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Abstract Community search is the problem of finding a good community for a given set
of query vertices. One of the most studied formulations of community search asks for a
connected subgraph that contains all query vertices and maximizes the minimum degree.

All existing approaches to min-degree-based community search suffer from limitations
concerning efficiency, as they need to visit (large part of) the whole input graph, as well as
accuracy, as they output communities quite large and not really cohesive. Moreover, some
existing methods lack generality: they handle only single-vertex queries, find communities
that are not optimal in terms of minimum degree, and/or require input parameters.

In this work we advance the state of the art on community search by proposing a novel
method that overcomes all these limitations: it is in general more efficient and effective—
one/two orders of magnitude on average, it can handle multiple query vertices, it yields op-
timal communities, and it is parameter-free. These properties are confirmed by an extensive
experimental analysis performed on various real-world graphs.

1 Introduction

Given a graph and a set of query vertices, the community search problem aims at finding a
cohesive subgraph containing the query vertices. Community search has recently attracted
a great deal of attention, fueled by applications such as advertising and viral marketing,
content recommendation, and team formation [5].

A number of criteria to assess the goodness of a community have been proposed, such as
random-walk-based measures [18,11], or density-based measures [4,10,14,19]. Sozio and Gio-
nis [17] introduce the term “community-search problem”, which they formalize from a
combinatorial-optimization perspective as the problem of finding a connected subgraph that
contains all query vertices and maximizes the minimum degree. Minimum degree has in fact
been shown to be an effective way of measuring the goodness of a community [2,5].
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Table 1 Comparison of the proposed method to the state of the art. Our method exhibits all desired features:
it is more efficient and accurate than all existing methods, can handle multiple query vertices, produces
communities with optimal minimum degree, and is parameter-free.

multiple
efficiency quality query vertices optimality parameter-free

Global Search [17] + + yes yes yes
Constrained Global Search [17] + ++ yes no no

Local Search [5] ++ ++ no yes yes
Our method +++ +++ yes yes yes

In this work we focus on the min-degree-based formulation of community search and
propose a novel method that overcomes the limitations of existing approaches.

1.1 Limitations of existing community-search methods

Efficiency. Sozio and Gionis [17] show that the community-search problem based on min-
degree can be solved in linear time in the size of the input graph. Specifically, the algorithm
by Sozio and Gionis is a global search (GS) method that needs to visit the entire input
graph, thus being computationally expensive on large graphs. A more efficient solution has
been recently proposed by Cui et al. [5]. Their local search (LS) method however works
only for single-vertex queries.

In this work we propose an approach that improves upon the efficiency of those methods,
including the method by Cui et al. on the special case of a single query vertex. We do so
while still keeping generality, as our method is able to handle multiple query vertices.

Effectiveness. Community search admits several (optimal) solutions. As remarked by Sozio
and Gionis [17], a limitation of their algorithm is that, among the many ones available, it
tends to find quite large solutions. This negatively affects accuracy of the discovered com-
munities. In fact, a too large solution is likely to contain different optimal solutions that, if
taken individually, would correspond to better communities, as they are inherently more co-
hesive and denser. Also, a large community is likely to contain redundant/outlying vertices.

Sozio and Gionis attempt to solve this issue by introducing a constrained version of the
community-search problem, where an upper bound on the size of the output community is
admitted. They show that this version of the problem is NP-hard and devise heuristics to
solve it. This constrained global search (K-GS) method has however a number of limita-
tions: it further degrades efficiency with respect to standard global search, it is not guaran-
teed to provide communities with optimal minimum degree, and it introduces a parameter,
i.e., the upper bound on the community size, which is difficult to set, as it represents only a
soft constraint (the output communities may have size much larger than the bound specified).

In the approach we propose in this work we do not explicitly constrain the size of the
communities, rather we aim at finding the smallest-sized solution among all the optimal
ones. This way, we are able to produce communities that are on average orders of magnitude
more effective, i.e., smaller and denser, than global and local search methods. Moreover,
unlike constrained global search, our approach achieves high efficiency, identifies optimal
communities, and requires no parameters.

1.2 Our approach and contributions

The proposed approach is based on exploiting precomputed information, which is retrieved
at query time and further processed to produce the final solution. The precomputation relies
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on the graph-theory notion of core decomposition of a graph [16]. Given a graph G =
(V,E) and a set of query vertices Q ⊆ V , let k be the largest integer such that a connected
component of the k-core of G contains Q. It holds that all the optimal solutions to the
community-search problem for the given query Q, are contained in such k-core. Thanks to
this property, our approach starts with retrieving from the precomputed information (i.e.,
the core decomposition) a subgraph H∗ that is itself an optimal solution to the query issued.
However, asH∗ is also guaranteed to contain all other optimal solutions, it may easily be not
so good in terms of quality (i.e., size and cohesiveness). For this reason, we formulate the
problem of finding the smallest subgraph H∗min of H∗ that satisfies the community-search
requirements. We show that the problem is NP-hard and devise a heuristic that satisfies
both efficiency and effectiveness requirements.

Our method addresses all the weaknesses of the state of the art. Apart from being gen-
erally faster and more effective, it does not suffer from any limitation affecting existing ap-
proaches: it is in fact, at the same time, general (it handles multiple query vertices), optimal
(it finds communities with optimal minimum degree), and parameter-free. These character-
istics are better highlighted in Table 1.

In summary, our contributions are as follows.

• We advance the state of the art on community search by aiming at improving efficiency,
effectiveness, and generality of existing methods.

• To address these limitations, we tackle the problem of finding the smallest-size solution
to community search and devise an approach that exploits the core decomposition of
the graph as precomputed information.

• We propose two different ways of organizing/storing the core decomposition: the first
one guarantees faster retrieval of the information needed at query time, while the other
one requires less storage space.

• We devise a method for the online query-processing phase that relies on two steps. The
first step employs a local greedy strategy to further reduce the subgraph returned as
precomputed information. The second step takes this reduced subgraph and extracts
the final solution by aiming at the connection and minimum-degree constraints in a
sequential fashion.

• An extensive evaluation on a variety of real-world graphs confirms that the proposed
method is generally faster, as well as able to produce higher-quality solutions: our
communities are on average much smaller in size and denser.

2 Preliminaries

In this section we provide the formal statement of the COMMUNITY SEARCH problem, an
overview of existing methods, and a discussion about the notion of core decomposition,
which is at the basis of the proposed method.

2.1 Problem definition

Let G = (V,E) be an undirected graph, where V (|V | = n) is the set of vertices and
E ⊆ V × V (|E| = m) is the set of edges. For a subset of vertices H ⊆ V , we denote by
G[H] the subgraph of G induced by H , i.e., G[H] = (H,E[H]), where E[H] = {(u, v) ∈
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E | u ∈ H, v ∈ H}. Finally, we denote by δH(u) the degree of u in G[H], and µ(H) the
minimum degree of a vertex in G[H], i.e., µ(H) = minu∈H δH(u).

The COMMUNITY SEARCH problem (CSP) is defined as follows [17,5]:

Problem 1 (COMMUNITY SEARCH) Given a graphG = (V,E) and a set of query vertices
Q ⊆ V , find

H∗ = argmax
Q⊆H⊆V,

G[H]is connected

µ(H). ut

Due to the connectivity constraint, the state of the art on community search assumes
query vertices belonging to the same connected component of the input graph [18,11,4,
17,5,10,14,19]. A simple extension for the case where query vertices come from different
connected components is to run community search separately for each connected component
and take the union of the various output subgraphs as ultimate solution.

