-ensemble number

of consensus communities were all very short. In particular, the size of the consensus

solutions obtained by M-EMCD varied from 359 to 365 (with mean 362) over the 50

runs; more interestingly, modularity further increased w.r.t. the performance reported

in Table 3, with the following summary: 0.942 (min), 0.962 (mean), 0.964 (median),

0.963 (1st quartile), 0.965 (3rd quartile), 0.968 (max), with standard deviation of just

0.0048.
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Fig. 10 Time performance of M-EMCD on (a) EU-Air and (b) mLFR-1M.

6.1.5 Efficiency evaluation

We analyzed the time performance of M-EMCD,7 mainly to investigate how well the

method scales over networks as they increase in size.

To this purpose, we focused our evaluation on two networks: EU-Air (already se-

lected for the previously reported analysis on robustness) and mLFR-1M (cf. Sect. 5.1).

For each of the two network datasets, we ordered the layer graphs by increasing size,

then we derived several subsets by grouping the layer graphs according to their size or-

der. More specifically, the first subset contained the smallest layer graph, and the n-th

subset (n > 1) contained the portion of the original network that corresponds to the

first n smallest layer graphs. For every subset considered, the ensemble corresponded

to the community structures of the layer graphs belonging to the subset.

Figure 10 shows execution times obtained by M-EMCD in the two evaluation scenar-

ios. In the EU-Air case, we reported for each subset the execution time corresponding

to the best-modularity θ setting, whereas in the mLFR-1M scenario, we reported ex-

ecution times for three selected settings of θ, keeping one value of θ at a time fixed

over the various subsets. From the figure, we observe clear evidence in both scenarios

that the time performance trend grows linearly with the size (in terms of layers, hence

edge set) of the network under consideration. Therefore, our M-EMCD method scales

well by increasing the size of the network. Note also that in Fig. 10(b) the slope of the

trend line tends to increase with θ, which might imply an increase in the number of

consensus communities.

All the above remarks are consistent with our findings from the computational

complexity analysis discussed in Sect. 4.5. To complete our understanding on this, it

should also be noted that the number of iterations, required by M-EMCD to converge,

turns out to be small. For instance, considering the best-performing runs of M-EMCD,

the number of iterations varied from few units (less than ten on London, VC-Graders

and AUCS) to few tens (23 on EU-Air, 38 on FF-TW-YT, 70 on DBLP, 75 on Higgs-

Twitter).

6.2 Comparison with competing methods

In this section we present performance results obtained by the competing methods,

and compare them w.r.t. M-EMCD (Table 6).

Looking at modularity results, M-EMCD outperformed all competing methods, with

the following gains averaged over the datasets: 0.63 vs. LART, 0.60 vs. PMMk∗ , 0.36

vs. Infomap, 0.32 vs. GL, 0.30 vs PMM, 0.27 vs. MultiMOGA, 0.23 vs. Nerstrand, 0.17

7 Experiments were run on an Intel Core i7-3960X CPU @3.30GHz, 64GB RAM machine.
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Table 6 Gains of M-EMCD w.r.t. the competing methods, in terms of modularity, silhouette,
global redundancy, and number of communities corresponding to best-modularity consensus
solution. na means that the competing method did not terminate due to memory issues.

method criterion AUCS DBLP EU-Air FF-TW-YT Higgs-Tw. London VC-Graders

Nerstrand

modularity +0.34 +0.17 +0.62 +0.24 +0.02 +0.07 +0.17
silhouette +0.15 +0.001 +0.01 +0.02 -0.02 +0.11 +0.01

redundancy +0.11 -0.12 +0.29 -0.09 -0.36 +0.17 +0.02
#communities +9 +13 466 +268 +43 +63 +29 +9

ABACUS

modularity +0.10 na +0.02 +0.16 +0.32 +0.10 -0.30
silhouette +0.38 na +0.12 +0.04 +0.20 +0.24 -0.71

redundancy +0.20 na +0.27 +0.13 +0.95 +0.39 +0.12
#communities +12 na +250 +84 +36 +29 +10

PMMk∗
modularity +0.67 na +0.89 +0.52 +0.60 +0.69 +0.24
silhouette +0.22 na +0.23 +0.05 -0.02 +0.11 +0.13

redundancy -0.003 na -0.07 +0.04 -0.36 -0.18 +0.003

PMM

modularity +0.15 na +0.54 +0.39 +0.26 +0.27 +0.16
silhouette +0.37 na +0.25 +0.69 +0.20 +0.43 +0.24

redundancy +0.14 na +0.06 +0.10 +0.79 -0.19 +0.06
#communities +12 na +269 +76 +76 +5 +9