2.2 State of the art

Unconstrained Community Search. Sozio and Gionis [17] show that Problem 1 can be
solved by a simple greedy algorithm taking linear time in the size of the input graph. We
refer to this approach as Global Search (GS).1 This algorithm iteratively removes a vertex
having the minimum degree along with all its incident edges, and it stops when the next ver-
tex to be removed corresponds to a query vertex. This process generates a set of subgraphs.
Among these subgraphs, the one having the maximum minimum degree, and such that all
query vertices are connected is returned as output.
Size-bounded Community Search. Sozio and Gionis [17] notice a limitation of the min-
degree-based CSP formulation: the output communities tend to be large in size. For this
purpose, they introduce the size-bounded version of CSP, which includes an upper bound K
on the size of the output community. They show that this version of CSP becomes NP-hard
and propose heuristics to solve it. We refer to this method as K-Global Search (K-GS).

The attempt of mitigating the size issue comes at a price of limited efficiency and accu-
racy. Indeed, theK-GS method relies on the maximum distance between a query vertex and
every other vertex in the graph, which requires a number of costly shortest-path-distance
computations. Also, this approach does not guarantee optimality: the minimum degree of
a solution to size-bounded CSP may be arbitrarily smaller than the optimal minimum de-
gree of the corresponding unconstrained CSP formulation. Finally, K-GS requires as input
parameter K, i.e., the upper bound on the output community size, which is difficult to set
as it represents only a soft constraint: the communities returned by K-GS are indeed not
guaranteed to have size no larger than K. As we show in our evaluation in Section 5, this
gap increases with the number of query vertices and may be quite consistent.
Local Community Search. Cui et al. [5] propose a local-search algorithm to improve the
efficiency of the GS algorithm. This algorithm, which we refer to as Local Search (LS),
iteratively expands the neighborhood of the (unique) query vertex, until a subgraph that is
guaranteed to contain an optimal solution has been built. Then, this subgraph is used as
a reduced version of the input graph to retrieve the optimal solution. The worst-case time
complexity of the LS algorithm is still linear in the size of the whole input graph, but LS
has been shown to achieve better efficiency than GS in practice [5]. Nevertheless, a severe
limitation of LS is that it works only when a single query vertex is provided as input.

1 To be precise, the GS algorithm runs inO(m× α(n)) time, where α(·) denotes the inverse Ackermann function.
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2.3 Core decomposition

The k-core (or core of order k) of a graph G = (V,E) is defined as the maximal subgraph
in which every vertex is connected to at least k other vertices within that subgraph. In the
following we slightly abuse the notation and identify a k-core with its vertex set, which we
denote by Ck. It is easy to see that the order of a core corresponds to the minimum degree
of a vertex in that core, i.e., k = µ(Ck).

The set C = {Ck}k
∗

k=1 forms the core decomposition of G [16]. The core number (or
core index) of a vertex u ∈ V , denoted c(u), is the highest order of a core that contains u:
c(u) = max{k ∈ [0..k∗] | u ∈ Ck}. All cores are nested into each other: V = C1 ⊇ C2 ⊇
· · · ⊇ Ck∗ , and the “difference” between two consecutive cores, i.e., the set Sk = Ck\Ck+1,
is usually referred to as k-shell. The set of all k-shells therefore forms a partition of the vertex
set V . Note that a k-core (or a k-shell) does not necessarily induce a connected subgraph,
and that the k-cores are not necessarily all distinct, i.e., it may happen that, for some k,
Ck = Ck+1 (and the corresponding k-shell Sk = ∅).

Batagelj and Zaveršnik [1] show how to compute the core decomposition of a graph G
in linear time. The algorithm iteratively removes the smallest-degree vertex and sets the core
number of the removed vertex accordingly.

3 Precomputation

Here we present our proposal to solve CSP effectively and efficiently. Our approach is com-
posed of two phases. In the preprocessing phase (which we discuss in the remainder of this
section), the input graph is processed offline (una tantum), in order to compute and store in-
formation that can profitably be reused when a query is issued. The query processing phase
(which we present in Section 4), is in turn divided into two subphases: a retrieval phase
(Section 4.1), where the proper information computed/stored during the preprocessing is
retrieved, and an online processing phase (Section 4.2), where the information retrieved is
further processed in order to obtain the ultimate answer to the query.

The preprocessing phase of our approach is based on an interesting relationship between
core decomposition and CSP. This relationship consists of two main results: the highest-
order (i.e., smallest-sized) core containing all query vertices and such that all query vertices
are connected (i) is a solution to CSP, and (ii) contains all the solutions to CSP. Similar
results are also shown in [5], but they hold only for the special case where queries are
composed of only one vertex. In the following theorem we provide evidence of these results
for the general case where one can have multiple query vertices.

Theorem 1 Given a graph G = (V,E), its core decomposition C = {C1, . . . , Ck∗}, and
query vertices Q ⊆ V , let C∗Q be the highest-order (i.e., smallest-sized) core in C such that
every q ∈ Q belongs to the same connected component of C∗Q. It holds that:

1. The connected component of C∗Q that contains Q is a solution to CSP;
2. The connected component of C∗Q containing Q contains all solutions to CSP.

Proof We prove both statements by contradiction. As far as the first statement, let X denote
the connected component of C∗Q that contains all query vertices and let k denote the mini-
mum degree of a vertex in X. Assume that X is not a solution to CSP, i.e., assume that there
exists another subgraph Y 6= X of G that is connected, contains all query vertices, and has
minimum degree > k. By the definition of k-core, this would imply that Y is (part of) a core
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Algorithm 1 BuildCoreStruct
Input: A graphG = (V,E); the core decomposition C = {C1, . . . , Ck∗} ofG.
Output: The core index c(u), ∀u ∈ V ; The setHk of connected components of core Ck , ∀k ∈ [0..k∗].

1: c(u)← max{k ∈ [0..k∗] | u ∈ Ck}, ∀u ∈ V
2: Hk∗ ←connectedComponents(G,Ck∗ )
3: for all k = k∗−1, . . . , 1 s.t. Ck 6= Ck+1 do
4: H′ ← Hk+1, X ← Ck+1, Sk ← Ck \ Ck+1

5: for all u ∈ Sk do
6: T ← {{u}}
7: for all v ∈ X | (u, v) ∈ E do
8: T ← T ∪ {H ∈ H′ | v ∈ H}
9: X ← X ∪ {u}

10: H∗ ←
⋃

T∈T T

11: H′ ← H′ \ T ∪ {H∗}
12: Hk ← H′

of order higher than k. This contradicts the hypothesis that C∗Q is the highest-order core in
C such that every q ∈ Q belongs to the same connected component of C∗Q.

Concerning the second statement, assume that there exists a solution Z to CSP that is not
contained in X. This implies that (i) the minimum degree of a vertex in Z is equal to k and
(ii) the minimum degree of a vertex in X ∪ Z is equal to k as well, by the optimality of X.
It follows that X ∪ Z should correspond to a connected component of the core C∗Q, but this
is in contrast with the maximality condition of the definition of k-core. ut

Theorem 1 forms the basis of our preprocessing phase. The idea is to compute the core
decomposition of the input graph and organize the k-cores in order to easily retrieve the
k-core that contains all solutions to CSP whenever a query is issued. We devise two structures
for organizing the core decomposition: the first one (CoreStruct) stores the k-cores in order
to guarantee faster retrieval, while the second one (ShellStruct) stores only the k-shells and,
as such, minimizes the replication of information, thus requiring less storage space. In the
following we report the details of CoreStruct and ShellStruct.

3.1 The CoreStruct structure

Structure. Given the core decomposition C = {C1, . . . , Ck∗} of the input graph G, the
CoreStruct method keeps the following information:

– For all vertices u ∈ V , the core index c(u) of u, which is defined as the index of the
highest-order core containing u: c(u) = max{k ∈ [0..k∗] | u ∈ Ck}.

– For all coresCk ∈ C, the setHk of connected components ofCk, with
⋃
H∈Hk

H = Ck.

As pointed out in Section 2.3, two consecutive cores may be non-distinct (i.e., Ck =
Ck+1 for some k). In this case, one can clearly avoid to store multiple copies of the same
core, and, at the same time, avoid to replicate the information at the basis of CoreStruct.
This remains true also for the other preprocessing method (ShellStruct) that we discuss
in the next subsection. Moreover, we remark that the information required by CoreStruct
is stored in proper data structures that ensure constant-time access to all the main pieces
of information that are needed for the subsequent retrieval phase, i.e., the core index of a
vertex, the connected component of a vertex in a core, the set of vertices in a (connected
component of a) core.
Building procedure. Algorithm 1 shows how to compute CoreStruct efficiently. The algo-
rithm takes as input the graph G and its core decomposition, and iteratively processes the
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k-cores starting from the highest-order one (i.e., Ck∗ ). The connected components of each
core Ck are efficiently computed by looking at (i) the neighborhood of every vertex in the
shell Sk = Ck \Ck+1 and (ii) the connected components of the core Ck+1, which have al-
ready been computed in the previous iteration (Lines 3-15). Let X denote the set of vertices
in the core Ck+1 along with the vertices in Sk that have already been processed. For every
vertex u ∈ Sk, the connected components of Ck+1 of all neighbors of u that are in X are
added to the set T (Lines 6-9). Once all the neighbors of the vertex u have been computed,
T contains the connected components that can be merged to form a unique component to be
added to H′ (Lines 11-12).

Complexity. In analyzing the time complexity of Algorithm 1 we assume that the mappings
vertex↔shell-index and vertex↔core-index, which are computed during the core decompo-
sition, can be accessed in constant time. Computing the core index of every vertex and the
connected components of Ck∗ (Lines 1-2) take O(n) and O(n+m) time, respectively. The
main cycle in Lines 3-15 processes every vertex u in the graph exactly once. For each vertex
u, the most expensive operations in this cycle are: (i) visiting all its neighbors (Lines 7-9),
which takes O(m) overall time, and (ii) merging the connected components in the set T
(Line 11), which takes O(hn) overall time in the worst case (with h being the number of
distinct k-cores). The overall running time of Algorithm 1 is hence O(hn+m). We remark
that h � n in practice (e.g., up to five orders of magnitude less, according to the real-life
graphs used in our experiments).

The CoreStruct method needs to store all distinct cores, thus requiring O(hn) space.

3.2 The ShellStruct structure

CoreStruct can easily be computed and, as we will see in Section 4, it enables a very
efficient retrieval phase (logarithmic in the number of cores). These advantages come with a
cost: for very large graphs, its O(hn) space complexity might be prohibitive. For instance,
for a graph of 50M vertices and 1k distinct cores, assuming 32 bits for representing a vertex,
CoreStruct requires around 190GB, thus likely preventing the possibility of loading it in
main memory.

Structure. The idea behind ShellStruct is to avoid replication by storing shells instead of
cores. Precisely, ShellStruct still keeps the information about the core index c(u) of every
vertex u ∈ V like CoreStruct, but it does not duplicate every vertex u across all cores that
are nested into the core corresponding to c(u). Every vertex u is now stored only once, in
correspondence of the appropriate shell.

To allow the retrieval of the information required at query time, the connected compo-
nents of each core are organized in a tree-like structure having k∗ levels.2 Each level k keeps
trace of the information about the k-th shell/core, and the root of the tree corresponds to the
shell/core 1 (the whole input graph G). Each tree node at the k-th level (shell) of the tree
corresponds to a connected component of the corresponding core Ck. For each tree node
H we keep a twofold information: (i) the set of “children” connected components, i.e., the
connected components (if any) of the core Ck+1 that are merged together to form H in core
Ck (this determines the tree-like structure), and (ii) the set of all vertices that are part of the
k-th shell and belong to connected component H .

2 In the implementation all levels corresponding to non-distinct cores can be omitted; thus, the actual number of levels of
the tree is h.
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As far as implementation, the tree is stored in proper data structures that allow to retrieve
in constant time (i) the father/children of a tree node, (ii) the content (in terms of vertices of
the graph) of every connected component in a core, and, (iii) the connected component to
which every vertex in the graph belongs to.

Building procedure and complexity. The procedure to compute ShellStruct is similar to
the one used for CoreStruct (Algorithm 1). The only difference is in Line 11: rather than
merging the connected components in T in a single connected componentH∗, here we build
the tree-like structure by adding a node corresponding to H∗ and by linking all connected
components in T as children of H∗. This implementation resembles the union operation
of the well-known union-find method. Hence, the time complexity of building ShellStruct
is the same as CoreStruct, that is O(hn + m). However, the time needed for building
ShellStruct is expected to be higher than CoreStruct in practice, due to its more complex
structure (i.e., the connected-component tree).

For what concerns space, each vertex in the input graph is stored once, thus requir-
ing O(n) space. Moreover, the space needed for the connected-component tree is O(hM),
where M denotes the maximum number of connected components in a core. However, as
bothM and h are usually several orders of magnitude less than n, the space of the connected-
component tree is in practice negligible compared to the space needed to store vertices.

4 Online query processing

In this section we describe in detail the query phase of our approach. This phase consists
of two steps: retrieval of the information computed during preprocessing, and an online
processing of this information to provide the final query answer.

4.1 Retrieval

Given a set of query verticesQ, the retrieval phase aims at finding the (connected component
of the) highest-order core such that all query vertices in Q are part of that core and are
connected (Theorem 1).