GL

modularity +0.21 na +0.46 +0.20 na +0.62 +0.13
silhouette +0.17 na +0.04 +0.11 na +0.14 +0.10

redundancy +0.11 na +0.32 -0.12 na -0.03 +0.07
#communities +8 na +262 -626 na -212 +9

Infomap

modularity +0.50 na +0.30 +0.29 na +0.45 +0.26
silhouette +0.53 na +0.20 +0.88 na +0.33 +0.45

redundancy +0.15 na +0.06 -0.33 na -0.48 +0.00
#communities +3 na +272 -117 na +43 +1

LART

modularity +0.58 na +0.91 na na +0.89 +0.12
silhouette +0.50 na +0.14 na na +0.18 +0.32

redundancy +0.13 na +0.37 na na +0.53 +0.06
#communities -13 na -107 na na -294 +5

MultiGA

modularity +0.17 na +0.25 na na +0.10 +0.16
silhouette +0.37 na +0.06 na na +0.23 +0.24

redundancy +0.10 na +0.34 na na -0.07 +0.06
#communities +9 na +269 na na +16 +9

MultiMOGA

modularity +0.29 na +0.27 +0.40 na +0.39 +0.00
silhouette +0.34 na +0.14 +0.74 na +0.21 +0.43

redundancy +0.08 na +0.35 -0.03 na +0.04 +0.01
#communities +7 na +269 -129 na +32 +7

vs. MultiGA, and 0.07 vs. ABACUS. This remarkably hints that our approach is able

to produce multilayer communities that are substantially better in modularity than

those obtained by existing flattening, aggregation, or direct methods.

Also in terms of silhouette, M-EMCD tends to outperform all competing methods,

with the following average gains: 0.48 vs. Multiplex-Infomap, 0.37 vs. MultiMOGA,

0.36 vs. PMM, 0.29 vs. LART, 0.23 vs. MultiGA, 0.12 vs. PMMk∗ , 0.11 vs. GL, 0.05

vs. ABACUS, and 0.04 vs. Nerstrand. Note that the least gains by M-EMCD are those

against Nerstrand, which is not surprising as M-EMCD consensus solutions are derived

by an ensemble of community structures obtained by using Nerstrand on each of the

layers in a network. Overall, the consensus solutions by M-EMCD show better quality

of community memberships of the nodes in a network.

Considering global redundancy values, M-EMCD generally shows higher values than

those of competitors over the various networks, with average gains of 0.34 vs. ABA-

CUS, 0.27 vs. LART, 0.16 vs. PMM, 0.11 vs. MultiGA, 0.09 vs. MultiMOGA, 0.07

vs. GL, and 0.003 vs. Nerstrand. While consistently yielding higher global redundancy

w.r.t. ABACUS and LART, M-EMCD consensus communities may have lower redun-

dancy than communities produced by the other methods (e.g., Multiplex-Infomap and

PMMk∗). Nevertheless, coupled with modularity and silhouette results, this suggests

that M-EMCD can utilize less information from the various layers than other methods

to obtain higher quality consensus community structures.



28

We also observe that M-EMCD tends to produce much more communities than Ner-

strand, ABACUS, PMM, MultiGA and MultiMOGA, while different relative behaviors

correspond to comparison with the other methods on some networks.

On the efficiency viewpoint, one remark that stands out from the table is that

all methods but Nerstrand incurred memory issues on some datasets. (Experimental

platform corresponded to the same as specified in Sect. 6.1.5.) In this regard, it should

be noted that some of our competitors methods inherently suffer from efficiency and

scalability issues. For instance, the two genetic methods MultiGA and MultiMOGA

have high computational complexity, which not only depends on the (high) numbers of

generations and of individuals, but it is also at least quadratic in the number of nodes

in the networks. Also, LART requires the computation of similarity matrix from the

pair-wise transition probabilities, and hence could not scale well with large multilayer

networks.

In general, by comparing the runtimes obtained by the competing methods with

those obtained by M-EMCD, we found that M-EMCD outperforms the competing meth-

ods in terms of efficiency as well. For instance, on EU-Air, our method took about 0.190

seconds to produce the consensus solution (cf. Fig. 10(a)), while the following runtimes

were achieved by the competing methods (in seconds): 2 by PMM, 23 by GL, 20 by

Multiplex-Infomap, 475 by LART, 1026 by MultiGA, 12375 by MultiMOGA. Overall,

the following orders of magnitude of percentage increase, averaged over the evaluation

datasets, were obtained by the competing methods: about 1000% by PMM, 1.0E+4 %

by Multiplex-Infomap, GL, and ABACUS, 1.0E+5 % by LART, 5.0E+5 % by MultiGA,

and 5.0E+6 % by MultiMOGA.