Retrieval from CoreStruct. Let cmin(Q) be the minimum core index of a query vertex
in Q, i.e., cmin(Q) = min{c(u) | u ∈ Q}. In the retrieval phase, we determine the largest
index k in the range [0, cmin(Q)] such that there exists a connected component H of core
Ck containing Q, that is

kmax = max{k ∈ [0, cmin(Q)] | ∃H ∈ Ck : Q ⊆ H},

and output the corresponding connected component H .
The information stored in CoreStruct allows us to check the condition ∃H ∈ Ck : Q ⊆

H in constant time for every query vertex, thus requiringO(|Q|) overall time for a query set
Q. It is easy to see that this condition follows a monotonic trend; thus, we can perform binary
search to find the desired index kmax. As the size of the range [0, cmin(Q)] is guaranteed to
be ≤ h (as explained above, we store information only for the h distinct cores), the overall
time complexity of the retrieval phase from CoreStruct is O(|Q| log h).
Retrieval from ShellStruct. The retrieval of the desired (connected component of a) core
H∗ from ShellStruct is more complex: the content of H∗ is not directly available like in
CoreStruct, but it needs to be reconstructed from the connected-component tree. The details
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Algorithm 2 RetrievalShellStruct
Input: Information from ShellStruct; a set of query verticesQ.
Output: A set of verticesH∗ ⊇ Q.
1: k ← max{c(u) | u ∈ Q}
2: H ← {connected components of core Ck containing a vertex fromQ}
3: H∗ ←

⋃
H∈H vertices(H)

4: while |H| 6= 1 ∧ Q 6= ∅ do
5: Q− ← {u ∈ Q | u ∈ Sk}
6: H′ ← {parent(H) | H ∈ H} ∪ {connected components of core i containing a vertex fromQ−}
7: H∗ ← H∗ ∪

⋃
H∈H′ vertices(H)

8: Q← Q \Q−, H ← H′, k ← k − 1

of the procedure are reported as Algorithm 2. In this case, we need to visit all the levels of
the tree, starting from level cmax(Q) = max{c(u) | u ∈ Q}, until a connected component
containing all query vertices has been encountered. Since binary search is no longer pos-
sible and the content of H∗ needs to be reconstructed, the time complexity of the retrieval
phase from ShellStruct isO(|Q|h+|H∗|), where |H∗| isO(n). The time complexity can be
lowered up toO(|Q|+ |H∗|) by using a suitable lowest-common-ancestor (LCA) data struc-
ture to store the connected-component tree (e.g., by preprocessing the connected-component
tree with the well-known Tarjan’s offline lowest common ancestors algorithm which allows
constant-time online retrieval [8]). However, as |H∗| is typically the dominant term in the
overall time complexity, the efficiency gain would not be really significant in practice.

As anticipated above, CoreStruct compensates its larger storage space with a faster
retrieval phase, while ShellStruct offers less space at a price of slower retrieval.

4.2 Online processing

4.2.1 The Minimum Community Search problem

The retrieval phase described above finds the set H∗ containing all the solutions to CSP for
a given query Q. The goal of the online processing phase is to further refine H∗ to extract a
solution that is as small as possible. This corresponds to solving the following problem:

Problem 2 (MINIMUM COMMUNITY SEARCH (MIN-CSP)) Given a graph G = (V,E),
a set of query vertices Q ⊆ V , let H∗ ⊆ V be the subgraph of G containing all the solutions
to CSP for Q. Find

H∗min = argmin
Q⊆H⊆H∗:

G[H]is connected,
µ(H)≥µ(H∗)

|H|. ut

The above problem has been mentioned by Cui et al. in their work [5], but they do
not study it further (no algorithm is proposed). They just provide a proof of NP-hardness
by a reduction from MAX CLIQUE. Their proof however holds only for the special case
|Q| = 1, and, as such, it does not exclude that the problem can admit polynomial-time
solutions for the more general case |Q| > 1. In the following we show that this is not the
case: the problem remains NP-hard even for the case |Q| > 1. We formally state this result
in the next Theorem 2, by resorting to the well-known STEINER TREE problem: given a
graph G = (V, E) and a set of terminal vertices T ⊆ V , find a connected subgraph G′ of
G containing all terminal vertices and having minimum number of edges. This problem is
NP-hard and the fastest existing algorithm with provable guarantees corresponds to the
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(2 − 2/|Q|)-approximation algorithm by Kou et al. [12], which takes time linear in the
number of edges of the input graph by using the Mehlhorn’s implementation [15].

Theorem 2 MIN-CSP is NP-hard for query sets Q of size |Q| > 1.

Proof We reduce the STEINER TREE problem to MIN-CSP. It is well-known that the optimal
solution to any instance of STEINER TREE is actually a tree. As finding a tree with minimum
number of edges corresponds to finding a tree with minimum number of vertices, STEINER

TREE can easily be reformulated as the problem of finding the minimum number of vertices
that make all terminals connected.

Given an instance of STEINER TREE, one can construct an instance of Problem 2 by
building a graph G equal to G and with an additional vertex x connected to (only) one other
vertex in V , and setting Q = T and H∗ = V ∪ {x}. In this instance µ(H∗) = 1, which
means that the minimum-degree constraint can be ignored; thus solving this instance of
Problem 2 corresponds to finding a minimum number of vertices to to make the vertices in
Q connected, which is the only one required by STEINER TREE. This implies that any set
of vertices H is a solution to this instance of Problem 2 if and only if any spanning tree of
the subgraph induced by H . ut

4.2.2 The GreedyConnection algorithm

Given that MIN-CSP is NP-hard we devise an efficient heuristic to solve it, which is based
on the following idea.

A solution to MIN-CSP needs to satisfy two constraints: (a) query vertices are connected,
and (b) the solution has minimum degree no less than µ(H∗). Among all possible solutions
satisfying these constraints, the goal is to output the one with smallest size. Our main intu-
ition in designing an effective heuristic to MIN-CSP is to look at constraints (a) and (b) one
at a time. In particular, we aim at fist finding a solution that satisfy constraint (a) only, and
then refine this solution in order to make it satisfying constraint (b) too. The motivation is
that in real-world graphs with power-law-like degree distribution the minimum degree of a
community is typically small (i.e., in the order of tens or even less); thus, it is likely that any
solution that satisfies (only) constraint (a) needs just a very few additional vertices to satisfy
constraint (b) too. This improves the chance of having an overall solution with size as small
as possible, as required by MIN-CSP.

This strategy has however an issue. As shown in more detail later, aiming at a solu-
tion that makes query vertices connected (constraint (a)) with as few additional vertices as
possible corresponds to solve the STEINER TREE problem. As said above, this problem is
NP-hard and the fastest existing approximation/heuristic algorithms need to visit all the
edges of the input graph at least once [15]. In our context this corresponds to visiting all the
edges in the entire subgraph H∗. As H∗ may be in practice quite large, this strategy would
easily result in poor efficiency.

To overcome this issue, we devise a two-step method, which we call GreedyConnec-
tion. In the first step we attempt to reduce the size of H∗ as much as possible (while still
keeping constraints (a) and (b) satisfied) by an efficient local greedy procedure that does
not need to visit the entire H∗. We call this step Greedy. Then, in the second step, called
Connection, we run the aforementioned STEINER TREE-based strategy on the subgraph
outputted by Greedy, which, thanks to its reduced size with respect to the original H∗,
can now be handled without affecting efficiency too much. In the following we provide the
details of each of these steps.
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Algorithm 3 Greedy
Input: A graphG = (V,E); a set of query verticesQ ⊆ V ; a setH∗ ⊆ V containing all the solutions to CSP forQ.

Output: A set of verticesH∗min ⊆ H
∗.

1: H∗min ← Q, A ← ∅, µ∗ ← µ(H∗), P ← ∅
2: add all q ∈ Q to P with priority +∞
3: while |A| 6= 1 ∧ µ(H∗min) < µ∗ do
4: u← P.poll()
5: H∗min ← H∗min ∪ {u}
6: α(u)← |neigh(u,W∗min)|
7: for all v ∈ neigh(u,H∗) \H∗min \ P do
8: compute (from scratch) p′(v), p′′+(v), p′′−(v), p′′(v), p(v) [Eq.(1)–(5)]
9: add v to P with priority p(v)

10: A′ ← {{u}}
11: for all v ∈ neigh(u,H∗min) do
12: α(v)← α(v) + 1
13: if α(v) = µ∗ then
14: for all w ∈ neigh(v,H∗) ∩ P do
15: p′′+(w)← p′′+(w)− 1, p′′(w)← p′′+(w)− p′′−(w)

16: p(w) =
〈
p′(w), p′′(w)

〉
17: A′ ← A′ ∪ {A ∈ A | v ∈ A}
18: A∗ ←

⋃
A∈A′ A

19: A ← A \ A′ ∪ {A∗}

20: for allA ∈ A′ do
21: for all w ∈

⋃
v∈A(neigh(v,H∗) ∩ P ) do

22: p′(w)← p′(w)− 1
23: for all w ∈

⋃
v∈A∗ (neigh(v,H

∗) ∩ P ) do
24: p′(w)← p′(w) + 1
25: if u ∈ neigh(w,H∗) then
26: p′′+(w)← p′′+(w) + 1[α(u) < µ∗]

27: p′′−(w)← max{0, p′′−(w)− 1}
28: p′′(w)← p′′+(w)− p′′−(w)

29: p(w) =
〈
p′(w), p′′(w)

〉

The Greedy step

This is a greedy bottom-up method that starts from a solution H∗min containing the query
vertices Q only, and adds vertices from H∗ \ H∗min until H∗min has become an optimal
solution to CSP for Q, i.e., until (i) the subgraph G[H∗min] induced by H∗min is connected,
and (ii) the minimum degree of a vertex in G[H∗min] is equal to the minimum degree of
G[H∗], i.e., µ(H∗min) = µ(H∗).
Greedy selection. To select the vertex to be added to H∗min at each step, Greedy takes into
account how well a vertex contributes to the two requirements of connection and minimum
degree. More precisely, for every vertex u ∈ H∗ \ H∗min, we define its connection score
p′(u) as the number of distinct connected components in G[H∗min] that would be merged by
adding v to H∗min. Formally, given a function cc that maps each vertex in H∗min to its cor-
responding connected component in G[H∗min], and denoting by neigh(u,X) the neighbors
of u in G[X], the connection score p′(u) is defined as:

p′(u) = |{cc(v) | v ∈ neigh(u,H∗min)}| − 1. (1)

Let µ∗ denote the minimum degree of a vertex in H∗, i.e., µ∗ = µ(H∗). The minimum-
degree condition asks for all vertices in H∗min to have degree ≥ µ∗. The minimum-degree
score p′′(u) of a vertex u considers two aspects. First, as a gain effect, the inclusion of a
vertex u into the current solution H∗min could contribute to increase the degree of some
vertices in H∗min and make it closer to the desired µ∗. However, as a penalty effect, the
candidate vertex u will need to reach the desired degree µ∗.
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Thus, the minimum-degree score p′′(u) can be defined as:

p′′(u) = p′′+(u)− p′′−(u), (2)

where p′′+(u) (gain effect) is the number of neighbors of u in G[H∗min] having degree still
less than µ∗:

p′′+(u)= |{v∈neigh(u,H∗min) | |neigh(v,H
∗
min)|<µ

∗}|, (3)

and p′′−(u) (penalty effect) is the number of u’s neighbors required to be added to H∗min for
having its degree at least µ∗:

p′′−(u) = max{0, µ∗ − |neigh(u,H∗min)|}. (4)

The ultimate score that is exploited for greedy selection is defined as
p(u) =

〈
p′(u), p′′(u)

〉
(5)

and the queue for selecting the next node follows an inverse lexicographical order (u pre-
cedes w if p′(u) > p′(w) or if p′(u) = p′(w) and p′′(u) > p′′(w)). This way, we favor the
connectivity constraint over the minimum-degree score.

Algorithm. The pseudocode of Greedy is reported as Algorithm 3. The algorithm takes as
input a graph G, a set of query vertices Q, and the set H∗ containing all the solutions to
CSP for Q, and returns a smallest-sized, yet optimal, solution H∗min ⊆ H∗. The algorithm
keeps (Line 1): the current solution H∗min, the set A of connected components of G[H∗min],
the minimum degree µ∗ that the ultimate solution is required to have, and a priority queue
P that stores the vertices u ∈ H∗ \H∗min with priority equal to the score p(u) reported in
Equation (5). At the beginning, all query vertices are added to the queue with priority +∞
(Line 2), so as to implicitly initialize H∗min as equal to the query vertex set Q.

The main cycle of the algorithm (Lines 3-38) runs until H∗min has become a valid solu-
tion to CSP for the query vertices Q, i.e., until there is a single connected component in A
and the minimum degree of G[H∗min] is equal to µ∗. At each step of the cycle, a vertex u is
extracted from the queue and added to H∗min (Lines 4-6). Then, various operations need to
be performed on the neighbors of u in H∗.

First of all (Lines 7-10), all u’s neighbors v that are not in the queue are added to it
(by firstly computing their priority p(v)). Afterwards (Lines 11-23), the connected com-
ponents in A are updated: the connected components of each u’s neighbor are collected
in an auxiliary set A′ (Line 20), and they are eventually merged in a unique connected
component (Lines 22-23). At the same time, the degree α(v) of every u’s neighbor v in
H∗min is increased by one (Line 13), and, if α(v) becomes equal to the desired µ∗ value, the
minimum-degree score p′′(w) of every v’s neighbor w in the queue is updated accordingly
(Lines 13-19).

Given that the connected components in A (may) have changed, we need to recompute
also the connection score p′ of every neighbor of a u’s neighbor that belongs to a connected
component among the ones merged, i.e., among the ones in A′ (Lines 24-37). In particular,
for every of such vertices w its connection score p′(w) needs to be (i) decreased by the
number of connected components in A′ containing a w’s neighbor (Lines 24-28), and (ii)
increased by one because of the new connected component A∗ created (Line 30). Addition-
ally, for every of such vertices w that have u as a neighbor, its minimum-degree score p′′(w)
is also updated (Lines 31-35).

Running time. We analyze now the time complexity of Greedy. Let H̃ denote the set of
vertices given by the union of the vertices in the output solution H∗min and the neighbors
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Algorithm 4 Connection

Input: A graph G = (V,E); a set of query vertices Q ⊆ V ; a set H∗
min ⊆ H∗ ⊆ V outputted by the

Greedy step.
Output: A set of vertices H∗∗

min ⊆ H∗.
1: Ĥ∗

min ← SteinerTree(G[H∗
min], Q)

2: H∗∗
min ←Greedy(G, Ĥ∗

min, H
∗
min)

of each vertex in H∗min that are part of H∗, i.e., H̃ = H∗min ∪
⋃
u∈H∗min

neigh(u,H∗).
It is easy to see that the largest part of the input graph visited by Greedy corresponds to
the subgraph G[H̃] induced by H̃ . Let ñ and m̃ denote the number of vertices and edges of
G[H̃], respectively. The time complexity of Greedy is O(|Q|m̃ log ñ), as proved next.