6.3 Summary of findings

Several remarks stand out from our evaluation of EMCD methods in terms of different

assessment criteria. A first important finding is that the modularity-based approach

to the EMCD problem is highly effective in producing consensus communities with

improved modularity w.r.t. the CC-EMCD and C-EMCD methods. M-EMCD also out-

performs CC-EMCD and C-EMCD in terms of silhouette of community membership,

whereby in most cases the highest gain occurs for the same θ range corresponding to

the highest modularity value. Internal connectivity of the M-EMCD consensus com-

munities is characterized by the presence of most of the layers, in general retaining

the same ability in terms of redundancy as C-EMCD, whose consensus represents the

topological upper bound for the communities being identified, for a given θ. M-EMCD

has shown to be relatively robust to the presence of disconnected components in a mul-

tilayer graph, as its solutions tend to have a small number of singleton communities.

Our method has also shown to be relatively robust against perturbations in the input

ensemble, in terms of size of its constituting clusterings. Yet, M-EMCD scales well with

the size of a multilayer network, in accordance to its computational cost that is linear

in the number of edges.

M-EMCD was compared with state-of-the-art methods for community detection,

which cover all of the main categories of existing approaches for multilayer networks,

namely flattening, aggregation and direct methods. In our evaluation, the first category

was represented by Nerstrand on the flattened graph, the second by PMM and ABA-

CUS, and the third by GL, LART, Multiplex-Infomap, MultiGA, and MultiMOGA.

Remarkably, M-EMCD consensus communities have shown to be substantially better

than those generated by the competing methods, in terms of both modularity and sil-

houette of community membership. This outperforming behavior of M-EMCD is further
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strengthened by the fact the method tends to use less information from the layers of

the network than the competing methods, while producing better consensus community

structures.

7 Conclusion

We presented the first well-principled formulation of the consensus-based aggrega-

tion problem for multilayer community detection. The main innovation aspect of our

framework is that, unlike the few existing aggregation-based community detection ap-

proaches, both the aggregation and consensus inference steps are not naive: our dis-

covered consensus community structures are not only designed to capture prototypical

community memberships of nodes, but they also account for intra-community and inter-

community connectivity, whereas the consensus function is learned via modularity-

based optimization instead of being simply based on the sharing of a certain minimum

percentage of clusters in the ensemble. Results have shown significance as well as out-

performing behavior of our approach over state-of-the-art methods in terms of modu-

larity, silhouette of community memberships, and redundancy assessment criteria.

Limitations and Future Work

Our ensemble-based approach to multilayer community detection has one main model

parameter, i.e., the co-association threshold (θ). This is typical in the ensemble cluster-

ing paradigm and allows the user to control the level of consensus in the output commu-

nity structure. However, since the parameter is data-dependent, choosing a fixed value

is not recommended for networks with different characteristics. In this regard, it would

be worth investigating a way for automatically determine the “best” or “preferred”

co-association setting for an input multilayer network.

Concerning the ensemble, while this is regarded as an input data, in this study

we have considered only the scenario of non-overlapping community detection. It is

certainly of interest to extend our approach to handle overlapping consensus solutions

as well.

Our defined multilayer modularity measure involves two important terms, i.e., the

layer-specific resolution factors and the inter-layer coupling factors. We plan to em-

pirically evaluate the impact of the two terms on the modularity optimization of the

consensus. In this respect, one major direction of future research is the evaluation of

the EMCD problem in time-evolving network scenarios; in particular, the implications

of enabling the time-aware inter-layer coupling factor in the computation of our de-

fined multilayer modularity, and hence in the discovery of the consensus communities,

deserve attention.

It will be furthermore interesting to push forward our research to address ensemble-

based community evolution problems under a dynamic or online learning framework,

by leveraging recent literature on online consensus clustering (e.g., [32,15,14]).

On another side, our modularity-optimization-based approach would allow for an

integration with a direct method for multilayer community detection; in effect, our

approach could be seen as a refinement for any direct approach, since M-EMCD can in

principle take as input a multilayer community structure, possibly provided by one of

the existing direct methods. Within this view, our approach might be referred to as a

“hybrid” approach to solving the multilayer community detection problem. This would

further pave the way for the development of novel community detection frameworks

for multilayer networks.
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