Theorem 3 Greedy runs in O(|Q|m̃ log ñ) time.

Proof First of all, we assume that the operations of insertion, extraction, and update from the
queue P are performed in time logarithmic in the size of P . Also, by keeping the neighbors
of a vertex in the input graph G organized based on their core index, it is possible to visit
the neighbors neigh(u,H∗) of a vertex u in time O(|neigh(u,H∗)|) instead of O(δ(u)).

Let us analyze the most expensive steps of Greedy:

• The initialization phase (Lines 1-2) takes O(|Q| log |Q|), while the extraction of a ver-
tex from P (Line 4) takes O(ñ log ñ), as each vertex in H̃ is extracted from P at most
once.

• In the cycle at Lines 7-10, all neighbors of every vertex in H̃ are visited, and this
happens only once (O(m̃) time). Moreover, this is the only point where a vertex can
enter the priority queue (O(ñ log ñ) time) and that its p score is computed from scratch
(O(m̃) time, as, to compute the p(u) score of a vertex u from scratch, all u’s neighbors
need to be visited, cf. Equations (1)–(5)). In summary, the overall runtime of this block
is O(m̃+ ñ log ñ).

• In the block at Lines 11-23, all neighbors of a vertex u ∈ H̃ are visited again. Here
is also the only point of the algorithm where a vertex v can reach the desired degree
µ∗ (Lines 14-19): in that case, all v’s neighbors are visited again, and, for each of
them, either constant-time (update of the p′′ score, Line 16) or logarithmic-time op-
erations (update of the priority in the queue, Line 17) are performed. This therefore
takes O(m̃ log ñ). Moreover, merging the connected components takes O(|Q|ñ), as
the connected components are at most |Q|, while each of them has size O(ñ).

• Finally, the block at lines 24-37 considers each vertex in H̃ as many times as it is
merged in another connected component, i.e., a number of times at most |Q|. For each
vertex, its neighbors are visited again (Lines 24-25, Line 29), and for each of such
neighbors, either constant-time (Line 26, Lines 32-34) or logarithmic-time (Line 36)
operations are performed. This block therefore takes O(|Q|m̃ log ñ) time.

Considering all the above partial times, the overall time complexity of Greedy results to be
O(|Q|m̃ log ñ). ut

As shown in our experiments in Section 5, usually ñ � n and m̃ � m; this makes the
Greedy step very efficient.
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The Connection step

The second step of the proposed overall GreedyConnection algorithm takes as input the
subgraph produced by the Greedy step and performs a sequential procedure that first en-
sures connection among the query vertices (substep 1), and then aims at satisfying the con-
straint on the minimum degree (substep 2).

Algorithm. The first substep of Connection looks for a connected solution using as few
more vertices as possible. This corresponds to solving the following problem:

Problem 3 Given a graph G = (V,E), a set of query vertices Q ⊆ V , and a set of vertices
H∗ ⊆ V containing all the solutions to CSP for the query Q, find a minimum-sized set of
vertices Ĥ∗ ⊆ H∗ \Q such that G[Q ∪ Ĥ∗] is connected. ut

Problem 3 can be shown to be NP-hard by a reduction from STEINER TREE.

Theorem 4 Problem 3 is NP-hard.

Proof Given an instance of STEINER TREE on an input graph G = (V, E) and a set of
terminals T ⊆ V , one can build an instance of Problem 3 by setting G = G, Q = T , and
H∗ = V . Using the same arguments as Theorem 2, it is easy to see that a set of vertices
H of G is a solution to the instance of Problem 3 constructed this way if and only if any
spanning tree of the subgraph induced by H is a solution to the original STEINER TREE

problem instance. ut

The analogy between Problem 3 and STEINER TREE allows us to borrow the theory
developed for the latter problem. Particularly, we solve the first substep of Connection
(i.e., Problem 3) by using the aforementioned algorithm by Kou et al. [12], which gives an
approximation guarantee of 2 − 2/|Q|. Then, in the second substep, the preliminary (con-
nected) solution Ĥ∗min outputted by the first substep constitutes the set of query vertices to
be given as input to Algorithm 3, in order to make it satisfying the minimum-degree con-
straint too. Note that, as Ĥ∗min is connected and Algorithm 3 adds at each step only vertices
that are connected to the current solution, we use here a simplified version of Algorithm 3,
where all operations needed for ensuring the connection constraint (i.e., computing/updating
connected components and connection scores p′) are discarded.

The outline of Connection is reported as Algorithm 4.

Running time. The first substep of Connection, i.e., running the approximation algorithm
by Kou et al. [12] on the subgraph induced by H∗min, takes O(m̃ + ñ log ñ) time by us-
ing the fast implementation by Mehlhorn [15]. The second substep of Connection takes
instead the time needed to run the simplified version of Algorithm 3 on the query vertices
Ĥ∗min outputted by the first substep. The query vertices are now already connected, thus the
connection constraint can be discarded and a simplified version of Algorithm 3 can be used.
From the complexity analysis in Theorem 3 it is easy to see that this simplified version of
Algorithm 3 takes O(m̃ log ñ) time (rather than O(|Q|m̃ log ñ) of the general case). The
overall time complexity of Connection is thus O(m̃ log ñ).

The overall GreedyConnection algorithm

The overall proposed GreedyConnection algorithm consists in running the Greedy and
Connection steps sequentially. Based on the time complexity analyses reported above, the
overall running time of GreedyConnection is O(|Q|m̃ log ñ).



Efficient and Effective Community Search 15

Table 2 Characteristics of the selected datasets: # vertices (n), # edges (m), # distinct cores (h), graph type.
n m h type

Email 33, 696 180, 811 43 Communication network
Web-NotreDame 325, 729 1, 090, 108 41 Web graph

Web-Google 791, 822 3, 815, 994 40 Web graph
Youtube 1, 134, 889 2, 987, 623 51 Social network

Flickr 1, 624, 992 15, 476, 835 567 Social network

GreedyConnection achieves the best tradeoff between efficiency and accuracy. Indeed,
based on the above argument about small minimum degree exhibited by real-world commu-
nities, running only the Greedy step would be very efficient but not that accurate (it pro-
duces larger communities). On the other hand, running only the Connection step, without
profitably exploiting the input reduction provided by Greedy, would achieve high quality
(smaller communities) but poor efficiency.

5 Experiments

In this section we empirically evaluate the performance of the proposed method Greedy-
Connection (for short, GrCon) and compare it to the state-of-the-art methods described
in Section 2.2, i.e., GS and K-GS (for multiple-vertex queries), and LS (for one-vertex
queries). We consider LS only for the special case of a single query vertex since that method
cannot handle multiple-vertex queries.

We use real-world, publicly-available graphs whose main characteristics are reported in
Table 2.3 For each graph we take its largest connected component.

We aim at assessing both efficiency and quality of the proposed method and its com-
petitors. As far as quality, we evaluate communities H produced by each method in terms of
size |H|, density |E[H]|/(|H|2 ), and query-biased density [19]. Density is a well-established
measure for assessing the quality of a community and it represents a desirable “side effect”
that a community identified by optimizing any other criterion should in principle exhibit.
Query-biased density is a quality measure that has been recently introduced to effectively
assess the goodness of a community without suffering from the so-called free-rider effect
(vertices attached by weak links to a strong group) [19].

The quality of our GreedyConnection is independent from the preprocessing strategy
used (CoreStruct or ShellStruct). Preprocessing only affects efficiency: unless otherwise
specified, the runtimes reported for our GreedyConnection always comprise the retrieval
time from the slowest one among the two preprocessing methods (i.e., ShellStruct).

For each set of experiments, we sample 100 (sets of) query vertices at random (from ei-
ther the whole graph or different parts of the graph—more details on this later), and, for each
measure, we report the average over this set of queries, along with statistical significance of
the difference among the various methods. For the latter we report p-values computed ac-
cording to the well-established Wilcoxon signed rank test [6].

All methods are implemented in Java 1.7, and experiments are run on an Intel Xeon CPU
at 2.2GHz and 96GB RAM machine, which we limit to 30GB. The source code is available
at http://bit.ly/1b6WbSQ.

3 Flickr is available at http://socialnetworks.mpi-sws.org/datasets, while all other graphs at https:
//snap.stanford.edu/data.
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Table 3 Multiple-vertex query evaluation (number of query nodes |Q| = 8): proposed GrCon method vs.
GS (top table) and vs. K-GS (bottom table) state-of-the-art methods.

time(s) size density query-biased density
GrCon GS p-value GrCon GS p-value GrCon GS p-value GrCon GS p-value

Email 0.214 0.277 0.02 2k 12k 2.4E-5 0.045 0.017 1.1E-5 7.7E-4 4.7E-4 0.014
Web-ND 2 33 8.8E-33 12k 87k 3.8E-4 0.026 0.003 3.7E-4 2.2E-4 1.3E-5 1.9E-9

Web-G 8 95 3.2E-5 33k 351k 0.002 0.095 0.044 9.6E-8 0.01 9.9E-11 1.9E-9
Youtube 71 969 5.5E-29 42k 290k 0.001 0.012 0.002 0.01 2.7E-5 3.4E-6 2.4E-6

Flickr 131 1,316 7.5E-6 103k 546k 0.03 0.017 8.8E-4 0.005 3.9E-5 1.2E-6 0.027

GrCon K-GS p-value GrCon K-GS p-value GrCon K-GS p-value GrCon K-GS p-value
Email 0.214 0.904 2.7E-10 2k 4.9k 0.02 0.045 0.038 0.56 7.7E-4 6.1E-4 0.82

Web-ND 2 8 1.7E-7 12k 38k 2.4E-4 0.026 0.028 0.87 2.2E-4 1.8E-4 0.05
Web-G 8 32 0.001 33k 265k 0.01 0.095 0.089 0.02 0.01 0.009 0.82

Youtube 71 31 0.08 42k 71k 0.004 0.012 0.004 0.04 2.7E-5 1.4E-5 1
Flickr 131 113 0.30 103k 281k 0.03 0.017 0.002 0.19 3.9E-5 3.1E-5 0.28

5.1 Multiple-vertex queries

In the evaluation for multiple-vertex queries we compare the proposed GrCon to the state-
of-the-art GS andK-GS methods. We set the constraint on the community size forK-GS to
the size of the corresponding community yielded by our GrCon method. We recall that this
is only a soft constraint: K-GS may output communities of size larger than the constraint.

The results of this evaluation are illustrated in Figure 1, where we show results with
varying the number of query vertices, and Table 3, which reports a summary of the results
for 8 query vertices, by also including statistical significance. For each graph, the (100) sets
of query vertices used are sampled uniformly at random from various cores of the graphs,
particularly from cores of order 1 (i.e., the whole graph), 2, 4, 8, 16, 32. The reported results
are averaged over all those query sets.

Our GrCon method outperforms GS in terms of running time—one/two orders of mag-
nitude faster in all cases, as well as quality—size/density consistently smaller/larger, with
size being one order of magnitude smaller in most cases, and density up to two orders
larger. Concerning the results over different datasets, the smallest gap between the proposed
method and the two competitors (especially K-GS) is on the two smallest-density datasets,
i.e., Web-ND and Youtube. This comply with the design principles of our method. In fact,
for any given set of query vertices, our method needs to find a subgraph that satisfies two
requirements: (i) query vertices are connected, and (ii) the minimum degree of the subgraph
is equal to a certain value. The two requirements have to be satisfied by keeping the size of
the output subgraph as small as possible. Both these requirements take benefit from a dense
graph: in a dense graph, in fact, a few additional vertices typically suffice to connect query
vertices and get to the desired minimum-degree value.

K-GS behaves quite well (comparable to and in some cases better than our GrCon) for
small numbers (i.e., 2) of query vertices, while its performance degrades as query vertices
increase. This complies with the design principles of that method. It indeed consists of a
preprocessing phase aimed at reducing the input graph by including the minimum number
of vertices that are close to the query vertices and make the resulting graph connected and
with size at least K. It is hence apparent that more query vertices lead to retaining a larger
graph during such a preprocessing phase, thus making the benefit of working on a reduced
graph progressively disappear. Indeed, for query vertices from four on,K-GS is consistently
outperformed by GrCon in terms of all metrics, i.e., running time, size, and density. For
large query sets (i.e., |Q| = 16 or |Q| = 32), K-GS performs even worse than GS.
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Fig. 1 Multiple-vertex query evaluation with varying number of query vertices |Q|: proposed GrCon method
vs. GS and K-GS state-of-the-art methods. Results are shown in logarithmic scale.

As a general trend exhibited by all methods, the size (resp. density) of the solutions
produced is increasing (resp. decreasing) as the number of query vertices increases. This is
expected: the more the query vertices, the larger the number of other vertices needed to make
them connected, and, hence, the larger the size and the smaller the density of the resulting
solution. Also, running time is increasing with the number of query vertices only for GrCon
and K-GS, while it results roughly constant for GS. This is in accordance with the time
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Fig. 2 Multiple-vertex query-evaluation cumulative times (i.e., preprocessing time + query time) of proposed
GrCon method vs. GS and K-GS state-of-the-art methods with varying the number of queries. Number of
query vertices |Q| = 16. Times are shown in logarithmic scale.

Table 4 One-vertex query evaluation (core index of the query vertex c(v) = 8): proposed GrCon method
vs. LS state-of-the-art method.

time(s) size density query-biased density
GrCon LS p-value GrCon LS p-value GrCon LS p-value GrCon LS p-value

Email 0.065 0.490 3.1E-27 0.9k 2.5k 2.8E-4 0.190 0.066 0.008 0.003 4.9E-4 9.1E-5
Web-ND 0.056 1 4E-7 1.7k 16k 2.8E-6 0.478 0.151 2.3E-4 0.04 0.01 3.9E-5

Web-G 0.690 9 6.5E-5 21k 76k 0.004 0.673 0.281 5.8E-4 0.07 0.03 2.9E-5
Youtube 6 24 1.7E-7 23k 36k 0.03 0.010 0.005 1.1E-4 3.3E-5 2.6E-6 0.002

Flickr 92 762 0.002 68k 94k 0.002 0.011 0.010 0.002 1.1E-4 1.4E-5 0.05

complexity of the three methods: GrCon and K-GS have running time that depends on the
number of query vertices, while GS does not (see Sections 2 and 4.2).

The summary reported in Table 3 shows that in almost all cases where our GrCon out-
performs a baseline the difference is statistically significant (p-value < 0.05). The few
exceptions include the comparison to K-GS in terms of density on the Email and Flickr
datasets. For what concerns the few cases where our GrCon is outperformed by K-GS
(time on Youtube and Flickr, and density on Web-ND), it is remarkable to note that the
difference is not statistically significant, thus meaning that in these cases the two methods
are comparable. In Table 3 we also report the results in terms of query-biased density, which
show that our GrCon significantly outperforms GS while being comparable to K-GS.

Cumulative time evaluation. In Figure 2 we report an analysis of the efficiency of the
various methods in a real-world scenario where (i) cumulative times for a certain number of
queries are shown, and (ii) the times of our GrCon comprise the preprocessing time needed
to build the offline information, which, we recall, is needed una tantum and can be exploited
by all the subsequent queries. Particularly, as the preprocessing time, we consider the time
needed to compute the most time-consuming offline information, i.e., ShellStruct.

The superiority of our GrCon remains apparent also in this evaluation. Particularly, the
advantage over the competitors increases as the number of queries increases: this is expected
as more queries allows for better amortizing the time spent in preprocessing.
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Fig. 3 One-vertex query evaluation with varying core index c(v) of the query vertex v: proposed GrCon
method vs. LS state-of-the-art method. Results are shown in logarithmic scale.

5.2 One-vertex queries

For the special case of one-vertex queries we aim at comparing the proposed GreedyCon-
nection against LS, which is the state-of-the-art method for this special type of query and
has been recognized as more efficient and effective than GS and K-GS [5]. Note that for
this special case no connection constraint among query vertices is required, thus here we use
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Fig. 4 One-vertex query-evaluation cumulative times (i.e., preprocessing time + query time) of proposed
GrCon vs. LS state-of-the-art method varying the number of queries. Core index of the query vertex c(v)=8.
Times are shown in logarithmic scale.

Table 5 Building time and storage space of the proposed preprocessing methods.
building time (s) space (MB)

CoreStruct ShellStruct CoreStruct ShellStruct
Email 1 3 7 4

Web-ND 12 574 41 28
Web-G 43 3, 155 147 90

Youtube 201 5, 946 130 100
Flickr 1, 765 15, 865 564 347

a simplified version of our GreedyConnection method which comprises only the first one
of the two steps described in Section 4.2 (i.e., only the Greedy step).

The results of this evaluation are reported in Figure 3 (query vertices sampled uniformly
at random from different cores of the graph) and Table 4 (summary on query vertices sam-
pled from core 8 along with statistical-significance evaluation). GrCon consistently outper-
forms LS in all cases, in terms of accuracy and efficiency. Indeed, GrCon is always at least
one/two orders of magnitude faster than LS, and in some cases the gap is even of three or-
ders of magnitude. At the same time, the solutions produced by GrCon have much smaller
size and larger density than LS: in most cases the size gap is one order of magnitude while
the density exhibited by GrCon’s solutions is on average 73% larger than LS.

Table 4 shows that the superiority of our GrCon is always statistically significant, and
it is confirmed in terms of the query-biased density measure too.

Finally, in Figure 4 we show cumulative times for various numbers of queries. Times of
our method here include the time needed for building the ShellStruct structure.

5.3 Preprocessing-phase evaluation

We now focus on the preprocessing methods CoreStruct and ShellStruct. Table 5 contains
building time and storage space, while Table 6 shows running times of the retrieval phases.
These results confirm what theoretically stated in Section 3: ShellStruct offers less storage
space but requires more building time than CoreStruct. However, for both methods retrieval
time is always < 1 ms, thus being negligible if compared to the online-processing times.
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Table 6 Retrieval time (µs) of the proposed preprocessing methods with varying |Q|.
|Q| = 1 |Q| = 2 |Q| = 4 |Q| = 8 |Q| = 16 |Q| = 32

Core Shell Core Shell Core Shell Core Shell Core Shell Core Shell
Struct Struct Struct Struct Struct Struct Struct Struct Struct Struct Struct Struct

Email 14 17 18 48 26 115 41 284 69 361 121 153
Web-ND 17 16 18 50 26 106 42 232 76 227 144 420

Web-G 36 19 20 69 30 169 49 242 115 311 197 350
Youtube 13 17 19 39 27 81 47 198 77 335 137 338

Flickr 13 18 18 57 26 128 40 275 68 485 123 129

6 Related Work

Community search. Community search is the problem of finding a good community for a
set of query vertices. A number of community-quality measures have been proposed, based
on notions such as random walk [18,11], α-adjacency-γ-quasi-k-clique [4], k-truss [10],
influence [14], or query-biased density [19]. Sozio and Gionis [17] are the first to provide
a combinatorial-optimization formulation to the community-search problem, and, in partic-
ular, they ask for a connected subgraph that contains all query vertices and maximizes the
minimum degree. This formulation of community search has been further studied in the lit-
erature [5] and is the specific formulation we focus on in this work. All main related research
on this topic has already been discussed in more detail in Section 2.2.

Dense-subgraph discovery. Finding dense subgraphs is a long-standing problem in data
mining [13]. This problem aims at finding a subgraph of a given input graph that maximizes
some notion of density. A density notion widely employed in the literature is the average
degree. Finding a subgraph that maximizes the average degree can be solved in polynomial
time [9], and approximated within a factor of 1

2 in linear time [3].
Dense-subgraph discovery differs from community search as it does not permit to spec-

ify any query vertices to be contained in the output subgraph/community.

Community detection. Community detection and the related problem of graph partitioning
have been extensively studied in the literature. The goal of such problems is to partition the
vertices of a graph into communities so as to maximize edges between vertices in the same
community and minimize edges between vertices in different communities. Representative
approaches to community detection include spectral, minimum-cut, modularity-based meth-
ods, and label propagation [20]—in fact, the literature on the topic is so extensive that we
do not attempt to make a proper review here; a comprehensive survey can be found in [7].

The goal of community detection is to find a global community structure for the whole
input graph; it thus differs from community search, whose objective is instead to find a
community for a set of input query vertices in an online fashion.

7 Conclusions

Given a graph and a set of query vertices, the community-search problem requires to find a
cohesive subgraph that contains the query vertices. A well-established criterion to measure
the quality of the community to be discovered is the minimum degree of the output subgraph.
A number of methods have been proposed for this specific formulation of community search,
but they all have shortcomings about efficiency, as they need to visit (large part of) the whole
input graph, effectiveness, as they tend to find large and not really cohesive communities, or
lack of generality, as they cannot handle multiple query vertices, do not find communities
with optimal minimum degree, and/or require input parameters.
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This paper advances the state of the art on min-degree-based community search by
proposing a method that overcomes all weaknesses of existing approaches: it is orders of
magnitude faster and more effective, while, at the same time, being capable of handling
multiple query vertices, producing optimal communities, and being parameter-free.

An extensive evaluation performed on several real-world graphs attests the superiority
of the proposed method from efficiency, effectiveness, and generality viewpoints.

In the future we plan to further study the problem of minimum community search (Prob-
lem 2) by devising alternative heuristics that can further improve efficiency and/or accu-
racy. Another interesting direction is to carry over the strategies proposed in this paper to
community-search-like problems involving more complex types of graph, such as heteroge-
neous networks, labeled networks, or dynamic graphs.
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